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ABSTRACT 

We show how to obtain polar decomposition as well as inversion of fixed and 
time-varying matrices using a class of nonlinear continuous-time dynamical systems. 
First we construct a dynamical system that causes an initial approximation of the 
inverse of a time-varying matrix to flow exponentially toward the true time-varying 
inverse. Using a time-parametrized homotopy from the identity matrix to a fixed 
matrix with unknown inverse, and applying our result on the inversion of time-varying 
matrices, we show how any positive definite fixed matrix may be dynamically inverted 
by a prescribed time without an initial guess at the inverse. We then construct a 
dynamical system that solves for the polar decomposition factors of a time-varying 
matrix given an initial approximation for the inverse of the positive definite symmetric 
part of the polar decomposition. As a by-product, this method gives another method 
of inverting time-varying matrices. Finally, using homotopy again, we show how 
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dynamic polar decomposition may be applied to fixed matrices with the added benefit 
that this allows us to dynamically invert any fixed matrix by a prescribed time. 
© Elsevier Science Inc., 1997 

1. INTRODUCTION 

In [1-3] we presented a continuous-time dynamic methodology, called 
dynamic inversion, for the solution of finite-dimensional time-dependent 
inverse problems of the form 

F(O,t)  = 0. (1) 

Dynamic inversion shows how to construct a dynamical system whose state 0 
is attracted asymptotically to a continuous isolated solution 0 ,  (t) of (1). 

One may also pose functions of a time-varying matrix as solutions F , ( t )  
of problems of the form F ( F , t ) =  0. For instance, if A( t )~  ~"×" is 
invertible, then F , ( t )  = A(t) -1 is the unique solution to (1), where F(F, t) 
:= A(t)F - I. Motivated by this realization, in the present paper we will 
investigate the use of dynamic inversion to construct dynamical systems that 
perform matrix inversion as well as polar decomposition. 

1.1. Previous Work 
Continuous-time dynamic methods of solving matrix equations have ap- 

peared previously in the literature. Any dynamical system on a matrix space 
with an asymptotically stable equilibrium may be considered to be a dynamic 
inverter that solves for its equilibrium. For example, continuous-time dy- 
namic methods for determining eigenvalues date back at least as far as 
Rutishauer [4, 5]. Brockett [6, 7] has shown how one can use matrix differen- 
tial equations to perform computation often thought of being intrinsically 
discrete. Bloch [8, 9] has shown how Hamiltonian systems may be used to 
solve principal-component and linear programming problems. Symes [10] and 
Chu [11] have studied the Toda flow as a continuous-time analog of the QR 
algorithm. Chu [12] and Chu and Drissel [13] have explored the use of 
differential equations in solving linear-algebra problems. Smith [14] and 
Helmke et al [15] have constructed dynamical systems that perform singular- 
value decomposition. Dynamic methods of matrix inversion have also ap- 
peared in the artificial-neural-network literature [16, 17]. For a review of 
some dynamic methods as well as a comprehensive list of references for 
dynamic approaches to optimization, see [18]. 
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A dynamic decomposition related to polar decomposition of fixed matrices 
has appeared in Helmke and Moore [18], though, as the authors point out, 
their gradient-based method does not guarantee the positive definiteness of 
the symmetric component of the polar decomposition. We discuss this 
method further in Section 6. Using dynamic inversion, we will derive a 
system that produces the desired inverse and polar decomposition products at 
any fixed time t 1 > 0 with guaranteed positive definiteness of the symmetric 
component. 

As far as we know, all prior continuous-time dynamic approaches to 
inversion of matrix equations use gradient flows. In contrast, dynamic inver- 
sion is not restricted to gradient methods. 

1.2. Main Results 

The main results of this paper are as follows: We will construct dynamical 
systems that 

1. invert time-dependent matrices asymptotically, 
2. invert constant matrices from a spectrally restricted set (including 

positive definite matrices) by a prescribed time, 
3. invert and decompose any t/me-dependent invertible matrix into its 

polar decomposition factors, 
4. invert and decompose any constant nonsingular matrix into its polar 

decomposition factors by a prescribed time. 

Results 2 and 4 will be otained from results 1 and 3, respectively, using 
homotopy. 

1.3. Overview 
In Section 2 we give a brief review of the main relevant points of dynamic 

inversion. In Section 3 we examine the application of dynamic inversion to 
the problem of inverting time-varying matrices, assuming a good initial guess 
for the matrix inverse at time t = 0. In Section 4 we consider the problem of 
inverting constant (time-independent) matrices. By using a matrix homotopy 
from t h e  identity we will use the results of Section 3 to produce exact 
inversion of a restricted class of constant matrices, including positive definite 
matrices, by a prescribed time. To remove the spectral limitations on the class 
of fixed matrices which we may invert in finite time, in Section 5 we will 
consider the polar decomposition of a time-varying matrix. We will show how, 
starting from a good guess at the initial value of the inverse of the positive 
definite part of the polar decomposition, we may construct a dynamical 
system that produces an estimate that exponentially converges to the inverse 
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of the positive definite symmetric part. From this estimate and the original 
matrix we will obtain the decomposition products as well as the inverse 
through multiplication. In Section 6 we will revisit the problem of constant 
matrix inversion and show how, combining homotopy with dynamic polar 
decomposition, we may dynamically produce the polar decomposition factors 
as well as the inverse of any constant matrix by a prescribed time without 
requiring an initial guess. 

Our objective in this paper is to present a methodology for the construc- 
tion of analog computational paradigms for solving inverse problems. We 
leave open the issue of how dynamic inverters may best be realized by 
physical computing systems, and so we will avoid discussion of numerical 
considerations such as condition number and numerical stability. However, 
since our dynamic inverters are stable integrators, the primary issue to be 
faced in their implementation is the realization of integration. 

1.4. Notation 
Here, for easy reference, we define some of the notation used in the 

sequel. 
We are concerned with problems of the following form: Given a time- 

dependent map F(F, t), find F , ( t )  satisfying F ( F , ( t ) ,  t )  = 0 for all t >1 0. 
Thus F . ( t ) ,  which we sometimes refer to as F ,  for brevity, denotes the 
exact solution of the inverse problem. We will use F to denote the first 
argument of F, as well as an estimator for F , ( t ) .  

R+: The set from which we draw our values of time, t, is N+ := {t ~ N It 
>/o]. 

k_: For any integer k >~ 1, let k denote the set of integers {1, 2 . . . . .  k}. 
L(A, B): For vector spaces A and B, L,(A,  B) is the set of all linear maps 

from A to B. 
GL(n): The group of nonsingular n × n matrices having real-valued en- 

tries, {M ~ ~x ,~  [det M v~ 0}. 
O(n): The group of orthogonal n x n matrices having real-valued entries, 

(M ~ R '~×~ [ M r M  = I}. 
S(n): The vector of space of symmetric n X n matrices having real-valued 

entries, {M ~ ff~x,, [M r = M}. 
s(n): The dimension of S(n), i.e. s(n) := 1 ~n(n + 1). 
[f(Mq)]~ j~ . :  The n X n matrix with f ( M  0 in row i and column j .  
][x[le: T't~e 2-norm of x, [[xllz := x~/~x. 
or(M): The spectrum of M ~ GL(n), i.e. the set of eignvalues of M. 
M n, ML: If  M ~ ~"×" ,  m <~ n, is full-rank, then M n := M r ( M M r )  -1 

R n×'~ is the right inverse of M. Note that MM n = I ~ ~m×m. If M 
~"~×'~, m /> n, is full-rank, then M L := ( M T M ) - I M r  ~ ~,×m is the left 
inverse of M, and Mt'M = I ~ ~m×,, 
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D k F ( a  1, a 2 . . . . .  a'): For  any map  F(a ~, a 2 . . . . .  a"), the partial derivative of  
F with respect  to a k. 

~ ' r :  For  each dimension n we define the open ball ~qCr := {x ~ ff~n : Ilxlr < 
r}. The  choice of  a particular norm II" II will be  apparent  from context. In 
order  to emphasize  the dimension of  ~q~r we will often specify the set 
having the same dimension as ~q~r for which ~ ' r  is a subset, e.g. ~ r  c R n. 

2. D Y N A M I C  I N V E R S I O N  

Given an inverse prob lem F(O, t )  = 0, dynamic inversion specifies how 
one can construct  a system of  nonlinear ordinary differential equations whose 
solution O(t) converges asymptotically to a continuous isolated solution 0 ,  ( t )  
of  the inverse problem.  

A key e lement  of  dynamic inversion is the notion of  a dynamic inverse 
G[w, 0, t] of  a nonlinear map F(O, t). The  dynamic inverse is nonunique,  
and is def ined in terms of  the unknown root of  a map  F. 

DEFINITION 2.1. For  F : ~ "  × R+ ~ ~" ,  (0, t) ~ F(O, t), let O,(t)  be 
a continuous isolated solution of  F(O, t )  = 0. A map G : ~  n × ~ "  × R + ~  
~", (w, O, t ) ~  G[w, O, t] is called a dynamic inverse of  F on the ball 

'~r  := {Z ~ ~n l  Ilgl[ ~ r), r > 0, if 

1. G[0, z + O,(t),  t] = 0 for all t / >  0 and z ~ ' r ,  
2. the map G[F(O, t), O, t] is Lipschitz in 0 and piecewise continuous in 

t, and 
3. there is a real constant /3 with 0 < / 3  < o% such that  

(dynamic inverse criterion) 

z r G [ F ( z  + O . ( t ) , t ) ,  z + O . ( t ) , t ]  >~/311zll~ (2) 

for all z ~ ~'r" 

As shown in [2, 1], if  D1F(O.(t) ,  t) -1 exists, then any matrix M(O, t) 
such that M(O, t )D~F(O.( t) ,  t) is positive definite may be used to form a 
dynamic inverse G[w, O, t] := M(O, t)" w of  F. Examples  of  such M(O, t) 
include D I E( O, t) T and D I F( O, t) -1 for 0 sufficiently close to O . ( t ). 

The  key dynamic inversion theorem [2, Theorem 3.5] which we will rely 
upon in the sequel is as follows. 
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THEOREM 2.2 (Dynamic inversion theorem--vanishing error). Let 0 ,  (t) 
be a continuous isolated solution of F ( O , t ) =  O, with F :ff~n × ff~+--* ~ ,  
(O, t )  ~ F(O,t) .  Assume that G:~'~ x ~r, x ~+-o R", ( w , O , t )  
G[ w, O, t ], is a dynamic inverse ofF(O, t)  for all 0 satisfying 0 - O , ( t ) E 
~r ,  and for some finite ~ > O. Let E : R '~ × ~ +-o R", ( O, t ) ~ E( O, t ) be 
locally Lipschitz in 0 and continuous in t. Assume that for some constant 
K ~ (0, o~), E(O, t)  satisfies 

IIt(  + o , ( t ) , t )  - o , ( t ) l { 2  <~ Kllzll~ (3) 

for all z ~ ~r" Let O(t) denote the solution to the dynamical system 

(dynamic inverter) 0 = - ~ G [ F ( 0 ,  t), O,t] + E(O,t) (4) 

with initial condition 0(0) satisfying 0(0) - O, (0) ~ ~ .  Then 

][0(t) - 0,(t)][~ ~<110(0) - O,(O)][ze-(~tJ-~)t (5) 

for all t ~ ~+, and in particular, if  ix > K/[3, then O(t) converges to O, ( t )  
exponentially as t ~ oo. 

2.1. Constructing a Derivative Estimator 
The map E(O, t) may be regarded as an estimator for t~,. A straightfor- 

ward method of obtaining such an estimator is by differentiating F(O, ,t) = 0 
with respect to t, 

D 1 F ( O , , t ) O  . + D2F(O, t  ) = 0  (6) 

solving for 0 , ,  

o,  = - o , e ( o , ,  t) - 1 0 2 e ( o , ,  t) (7) 

and replacing 0 ,  by its estimator 0 to get 

~(o ,  t) := - D i e ( o ,  t ) - '  u 2 e ( o ,  t) .  (s) 

As illustrated in the next section, if an asymptotic estimator F of 
D1F(O,,  t) -1 is available, then for F sufficiently close to D1F(O,,  t) -1 we 
may instead use 

~ ( r ,  o, t) ..= - ru~:( O, t) .  (9) 
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3. INVERTING TIME-VARYING MATRICES 

Consider the problem of estimating the inverse r . ( t )  ~ ~n×,  of a 
time-varying matrix A(t) ~ GL(n). Assume that we have representations for 
both A(t) and A(t), and that A(t) is C l in t. Let F be an element o f R  n×n, 
and let F : R  "×" × R+---, ~ x , ,  ( r , t ) ~  F(F,t)be defined by 

F ( r ,  t) := a ( t ) r  - I .  ( 1 0 )  

For F , ( t )  to be the inverse of A(t), F . ( t )  must be a solution of A(t)F - I 
= 0 .  

An estimator E(F, t)  for F . ( t )  is given by (9) where we replace 0 by F: 

E ( r , t )  := - r / / ( t ) r .  (11) 

Differentiate F(F, t)  with respect to F to get 

D1F(F,t ) = A( t ) ,  (12) 

whose inverse is F . .  Thus a choice of dynamic inverse is 

C[W, r ]  := r w  (13) 

for F sufficiently close to F ,  = A-](t) and for W E a "×n. The dynamic 
inverter for this problem then takes the form 

l ~ = - ~ G [ F ( F ,  t ) ,  F] + E ( r , t ) ;  (14) 

i.e., according to (10), (11), and (13), 

[~ = - i z r (  A ( t ) r  - I )  - rA;( t ) r  (15) 

and we choose as initial conditions F(0) = F , (0 )  = A-l(0).  Theorem 2.2 
guarantees that for sufficiently large /x, and for F(0) sufficiently close to 
A-l(0),  Equation (15) will produce an estimator F( t )  whose error F( t )  - 
F .  ( t)  decays exponentially to zero at a rate determined by our choice of /x .  
We summarize the observations above in the following consequence of 
Theorem 2.2. 
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THEOREM 3.1 (Dynamic inversion of time-varying matrices). Let A(t)  
GL(n)  be C 1 in t, with A(t), A(t) -1, and A(t)  bounded on [0, ~). Let 
G[W, F, t] be a dynamic inverse (see Definition 2.1) of F(F, t )  = A(t)F - I 

for all t ~ R+, and for all F such that F - F ,  is in ~r" Let F( t )  ~ En×n 
be the solution to 

~" = - g c [  A ( t ) r  - Z, r ,  t] - r ~ ( t ) r  (16) 

with IIr(0) - F.(0)ll < r < ~. Then for sufficiently small r, there exists a 
/2 > 0, k 1 > O, and k2 > 0 such that fi~r all tx >/2, and for all t >1 O, 

IIF(t)  - F , ( t ) l l 2  < kll lF(O) - F , (O) l l e  - ~ ' .  (17) 

In particular lim, ~ ~F(t) = A(t )-  1. 

EXAMPLE 3.2 (A dynamic inverter for a time-varying matrix). Let 

G[W, t] := A ( t ) T w .  (18)  

By Theorem 3.1, for sufficiently large constant /x > 0, and for F(0) suffi- 
ciently close to A(O) -1 , the solution F(t)  of 

r = - t ~ A ( t ) r ( A ( t ) F  - I )  - r~(t)r (19) 

approaches A(t)-1 exponentially as t --+ o~. 

See also (15), where the dynamic inverse G[W, F] = FW is used instead 
of G[W, t] = A(t)TW. 

EXAMPLE 3.3 (Dynamic inversion of a mass matrix). Consider a finite- 
dimensional mechanical system modeled by the second-order differential 
equation 

M ( q ) q  + N ( q , 4 )  = O. (20) 

Usually the matrix M(q) is positive definite and symmetric for all q, since 
the kinetic energy, ½OrM(q)~ t, is normally greater than zero for all 0 4= 0. It 
is often convenient to express such systems in an explicit form, with ~] alone 
on the left side of a second-order ordinary differential equation. To do so, we 
will invert M(q) dynamically. 
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I~t  F be a symmetric estimator for M(q)- ~. Suppose we know M-  l(q(0)) 
approximately. If  our approximation is sufficiently close to the true value of 
M-l(q(O)), then setting F(0) to that approximation and letting /z > 0 be 
sufficiently large allows us to apply Theorem 3.1. Then the system 

r=-~r(M(q)r-i)-r[ aM~4(q) ] Oq gt • r, 
i,jEn 

?j = r N ( q ,  q) 

(21) 

provides an exponentially convergent estimate of ~j for all t. Furthermore, if 
F(0) = M(q(O)) -~, then F( t )  = M-l(q(t)) for all t >/0. 

REMARK 3.4 (Symmetry and the choice of dynamic inverse). In Example 
3.3, M(q) is symmetric, as is its inverse M(q) -1. The right-hand side of (21) 
is also symmetric; hence if F(0) is symmetric, so is F( t )  for all t. If we had 
chosen G[W, q] := M(q)TW as a dynamic inverse (see, for instance, Exam- 
ple 3.2), we would not have had this symmetry. The symmetry allows us to 
cast the top equation of (21) on the space S(n) of symmetric n x n matrices, 
thereby reducing the complexity of the dynamic inverter; what would other- 
wise be n 2 equations (21) is reduced to s(n) := n(n + 1) /2  equations. 

3.1. Left and Right Inversion of Time-Varying Matrices 
Consider a matrix A(t) ~ ~,,,x,,. Assume that A(t) is of full rank for all 

t >/0. We consider two cases: 

(1) If  m ~< n, then A(t) has a right inverse F , ( t )  ~ R "xm satisfying 

It is easily verified that 

F ( F ,  t)  := A ( t ) r  - I = O. (22) 

c [ w  ] := r w .  (23) 

is a dynamic inverse for F(F, t) when F is sufficiently close to F .  = 
A(t)r(A(t)A(t)T) -j. Differentiate F ( F . ,  t )  = 0 with respect to t, solve for 
fv., and replace F .  by F to get the derivative estimator 

E ( r ,  t)  := - r ~ i ( t ) r .  (24) 
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Thus a dynamic inverter fi~r right inversion of a time-varying matrix is 

I" = - ~ F ( A ( t ) F  - I )  - F i i ( t ) F .  (25)  

The form of this dynamic inverter is seen to be identical to (15). Alternatively 
we may use Theorem 3.1 to invert A( t )A( t )  7", constnlcting the right inverse 
as A(t)7"F(t). 

(2) In the case that m >1 n, A(t)  has a left inverse F , ( t )  which satisfies 

e ( r ,  t )  := r a ( t )  - I = 0 ( 2 6 )  

We may use the dynamic inverter (25) with A(t)  replaced by A(t)  7", and A(t) 
replaced by ,~(t) T, to approximate the left inverse of A(t). 

4. INVERSION OF CONSTANT MATRICES 

In this section we consider two methods for the dynamic inversion of 
constant (time-independent) matrices: one for asymptotic inversion, and the 
other for inversion in finite time. In Section 6 we consider another more 
complex, but also more general approach to the same problem. 

Constant matrices may be inverted in a manner similar to the inversion of 
time-varying matrices as described in the last section. Let 

e ( r )  := M r  - I .  (2V) 

Let F( t )  denote the estimator for the inverse of a constant matrix M, with 
F ,  = M -1 as the solution of F(F)  = 0. Since M is constant, I ' ,  is zero. As a 
consequence, if F(0) is sufficiently close to F , ,  then a dynamic inverse of 
F(F)  is G[W, F] := FW, and we can use the dynamic inverter 

(dynamic inverter for constant invertible matrices) F = - ~1"( M F - I ) .  

(28)  

Choosing F(O) sufficiently close to F ,  assures us that as t ~ ~, F( t )  
flows to F ,  = M -~, and F will not intersect the set of singular matrices. 
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4.1. A Comment on Gradient Methods 
As shown in Example 3.2, the function G[W, F] := FW is not our only 

choice of  a dynamic inverse G[W, F, t] which is linear in W. It is easily 
verified that G[W] = M r W ,  W ~ ~,,×n, is also a dynamic inverse for 
F(F) := M F  - l, and that for this choice of dynamic inverse we do not need 
to worry about the dynamic inverse becoming singular; it is valid under any 
choice of initial condition and leads to the dynamic inverter 

( gradient dynamic inverter for matrices) F = - txM r ( M F - I ) ,  (29) 

for which F ~ M - I  as t ~ .  

REMARK 4.1 (Left and right inverses of constant matrices). I f  M has full 
row rank, with M ~ Nm×n, m ~< n, then the equilibrium solution F .  of(29) 
is the right inverse M R := M r ( M M r )  -1 of M. I f  instead we choose F(F)  := 
FM - I and G[W] := WM T, and if M ~ NmX,, m >/ n, has full column 
rank, then the solution F .  to the resulting dynamic inverter 

(dynamicleft-inverterforconstantnu~trices) 1; = -jx(FM - I ) M  r 

(3o) 

converges to the left inverse M L := ( M r M ) - I M  r of M as t ~ ~. 

The dynamic inverter (29) is the standard least-squares gradient flow (see 
[18, section 1.6]) for the function q~ :R n ~ N, F ~ qb(F), where 

• ( r )  := ½11Mr - tll . (31) 

It is also the neural-network constant matrix inverter of  Wang [17]. Of  course 
other gradient schemes may have the same solution as (29), though they may 
start from gradients of  functions other than (31) (see, for instance, [16]). In 
general, artificial neural networks are constructed to dynamically solve for the 
minimum of an energy function having a unique (at least locally) minimum, 
i.e., they realize gradient flows. 

4.1.1. Connecting Gradient Methods with Dynamic Inversion. In gen- 
eral a dynamic inverter (4) is made up of a given F and choices of G, E, and 
/~ as described in Section 2. The function F(F,  t)  is the implicit function to 
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be inverted, G[w, 0, t] is a dynamic inverse for F(F,  t), and E(O, t) is an 
estimator for the derivative with respect to t of the root F .  of F(F,  t )  = 0. 
To relate gradient methods to dynamic inversion, we consider the decomposi- 
tion of a gradient flow system into an E, F, G, and /x making up a dynamic 
inverter. For instance, let H : • , x ,  × ~ ~ R be a smooth function. A 
gradient system for finding critical points of H with respect to F is 

0 
(gradient system) 1 ~ = - VH(F ,  t) + -~-~H(F, t ) ,  (32) 

where V denotes the F-gradient of H(F, t). We may always identify gradient 
systems with dynamic inversion through the trivial dynamic inverse G[W] = 
W. Then F ( F , t )  = V H ( F , t )  and E ( F , t )  = (O/Ot)H(F,t).  Let /z = 1. 
Then 

= - G [ F ( F , t ) ]  + (33) 

is the same as (32). Thus we have identified the gradient system (32) with a 
dynamic inverter. 

It is more interesting, however, to find a dynamic inverse G such that if 
G were changed to the identity map, then the desired root would still be the 
solution to F(F, t) = O, but the resulting dynamic inverter would not con- 
verge to the desired root. For example, identifying F(F)  = M F - I, G[W] 
= MrW,  and E = 0 decomposes the gradient flow (29) into a dynamic 
inverter. For arbitrary M ~ GL(n),  the stability properties of I" = - / x F ( F )  
are unknown. But with G defined as G[W] = MrW,  I ~ = - / x G [ F ( F ) ]  has 
an asymptotically stable equilibrium at F .  = M -1. For a system of the form 
(29) such a decomposition is straightforward. For more complicated gradient 
systems, however, we have no general methodology for decomposition into 
E, F, and G. 

4.2. Dynamic Inversion of Constant Matrices by a Prescribed Time 
The constant-matrix dynamic inverters (28) and (29) above have the 

potential disadvantage of producing an exact inverse only asymptotically as 
t --* oo. One may, however, wish to obtain the inverse by a prescribed time. 
To this end we now consider another method. I f  we could create a time- 
varying matrix H(t) that is invertible by inspection at t = 0, and that equals 
M at some known finite time t > 0, say t = 1, then perhaps we could use the 
technique of Section 3 for the inversion of time-varying matrices to invert 
H(t). I f  F(0) = H(0) -1, then the solution of the dynamic inverter at time 
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t = 1 will be M -1. We require, of  course, that H(t) remain in GL(n)  as t 
goes from 0 to 1. One  ideal candidate for the inital value of  the time-varying 
matrix is the identity matrix I, since it is its own inverse. 

EXAMPLE 4.2 (Constant-matrix inversion by a prescribed time using 
homotopy).  Let  M be a constant matrix in • n x n. Consider the t -dependent  
matrix 

(matrixhomotopy) H( t )  = (1 - t ) I  + tM. (34) 

In the space of  n × n matrices, t ~ H(t) describes a t-parametrized curve, 
or homotopy, of  matrices from the identity to M = H(1)  as indicated in 
Figure 1; in fact this curve (34) is a straight line. From Theorem 3.1 we know 
how to dynamically invert a time-varying matrix given that we have an 
approximation of  its inverse at t ime t = 0. Since we know the exact inverse at 
time t = 0, we may use the dynamic inverter of  Theorem 3.1 to track the 
exact inverse of  the time-varying matrix for all t >~ 0. We may invert H(t) by 
substituting H(t) for A(t), and / 4 ( t ) =  M -  I for a(t), in (16), setting 
F(0) = 1. Since our  initial conditions are a precise inverse o f  H(0), Theorem 
3.1 tells us that the matrix F at t = 1 is the precise inverse of  M, as shown 
schematically in Figure 2 - - t h a t  is, o f  course, if H(t) remains nonsingular as t 
goes from 0 to 1. I f  H(t) should become singular for any t ~ [0, 1], then 
linear mappings such as W ~ F"  W and W ~ H(t) r" W fail to be dynamic 
inverses of  F(F,  t )  = H ( t ) F  - I at t. 

r 
t f 

0 

FIG. 1. The matrix homotopy H(t). 
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Matrix Homotopy Dynamic Inversion Solution 

FIG. 2. The matrix homotopy H(t)  from I to M with the corresponding solution 
F,(t) ,  the inverse of H(t). 

For a dynamic inverter for this example let 

F ( r , t )  := ( ( 1  - t ) t  + t M ) r  - I, 

o [ w ,  r ]  := r w ,  (35) 

E ( r )  := - r ( ~ -  1)r .  

Then a dynamic inverter is F = - / x G [ F ( F ,  t), F] + E(F)  with F(0) = I. 
Expanded, this is 

I" + - /xF( ( (1  - t ) I  + t M ) r  - I )  - r ( M  - i ) r .  (36) 

Another ehoiee of linear dynamie inverse is G[W,  t] := ( ( 1 -  t ) I  + 
tM )r W ,  giving 

= - ~ z H ( t ) r ( H ( t ) F  - I )  - F ( M  - I ) F  (37) 

as an alternative choice of prescribed-time dynamie inverter for eonstant 
matrices. 

Homotopy-based methods, also ealled continuation methods, for solving 
sets of linear and nonlinear equations have been around for quite some time. 
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For a review of developments prior to 1980 see Allgower and Georg [19]. The 
general idea is that one starts with a problem with a known solution (e.g. the 
inverse of the identity matrix) and smoothly transform that problem to a 
problem with an unknown solution, transforming the known solution in a 
corresponding manner until the unknown solution is reached. Often it is 
considerably easier to transform a known solution to a problem into an 
unknown solution to a closely related problem than to calculate the new 
solution from scratch. Solution of the roots of nonlinear polynomial equations 
(see Dunyak et al. [20] and Watson [21] for examples) is a typical example 
with broad engineering application. 

Now we deal with the fact that the scheme of Example 4.2 requires that 
there be no t ~ [0, 1] for which H(t )  given by (34) is singular. To do this 
recall that there are two maximal connected open subsets which constitute 
GL(n), namely GL+(n)  = {M ~ ~ × 0 1  det M > 0} and G L - ( n )  = {M 
0~ '~ ×" lde t  M < 0}. These two sets are disjoint and are separated by the 
variety of singular n × n matrices {M ~ ~,~×n ] det M = 0}. The identity I 
is in GL÷(n).  For the curve t ~ H( t )  to be invertible, it must never leave 
GL÷(n)  (see Figure 3). For our particular choice of H(t),  since H(0) = I, 
and I is in GL÷(n),  the homotopy H(t )  should remain in GL+(n)  to be 
invertible for all t ~ [0, 1]. The following lemma specifies sufficient condi- 
tions on M for H(t )  (34) to remain in GL÷(n)  as t goes from 0 to 1. 

LEMMA 4.3 (Matrix homotopy lemma). I f  M ~ GL(n) has no eigenval- 
ues in ( -o% 0), then for  each t ~ [0, 1], H(t )  = (1 - t ) l  + tM is in GL(n). 

REMARK 4.4 (Inversion of positive definite symmetric constant matrices). 
If  M is a positive definite symmetric matrix, then the assumption of Lemma 
4.3 holds. 

~ : ~ i ~ i ~  ii~ii~i~i~!i ~ det = 0 

Non-Invertible H(t) Invertible H( t) 

FIG. 3. The homotopy from I to M must remain in GL÷(n) to be invertible. 
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REMARK 4.5 (Subset starlike about I). Let or(M) be the spectrum of M. 
Lemma 4.3 tell us that the subset of GL(n) consisting of all M c GL(n) such 
that o ' (M)  O ( - ~ ,  0) = O is starlike about I, i.e., for each M in this subset, 
the straight line segment from I to M remains in the subset. 

Proof of Lemma 4.3. Suppose that H(t) = (1 - t)I  + tM is singular for 
some t ~ [0, 1]. The identity ! is nonsingular, as is M by assumption, so 

~ {0, 1}. Thus there exists a nonzero v ~ ~n sHQh that 

( (1  - i ) I  + i M ) v  = o (38) 

Since t v~ 0, we can divide (38) by -Tt to obtain 

( i - 1  ) 
I - M  v = O  (39) 

But t can only satisfy (39) if A(t) := (t - 1 ) / t  is an eigenvalue of M. As t 
ranges over (0, 1), A(t) ranges over ( - ~ ,  0). But by assumption M has no 
eigenvalues in ( - ~ ,  0); hence no such t exists in (0, 1), and so H(t) is 
nonsingular on [0, 1]. • 

We may obtain the exact inverse of M at any prescribed time t 1 > 0 by 
replacing H(t) with H ( t / t  1) in (36) or (37). We summarize our results of 
this section in the following theorem. 

THEOREM 4.6 (Dynamic inversion of constant matrices by a prescribed 
time). For any constant M ~ GL(n), and for any prescribed t 1 > O, if 
¢ ( M )  N ( - ~ ,  O) = 0 ,  then the solution F(t)  of the dynamic inverter 

( prescribed-time dynamic inverter for constant matrices.) 

I" ~ F ( ( ( 1  ~ ) I  + t~ = _  t tM)F-Q- F(M-I)r', (40) 

with F(0) = I, satisfies F(t l) = M -1. 

REMARK 4.7 (Preservation of symmetry). If M is symmetric, then the 
right-hand side of (40) is also symmetric. Thus if F(0) is symmetric, then 
F(t)  is symmetric for all t ~ [0, tx]. Note that this symmetry need not hold 
for (37), where G[W, t] = H(t)TW is used as the dynamic inverse. 
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EXAMPLE 4.8 (Right and left inverses of constant matrices by a prescribed 
time). Let A ~ ~m× n be a constant matrix with m ~< n, and assume that A 
has full rank. The right inverse of A is given by A R := AT(AAr) -1. To obtain 
A R at time t l ,  w e  may apply Theorem 4.6, replacing M by AA T, which is 
positive definite. Then AT"(AAT") -1 = ArF(t l ) ,  and we have 

( prescribed-time dynamic  right inversion o f  a constant matr ix)  

) - - A A  ~ AA T = - . r  1 -  z + r - t  - r (  - z ) ,  
t ,  (41) 

A T F ( t l )  = A n" 

If  a constant A has full column rank, then since ATA is positive definite, 
the left inverse A L := (ATA) - IAT may be obtained by substituting ATA for 
M in Theorem 4.6. Then A L = F ( t l ) A  T. 

Theorem 4.6 is limited in its utility by the necessity that M have a 
spectrum which does not intersect ( -0% 0). By appealing to the polar 
decomposition in Section 6 below, we will show that we may, at the cost of a 
slight increase in complexity, use dynamic inversion to produce an exact 
inverse of any invertible constant M, irrespective of its spectrum, by any 
prescribed time t 1 ~> 0. 

5. POLAR DECOMPOSITION FOR TIME-VARYING MATRICES 

In this section we will show how dynamic inversion may be used to 
perfom polar decomposition [22] and inversion of a ti .me-varying matrix. We 
will assume that A ( t ) ~  GL(n), and that A(t ) ,  A(t) ,  and A(t) -1 are 
bounded for t ~ E+. 

Though polar decomposition will be used here largely as a path to 
inversion, polar decomposition finds substantial utility in its own right. In 
particular it is used widely in the study of stress and strain in continuous 
media. See, for instance, Marsden and Hughes [23]. 

First consider the polar decomposition of a constant matrix M ~ GL(n), 
M = PU, where U is in the space of n × n orthogonal matrices with real 
entries, O(n), and P is the symmetric positive definite square root of M M  ~. 
Regarding M as a linear operator ~"  --* ~n, the polar decomposition ex- 
presses the action of M on a vector as a rotation (possibly with a reflection) 
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followed by a scaling along the eigenvectors of MM r. If  M ~ GL(n), then P 
and U are unique. 

Now consider the case of a t-dependent nonsingular square matrix A(t).  
Since A(t)  is nonsingular for all t >~ O, A ( t ) A ( t )  ~ is positive definite for all 
t >1 0. For any t 7> 0, the unique positive definite solution to X A ( t ) A ( t ) T x  
- l = 0  is X . ( t ) = P ( t )  -~. Thus if we know X . ( t ) ,  then from A ( t ) =  
P( t )U(t )  we can get the orthogonal factor U(t) of the polar decomposition by 
U(t) = X . ( t ) A ( t ) ,  as well as the symmetric positive definite part P(t)  = 
X , ( t ) A ( t ) A ( t )  T. We can also obtain the inverse of A(t)  as A(t) - l =  
U ( t ) r X , ( t ) .  

Since P(t)  is a symmetric n X n matrix, it is parametrized by s(n) := 
n(n + 1) /2  elements, as is its inverse P l(t). We will construct the dynamic 
inverter that produces P - l ( t ) .  

Let 

A ( t )  := A ( t ) A ( t )  T. (42) 

Let F : S(n) × ~ + ~  S(n), (X,  t)  ~ F(X,  t)  be defined by 

F( X , t )  := X A ( t ) X  - I. (43) 

Let X ,  be a solution of F(X,  t )  = 0. Then X , ( t )  is a symmetric square root 
of A(t). 

Nothing in the form of F(X,  t)  enforces the positive definiteness of the 
solution X , ( t ). For instance, for each solution X . ( t ) of F( x, t )  = O, - X , ( t ) 
is also a solution. Each solution t ~ X , ( t )  is, however, isolated as long as 
Y ~ D1F(X . ,  t ) .  Y, where F(X,  t)  is defined by (43), is nonsingular. We 
will show in the next subsection, Section 5.1, that the nonsingularity of A(t )  
implies the nonsingularity of Y ~ D1F( X , , t ) , Y. 

5.1. The Lyapunov Map 
We will use a linear dynamic inverse for F(X,  t)  in (43) based upon the 

inverse of the linear map from S(n) to S(n), Y ~ D I F ( X . ,  t)  • Y. We will 
estimate this inverse using dynamic inversion. It is not obvious, however, that 
Y ~ D t F ( X  , , t)  • Y is invertible, so we deal with this issue first. 

Differentiate (43) with respect to X to get 

DIF ( X , t ) :  Y ~ DIF ( X ,  t ) .  Y := YA(t)  X + X A ( t ) Y .  (44) 

We refer to a map of the form 

L~ : Y ~ L MY := YM + M Y  (45) 
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with Y and M in ~"×"  as a Lyapunov map, due to its relation to the 
Lyapunov equation YB + MC = Q, which arises in the study of the stability 
of linear control systems (see e.g. Horn and Johnson [24, Chapter 4]). It may 
be proven that L M is an invertible linear map if no two eigenvalues of M add 
up to zero (see e.g. [24, Theorem 4.4.6, p. 270]). 

Now note that A( t )X .  = X,  A(t) = P(t), which is positive definite and 
symmetric, having only real-valued and strictly positive eigenvalues. Thus no 
pair of eigenvectors of A( t )X ,  sum to zero. Therefore DI(X, t).  Y is 
nonsingular, Since D1F(X, t ) 'Y  is continuous in X, it follows that 
D~F(X, t)" Y remains invertible for all X in a sufficiently small neighbor- 
hood of X , .  

5.2. Dynamic Polar Decomposition 
The estimator for the map W ~ D~F(X, , t )  -1" W will be denoted 

F ~ L(S(n), S(n)) so that 

r ,  • w = o , e ( x , ,  t) - ' .  w .  (46) 

Using F, we may define a dynamic inverse for F(X, t). Let G : S ( n ) ×  
L(S(n), S(n)) ~ S(n), (W, F) ~ G[W, F] be defined by 

c [ w ,  r ]  r . w  (47) 

for W ~ S(n). This makes G[W, F] a dynamic inverse for F(X, t) = XA(t)X 
- I, as long as F is sufficiently close to F . .  

To construct an estimator E(X, F, t) ~ S(n) for ) ( . ,  first differentiate 
F ( x . , t )  = O, 

D I F ( X , , t  ) . X ,  + D z F ( X , , t  ) = 0 (48) 

and then solve for X , ,  

X.  = - D 1 F ( X . , t ) - i ' D g F ( X , , t )  = - r . ' D 2 F ( X . , t ) .  (49) 

Note that D2F(X. ,  t) = X.Jk( t )X. .  Now substitute X and F for X.  and 
F .  to obtain 

e ( x ,  r, t) := - r .  ( X A ( t ) X ) .  (50) 
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To obtain F dynamically, let F r : S(n) X L(S(n), S(n)) X ~+ 
L( S( n ), S(n)), ( X, F, t) ~ F ~ ( X, F, t) be defined by 

F ~ ( X , F , t )  := D1F(X , t  ) . F  - Id, (51) 

where Id denotes the identity mapping from L(S(n), S(n)) to L(S(n), S(n)). 
A linear dynamic inverse for Fv(X, F , t )  is G~:  L(S(n), S(n) )X 
L(S(n), S(n)) ~ L(S(n), S(n)), (W, F) ~ Gr[W, F] defined by 

c ~ [ w ,  r ]  := r .  w .  (5~) 

For an estimator Er(X, F, t) for F , ,  we differentiate F~(X, ,  F , ,  t) = 0 
with respect to t, solve for F , ,  and substitute X and F for X,  and F ,  
respectively to get 

d ) 2 ,  E ' ( × , F , t )  :=-r.-~D1F(X,t ) ~e(x,r,t) 'F. (53) 

Combining the E's, F's, and G's from (50), (43), (47), (53), (51), and 
(52), we obtain the dynamic inverter 

= - t x G [ F ( X , t ) , F ]  + E(F,  X , t ) ,  

= - t z G r [ F ~ ( X , F , t ) , r ]  + ~ ( x , r , t ) ,  
(54) 

or in an expanded form 

( dynamic polar decomposition for time-varying matrices) 

= - / x F .  ( X A ( t ) X  - I)  - F" (XA( t )X) ,  

r= - . r . ( o , e ( x , t ) . r  - ~d) - r .  ~iO, F(X,t) x~ -r.(xhx) " r .  
(55) 

In this scheme we have 

XA(t) --, U(t), XA(t) A(t) T --* P(t) A ( t ) T x  2 ~ A - l ( t )  (56) 

as t --* ~. 
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Inital conditions for the dynamic inverter (55) may be set so that 
X(0) = e(0) -1 and F(0) = D1F(P(O) -1, 0) -1. Under these conditions F(t) 
=- P(t) -1 for all t >/0. 

Combining the results above with the dynamic inversion theorem, Theo- 
rem 2.2, gives the following theorem. 

TrlEOnEM 5.1 (Dynamic polar decomposition of time-varying matrices). 
Let A(t) be in GL(n) for all t ~ R+. Let the polar decomposition of A(t) be 
A(t) = P(t)U(t) with P(t) ~ S(n) the positive definite symmetric square 
root of A(t) := A(t)A(t)  r, and U(t) ~ O(n) for all t ~ R+. Let X be in 
S(n), and let F be in L(S(n), S(n)). Let (X(t), F(t)) denote the solution of 
the dynamic inverter (55) where F( X, t) is given by (43). Then there exists a 

such that if the dynamic inversion gain tz satisfies tz > ~, and ( X(O), 
F ( 0 ) - W )  is sufficiently close to (P(0) -1, D1F(P(O) -1, t) - l  " W)  for all 
W ~ S(n), then 

1. A(t ) X(t ) exponentially converges to P(t), 
2. X(t) A(t) exponentially converges to U(t), and 
3. A(t)X(t)  2 exponentially converges to A(t) -1. 

5.3. A Numerical Example 
Though numerical inversion of the Lyapunov map has long been a topic 

of interest in the context of control theory [25, 26], we do not know of any 
matrix map L -1 : S(n) ~ S(n), taking matrices to matrices, which inverts 
Y ~ D1F(X, t)" Y = XA(t)Y + YA(t)X. By converting D1F(X, t)" Y to an 
s(n) × s(n) matrix, however, and representing elements of S(n) as vectors, 
the inverse D1F(X, t) -1 • Y as a mapping between vector spaces R s¢") 
ff~s(n) c a n  be obtained through matrix inversion. For the purposes of the 
example below, we will resort to vector notation in referring to elements of 
S(n). 

REMAnK 5.2 (Vector notation for symmetric matrices). We will adopt a 
notation that allows us to switch between matrix representation and vector 
representation of elements of S(n). 

Chose an ordered basis /3 = {/31 . . . . .  /3~(,)} for S(n). To any x ~ ~s(,) 
there corresponds a unique matrix ~ ~ S(n) where the correspondence is 
through the expansion of ~ in the ordered basis /3, 

= (x~ ' :=  • x~3~ E S(n) .  (57) 
i~ s(n) 
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Conversely, for any X ~ S(n), let X denote the vector of the expansion 
coefficients of 

x =  E ~:s, (55) 
i ~  s(n)  

in the basis /3, so that X ~ (X) v= x. Then (X)^= X and (~)v= x. 

Using the notation of Remark 5.2, and letting F ~ I~ ~('Ox~(n) be the 
estimator for the matrix representation of D 1 F( X, t)-1, the dynamic inverter 
(55) takes the form 

= - a i ~ ( ~ a ( t ) ~  - i )  - _  r ( ~ h ( t ) ~ )  ~ , 

(59) 

and again we have 

~A(t)  -~ ~ ( t ) ,  ~A(t) a ( t )  T -~ r ( t ) ,  A ( t ) r ( ~ )  2 ~ A - l ( t )  

(60) 

as t ~ co. 
An example of the polar decomposition of a 2 × 2 matrix will illustrate 

application of Theorem 5.1 and the equations (59). 

EXAMPLE 5.3 (Polar decomposition of a time-varying matrix), Let 

A(t) := [ lO + sinlOt-t cost]l " (61) 

In this case x e R3 and F ~ ~3×3. We will perform polar decomposition 
and inversion of A(t)over t ~ [0, 8], an interval over which A(t) is nonsin- 
gular. We will estimate P(t) and U(t) such that A(t)= P(t)U(t), with 
P(t) ~ S(2) being the positive definite symmetric square root of A(t)A(t) r, 
and with U(t) ~ 0(2). 
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Let 

[~l ~2] =A(t)A(t)T. 
A(t)  = A2 A3 (62) 

We choose the ordered basis /3 of S(2) to be 

o][o o 1[o t]}. (63) 

In this basis we have 

e(  x, t) = ( ~A( t )~  - z y  = 

hlx ~ + 2h2xlx  2 + A3x ~ - 1 

/~IXIX2 AF A2X 2 + A2X1X 3 q- h3X2l  3 

Ax~ + 2A2x2x 3 + Aax ~ - 1 

(64) 

Then 

[ 2( Alx~ + h2x2) 
D l F ( x , t  ) = Alx 2 + A2x 3 

0 

2(A2x~ + A3x2) 
AlX t + 2A2X z + A3X 3 

2(Alx2 + Azx3) 

0 ] 
A2x j + Xax 2 . 

2(A~x2 + X3x3) 

(65) 

For an estimator for k we have from the coordinate from of (50) 

E ( x , r , t )  = - r [  

J,,~ + 2 ~ x , x 2  + ~3x~ ] 
it, x,x~ + ~2x~ + ~x, x3 + ~x2x~ ]. 

J,x~ + 2J2x~x3 + J~x~ 

(66) 

The estimator E r for 1~. is given by (53), where 

- ~ D l F (  X , t )  :~=E(x,r,t) J [o 
(67) 
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L12 = 2L23, 

L21 = Alx2 + A 1 E z ( x , F , t )  + A2x3 + X2E3(x, r , t ) ,  

L= = Xlx~ + X iE~(x , r , t )  + 9 ~ x 2  + 9X2Ez(x , r , t )  + X3x3 

+ X3E3( x, r ,  t) ,  

(6s) 

Lz3 = ~2x, + X2E~(x ,r , t )  + ~3x2 + X3E2(x , r , t ) ,  

L3~ = 2L21, 

Dynamic inversion using the equations (55) was simulated using the 
adaptive-step-size Runge-Kutta integrator o d e 4 5  from Matlab, with the 
default tolerance of 10 -6. The inital conditions were set so that 

~(o )  = A ( o )  ' /~ + ~x, 

F (O)  = D,F(x(O), t)-l, 
(69) 

where e x = [ -0 .55 ,  0 .04 , -2 .48]  T is an error that has been deliberately 
added to demonstrate the error transient of the dynamic inverter. The value 
o f /x  was set to 10. 

The graph of Figure 4 shows the values of the individual elements of 
A(t). The top graph of Figure 5 shows the elements of x(t), the estimator for 
P(t)-1, and the bottom graph shows the elements of F(t) .  

Figure 6 shows log l0([I £(t )A( t )~( t )  - III=) indicating the extent to which 
£, the estimator for P(t) -1, fails to be the square root of A(t)  = A(t )A( t )  T. 
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A(t) 
12 - - ~ - -  , 
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lO 
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o 

-2 

-4 

-6 

-8 
o 

l J  f 

I I I l i i 

1 2 3 4 5 6 
t 

7 

FIc. 4. Elements of A(t) [see (61)]. 

For  estimates of  P(t), U(t), and A(t)  - l  we have 

:~(t) A ( t )  A ( t )  T --* P ( t ) ,  ~ ( t )  A ( t )  -~ U( t ) ,  and 

A ( t ) r  ~ ( t )  e ~ A ( t )  -1 (70) 

REMARK 5.4 (Symmetry of  the dynamic inverter). It is interesting to 
note that P(t)  -1, besides being a solution to X A ( t ) X  - I = 0, is also a 
solution to A ( t ) X  ~ - I = 0 as well as X2A(t)  - I = 0. But A ( t ) X  2 - I and 
X 2 A ( t ) -  I are not, in general, symmetric even when A(t )  and X are 
symmetric. Though exponential convergence is still guaranteed when using 
these forms, the flow X(t )  is not, in general, confined to S(n). Using these 
forms would increase the number  o f  equations in the dynamic inverter by 
n(n - 1 ) / 2  + n ~ - s (n)  2, since not only would the right-hand side of  the 
top equation of  (55) no longer be symmetric, but  the matrix representation of  
F would be n 2 × n 2 rather than s(n) × s(n). 
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xkt) 
0 . 5  . . . .  

-0.5 

-1 

-1.5 
0 1 2 3 4 5 6 7 

t 

F(t) 
0 . 2  . . . . . . .  

0 

-0.2 

-0.4 

-0.6 

-0.8 
0 

I I I I I I I 

1 2 3 4 5 6 7 8 
t 

F~G. 5. Elements of x (top) and F (bottom). See Example 5.3. 

6. POLAR D E C O M P O S I T I O N  AND INVERSION OF 
CONSTANT MATRICES 

In the dynamic inversion techniques of Sections 3 and 5 we assumed that 
we had available an approximation of A- l (0 )  with which to set F(0) in the 
dynamic inversion of A(t).  Thus we would need to invert at least one 
constant matrix, A(0), in order to start the dynamic inverter. Methods of 
constant matrix inversion presented in Section 4 have the potential disadvan- 
tage either of  producing exact inversion only asymptotically as t --9 ~, or of 
working only on matrices with no eigenvalues in the interval ( - ~ ,  0). The 
question naturally arises, then, how we might use dynamie inversion to invert 
any constant matrix so that the exact inverse is available by a prescribed time. 
In this section, by appealing to both homotopy and polar decomposition, we 
give an answer to this question. 
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Log~0 of Error in Estimation ofP(t) -I 
2 1 i i i r i i 

1 

i 

o 

-1 

-2 

-3 

-4 

-5 

-6 

-7 
o 

FIc. 6. The error log lo( l l? , ( t )A( t )? , ( t )  - IlL) indicating the extent to which x 
fails to satisfy ~A(t)} - I = 0. The ripple from t = 1.8 to t = 8 is due to numerical 
noise. See Example 5.3. 

Let  M be in GL(n)  with P = p r  > O, U U  r = I,  and M = PU.  Helmke 
and Moore (see [18, pp. 150-152]) have described a gradient flow for the 
function [1A - UPIJ 2 (the square o f  the Frobenius norm), 

1 2 3 4 5 6 7 
t 

(71) 

= - 2 P  + M r u  + U r M ,  

where ff and U are meant  to approximate P and U respectively. Asymptoti- 
cally, this system produces factors P,__and U,  satisfying M - P ,  U,  = 0 for 
ahnost all initial conditions if(0), U(0) as t ~ to. A difficulty with this 
approach, as the authors point out, is that positive definiteness of  the 
approximator P is not guaranteed. 
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In this section we describe a dynamical system that provides polar 
decomposition of any nonsingular constant matrix by any prescribed time, 
with the positive definiteness of the estimator of P guaranteed. This will be 
accomplished by applying Theorem 5.1 on dynamic polar decomposition of 
time-varying matrices to the homotopy 

A( t )  := (1 - t ) I  + tMM T. (72) 

Unlike the homotopy H(t)  = (1 - t ) I  + tM of Section 4, the homotopy 
A(t)  is guaranteed to have a spectrum which avoids ( - ~ , 0 )  for any 
nonsingular M, since A(t)  is a positive definite symmetric matrix for all 
t ~ [0, 1]. The situation is depicted in Figure 7. 

Recall that M is in GL(n). For A(t)  as defined in (72) note that 
A(0) = I, A(1) = MM r, and for all t ~ [0, 1], A(t) is positive definite and 
symmetric. Let P(t) denote the positive definite symmetric square root of 
A(t). Let the estimator of P-~(t) be X ~ S(n). Differentiate A(t) with 
respect to t to get 

h ( t )  = MM I. (73) 

FIG. 7. A(t) is positive definite and symmetric for all t ~ [0, 1]. 
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Now we may apply the dynamic inverter of Section 5 in order to perform the 
polar decomposition of M. As in (43), let 

F( X, t )  := X A ( t ) X  - I. (74) 

By inspection it may be verified that X . (0 )  = I and F . (0 )  = ~I. If  we set 
X(0) = I and F(0) = , ~I, then Theorem 2.2 and the results of the last section 
assure us that X(t )  =- P - l ( t )  for all t >1 0, and thus X(1) = p - l .  Conse- 
quently 

X(1) = P - ' ,  A (1 )X(1 )  = MMTX(1)  = P, 

X ( 1 ) M  = U, MrX(1)  2 = M - ' .  (75) 

Note that A(t )  = MM T - I = 0 if and only if M is unitary, in which case 
M-1 = M r. 

Combining the results of this section with the results of the last section 
gives the following theorem. 

THEOREM 6.1 (Dynamic polar decomposition of constant matrices by a 
prescribed time). Let M be in GL(n). Let the polar decomposition of M be 
M = PU with e ~ S(n) the positive definite symmetric square root o f M M  r 
and U ~ O(n). Let X be in S(n), and let F be in L(S(n), S(n)). Let X(0) = I 
and r (o )  = ½Id. Let (X( t ) ,  r ( t ) )  denote the solution of the prescribed-time 
dynamic inverter for constant matrices: 

r 

2 
A(t) 

F(  X, t )  

c[w,r]  
E(F, X) 

F~(r, X, t) 
c , [w,r ]  

~,( x, r) 

Then for any /~ > O, 

MMr X (1 )  = P, 

= -~c , [F , ( r ,  x , t ) , r ]  + E~(r, X), 

= -t~G[F(X, t), r]  + ~(r, x); 
= ( 1 - t ) I + t M M  T, 

= XA(t)X - I, 

= F . W ,  

= - F ' ( X ( M M  r - I ) X ) ,  

= D , F ( X , t )  . r  - Id, 

= F . W ,  

= - F  - -~D1F(X , t  ) 2=E(r ,x ) 'F .  

(76) 

o 

X ( 1 ) M  = U, and MrX(1)  2 = M - ' .  (77) 



340 NEIL H. GETZ AND JERROLD E. MARSDEN 

REMARK 6.2 (Polar decomposition by any prescribed time). As in Theo- 
rem 4.6, we can force X to equal p-1 at any time t 1 > 0 by substituting t / t  1 

for t in A(t), and proceeding with the derivation of the dynamic inverter as 
above. Then X ( t  l )  = p - 1  

EXAMPLE 6.3. A numerical simulation of a dynamic inverter for the polar 
decomposition of a constant g-by-2 matrix was performed. The integration 
was performed in Matlab [27] using ode4  5, an adaptive-step-size Runge-Kutta 
routine, using the default tolerance of 10 -6. The matrix M was chosen 
(randomly) to be 

7 -3] (78) 
M =  - 2 4  - 3  " 

The value o f /x  was set to 10. The evolution of the elements of x ( t )  and F(t)  
is shown in Figure 8. Figure 9 shows the base-10 log of [[ F (  x ,  t )[[= = 

IIx(t)MMrx(t) - I ll~, indicating to the extent to which x, the estimator for 
p - l ,  fails to be the square root of A(t) = M M  T. 

x(t) 
t 
| ~ i i i i i i i i 

0 . 8 ~  
0.6 
0.4 

0.2 
I I 

°o o.1 0,2 0'.3 0.4 015 016 0.7 01.8 019 t 
r(t) 

0.5 

0'4 t 
0.3 

0"2 l 
0.1 

0 
0 

I 

o.1 o.a o'.a 0'4 o'.s 0'.6 o3 0.8 0.9 t 
Fro. 8. Elements of x ( t )  (top) and F(t) (bottom), for Example 6.3. 
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Log10 of  Error in Estimation of  Inverse of  P(t) 

0 

-1 

-2 

-3 

-4 

-5 

-6 

-7 
0 

FIG. 9. 

I 
I I I I i i i i 

0 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
t 

The base-10 log of the error II:~(t)MMT~(t) - IIl~ for Example 6.3. 

The  final value ( t  = 1) of  the  er ror  II~(t)MMT?~(t) -- Ills was 

I I ~ ( 1 ) A ( 1 ) ~ ( 1 )  - i l l s  = 1.0611 × 10 -6 . (79)  

The  final values of  P, U, and M-1  were,  to four  decimal  places, 

p= MMT~(1) = [ 5.2444 - 5 . 5 2 2 3 ]  
1 -5.5223 23.54791' 

= [ 0.3473 -0 .9377 ]  
U =  ~ ( 1 ) M  

t - 0.9377 - 0.3473 ] '  

M - ,  = MT~(1)2= [ 0.0323 - -0 .0323]  
-- 0.2581 -- 0.0753 " 

(80) 
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We have seen how the polar decomposition and inversion of time-varying 
and constant matrices may be accomplished by continuous-time dynamical 
systems. Our results are easily modified to provide solutions for time-varying 
and time-invariant linear equations of the form A(t)x  = b(t). We have also 
seen that dynamic inversion can provide a general conceptual framework 
through which to view other methods of dynamic computation such as 
gradient flow methods. 

Dynamic inversion is showing promise in the context of the control of 
physical systems. For instance, in some control problems, dynamic inversion 
may provide essential signals which can be incorporated into controllers for 
nonlinear dynamical systems [28, 1]. In those same problems it may also be 
used for matrix inversion. For example, dynamic inversion has been incorpo- 
rated into a controller for robotic manipulators in [29, 1], where the dynamic 
inverter produces inverse kinematic solutions necessary for the control law. If 
inversion of, say, a time-varying mass matrix is also required in the same 
problem, a dynamic inverter may be augmented to provide that capability 
too, without interfering with other inversions within the same problem. 
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