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SUMMARY

The Adenomatous Polyposis Coli (APC) gene is
mutated in the majority of colorectal cancers
(CRCs). Loss of APC leads to constitutively active
WNT signaling, hyperproliferation, and tumorigen-
esis. Identification of pathways that facilitate tumor-
igenesis after APC loss is important for therapeutic
development. Here, we show that RAC1 is a critical
mediator of tumorigenesis after APC loss. We find
that RAC1 is required for expansion of the LGR5 in-
testinal stem cell (ISC) signature, progenitor hyper-
proliferation, and transformation. Mechanistically,
RAC1-driven ROS and NF-kB signaling mediate
these processes. Together, these data highlight
that ROS production and NF-kB activation triggered
by RAC1 are critical events in CRC initiation.

INTRODUCTION

Initiating mutations in colorectal cancer (CRC) most commonly

target the APC tumor suppressor gene (Kinzler and Vogelstein,

1996). APC is a negative regulator of WNT signaling that is

required to target b-catenin for proteosomal degradation. The

loss of the APC gene results in the accumulation of b-catenin

in the nucleus, subsequent activation of WNT transcriptional tar-

gets, and ultimately adenoma formation (Korinek et al., 1997;

Morin et al., 1997; Sansom et al., 2004). Normal intestinal ho-

meostasis is maintained by a number of intestinal stem cells

(ISCs). Recent experiments have shown the presence of a

cycling stem cell population marked by LGR5 along with a

longer-lived population that can repopulate the crypt after injury

(Barker et al., 2007; Buczacki et al., 2013). LGR5 expression

marks crypt columnar stem cells that have a readily identifiable

transcriptional profile termed the ISC signature. Genetic deletion

of Apc within LGR5 ISCs leads to rapid adenoma formation,

whereas deletion within more differentiated lineages leads to

poorly proliferative lesions that fail to progress without additional

oncogenic mutations (Schwitalla et al., 2013). Interestingly,
although an established WNT target, LGR5 is only expressed

in a subset of APC-deficient tumor cells. This may be due to

LGR5 marking cells with the highest levels of WNT signaling or

to co-operation of multiple pathways in conferring the LGR5

ISC phenotype.

Our previous studies have shown that the WNT target gene

Myc is required for the phenotypes induced by Apc loss and

that reduced levels of MYC slows intestinal tumorigenesis (Athi-

neos and Sansom, 2010; Sansom et al., 2007). These studies set

a precedent that targeting the downstream effectors of WNT

signaling may be of therapeutic benefit in colorectal cancer. In

the case of MYC, although there is great interest in it as a thera-

peutic target (Soucek et al., 2008), in vivo inhibitors are still in

development. Therefore identification of other pathways down-

stream of Apc loss, in particular those highly active in LGR5

ISCs may provide candidates to target APC-deficient cells.

One candidate pathway is RAC signaling. RAC1 is a GTPase

that acts as a key signaling node modulating a diverse set

of cellular processes including proliferation, apoptosis, migra-

tion, and invasion. It influences a variety of signaling pathways

including MTOR, NF-kB, JNK, and reactive oxygen species

(ROS) production (Ellenbroek and Collard, 2007). RAC1 cycles

between an inactive GDP and active GTP-bound state and

is controlled by guanine nucleotide exchange factors (GEFs)

(which activate RAC1) and GTPase-activating proteins (which

inactivate RAC1). We previously identified MYC-dependent

upregulation of a number of RACGEFs after Apc loss, and

RACGEFs are commonly overexpressed during tumor pro-

gression (Lindsay et al., 2011; Sansom et al., 2007). RAC1-acti-

vating mutations have also been discovered in melanoma and a

constitutively active RAC1 isoform termed RAC1B identified in

colon and lung tumor samples can promote lung tumorigenesis

(Hodis et al., 2012; Krauthammer et al., 2012; Zhou et al., 2013).

RAC1 is also required for KRAS-mediated tumorigenesis in skin

and the lung, but the mechanism of how RAC1 loss suppresses

tumorigenesis is still unclear (Kissil et al., 2007; Samuel et al.,

2011). Therefore, it is important to elucidate how RAC1 drives

tumorigenesis.

Two studies suggest that RAC1 is required for nuclear locali-

zation of b-catenin and WNT signaling (Phelps et al., 2009; Wu

et al., 2008). First, Wu and colleagues demonstrated that RAC1

is required for b-catenin nuclear localization in the developing
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limb bud and the effects of its deletion phenocopy those of

b-catenin. As nuclear localization of b-catenin is a key event dur-

ing CRC initiation if this dependency remains once Apc is

deleted, it would suggest that RAC1 would be an excellent ther-

apeutic target. Additionally, Phelps and colleagues demon-

strated that in zebrafish, apc loss alone was insufficient to cause

nuclear localization of b-catenin (Phelps et al., 2009). Here the

consequence of apc loss was perturbed differentiation, which

was dependent on the transcriptional repressor Ctbp1. Addi-

tional activation of Kras was required for nuclear accumulation

of b-catenin and hyperproliferation after apc loss. The authors

proposed that RAC1 activation downstream of constitutive

Kras activity was the mechanism that allowed the nuclear accu-

mulation of b-catenin. These results are controversial as a

number of studies have shown that (1) b-catenin can be nuclear

localized in human adenomas without KRAS mutation (Obrador-

Hevia et al., 2010), (2) WNT target genes can be upregulated in

human adenomas without KRAS mutation (Sabates-Bellver

et al., 2007), and (3) murine studies have shown nuclear b-cate-

nin and WNT target gene upregulation in adenomas from the

ApcMin/+ mouse (Sansom et al., 2004; Segditsas et al., 2008).

Therefore, given this evidence for a role of RAC1 in WNT

signaling, we investigated the importance of RAC1 activation

after Apc deletion. We show that a number of RacGEFs and

Rac1b are upregulated after Apc deletion, which leads to

increased activity of RAC1. While Rac1 deletion did not stop

the nuclear accumulation of b-catenin and activation of the ma-

jority of the TCF/LEF targets, it attenuated hyperproliferation af-

ter Apc loss and subsequent tumorigenesis. Finally, we show

that this is due to RAC1-mediated control of ROS production

and NF-kB activation.

RESULTS

RAC1 Is Activated after Apc Loss
Previous microarray analysis revealed upregulation of several

RACGEFs after Apc loss (Sansom et al., 2007). We found signif-

icant overexpression of Vav3 and Tiam1 transcripts after Apc

loss in a MYC-dependent manner (as synchronous deletion of

Apc andMyc returned expression levels towild-type) (Figure 1A).

Chromatin immunoprecipitation (ChIP) revealed that MYC was

bound to the Tiam1 promoter, demonstrating it is a direct MYC

target (Figure S1A available online). Moreover, we observed

increased expression of Rac1b but not Rac1 (Figure 1A). To

investigate whether this led to increased RAC1 activation, we

performed immunohistochemistry (IHC) using an antibody raised

against RAC-GTP (Samuel et al., 2011). We observed increased,

specific positivity for RAC-GTP in APC-deficient tissue that was

dependent on MYC (Figure 1B). Pull-downs for active RAC1 in

wild-type and APC-deficient intestinal extracts confirmed these

results (Figure S1B). Levels of RAC1 protein and mRNA re-

mained unchanged (Figures 1A and S1C). To assess RAC activa-

tion in human CRC, we stained a TMA containing 50 normal and

650 primary CRC tumor cores for RAC-GTP (Figures 1C and

S1D) (Duncan et al., 2008; O’Dwyer et al., 2011). We found a sig-

nificant (p% 0.0001) increase in RAC-GTP staining intensity at all

tumor stages compared to normal tissue, indicating that RAC

activation is an early event in CRC.We also stained a commercial

TMA for RAC-GTP, TIAM1, VAV3, and MYC and found a signifi-
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cant correlation between the expressions of these proteins (Fig-

ures 1D and S1E). These data are consistent with previous

studies suggesting that RAC1 expression (and presumably acti-

vation) is elevated in CRC (Espina et al., 2008). Therefore, our

data suggest that in mammalian cells, activation of RAC1 occurs

downstream of WNT activation.

Rac1 Deletion Inhibits Hyperproliferation and LGR5 ISC
Expansion after Apc Loss
To assess the functional significance of RAC1 activation after

Apc loss, we generated vil-Cre-ERT2 Apcfl/fl Rac1fl/fl (APC

Rac1) mice (el Marjou et al., 2004; Walmsley et al., 2003).

Four days after cre induction, we observed loss of both Rac1

and Rac1b mRNA and RAC1 protein (Figures 1A and S2A). In

contrast to induced vil-Cre-ERT2 Apcfl/fl mice (APC), the intes-

tines from APC Rac1 mice had smaller hyperproliferative crypts

with significantly reduced incorporation of BrdU (Figures 2A

and S2B). Acute deletion of Rac1 alone (vil-Cre-ERT2 Rac1fl/fl)

did not affect crypt size, proliferation, or ISC lineage-tracing ca-

pacity (Figures 2A and S2C), although increased apoptosis of

villi enterocytes and intestinal barrier breakdown was observed

at later time points (data not shown). This prevented later time

point analysis and ruling out of potential subtle homeostatic

effects over the longer term. The vil-Cre-ERT2 transgene also in-

duces recombination in the colonic epithelium and the RAC1-

dependent intestinal proliferation phenotype was recapitulated

in this tissue (Figure S2D). Thus, RAC1 is a critical component

in permitting crypt progenitor hyperproliferation after Apc

loss in the intestinal and colonic epithelia. Given previous

studies reporting that RAC1 is required for accumulation of nu-

clear b-catenin (Phelps et al., 2009; Wu et al., 2008), we pre-

dicted that this and downstream target gene activation should

be impaired in APC Rac1 intestines. However, IHC analysis

showed nuclear b-catenin in APC Rac1- (and APC-) deleted in-

testines (Figure 2B). Moreover, quantitative RT-PCR (qRT-PCR)

of selected TCF/LEF targets that are deregulated after Apc loss

were unchanged in APC Rac1 intestines (Figure S2E) (Sansom

et al., 2007). Thus, RAC1 is not required for b-catenin nuclear

localization and/or its functional activity in the absence of

APC. To delineate the mechanism, we compared global gene

expression changes between APC and APC Rac1 intestines

by microarray. Gene set enrichment analysis (GSEA) identified

a significant overlap between our data set and the ISC signa-

tures associated with LGR5+ or EPHB2 high ISCs (chi-square

test with Yates’s correction, LGR5 p < 0.0001, EPHB2 p =

0.001) (Barker et al., 2007; Merlos-Suárez et al., 2011; van

der Flier et al., 2009). We confirmed that the ISC signature

was upregulated after Apc loss and reverted back to wild-

type levels in APC Rac1 intestines using qRT-PCR (Figure 2C).

To visualize changes in the LGR5-expressing population, we

generated inducible vil-Cre-ERT2 WT, Rac1, APC, and APC

Rac1 mice carrying the Lgr5GFP-CREER transgene (Barker

et al., 2007). LGR5-GFP expression is restricted to the base

of the crypt in wild-type and RAC1-deficient mice by IHC (Fig-

ure S2F). After Apc loss, there is a significant increase in the

number of LGR5-GFP-positive cells that are suppressed in

APC Rac1 intestines (Figure 2D). Moreover, scoring the location

of LGR5-expressing cells revealed a striking expansion of the

stem cell ‘‘zone’’ that codeletion of Rac1 prevented (Figure 2E).
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Figure 1. RAC1 Activity Is Increased after Apc Loss

(A) qRT-PCR of Tiam1, Vav3, Rac1b, and Rac1 (error bars represent SD; *p < 0.05, **p < 0.01, ***p < 0.001; t test, n = 3).

(B) IHC for RAC-GTP in WT, APC, APC Myc, and Rac1 intestines. Red arrows indicate epithelial expression, and black arrows show immune cells in the villus

compartment with very high positivity.

(C) Histoscores of human CRC TMA cores stained for RAC-GTP (Mann Whitney).

(D) Table comparing levels of active RAC, TIAM1, VAV3, and MYC in human CRC samples. All experiments are 4 days after induction. Scale bars represent

100 mm. See also Figure S1.

Cell Stem Cell

The Stem Cell Phenoytpe of APC Loss Requires RAC1
This was confirmed using multiphoton microscopy on intestines

(Figures S2G and S2H). To investigate whether Rac1 deletion

suppressed the proliferative potential of all ISC populations,

we purified crypts from APC and APC Rac1 intestines and

cultured them ex vivo. Remarkably, while APC crypts formed

colonies, APC Rac1 crypts did not, suggesting that RAC1 is

required for the clonogenic capacity of all intestinal cell types

(Figure S2I). Therefore, RAC1 is required for two critical constit-
uents of Apc loss, progenitor hyperproliferation and LGR5 ISC

expansion.

Generation of ROS by RAC1 Allows LGR5 ISC Signature
Expansion upon Apc Loss
As RAC1 integrates many pathways, a plethora of downstream

effectors could account for the phenotype that we observed.

One critical cellular process requiring RAC1 is the generation of
Cell Stem Cell 12, 761–773, June 6, 2013 ª2013 Elsevier Inc. 763
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Figure 2. RAC1 Is Required for Hyperproliferation and LGR5 ISC Expansion after Apc Loss

(A) Quantification of BrdU IHC in WT, Rac1, APC, and APC Rac1 intestines (Mann Whitney, n = 4).

(B) b-catenin IHC on WT, Rac1, APC, and APC Rac1 intestines. Nuclear b-catenin is found throughout the crypt in APC and APC Rac1 tissue (black arrows).

Histoscoring identified a significant increase in nuclear positivity after Apc loss (p = 0.04, Mann Whitney, n = 3) that was unchanged in APC Rac1.

(C) qRT-PCR of three ISC markers (error bars represent SD; t test, n = 3, *p < 0.05, **p < 0.01).

(D) Quantification of LGR5-GFP+ cell numbers.

(E) Cumulative frequency scoring of LGR5-GFP cell position (error bars represent SEM). All experiments 4 days after induction. Scale bars represent 100 mm. See

also Figure S2 and Tables S1 and S2.

Cell Stem Cell

The Stem Cell Phenoytpe of APC Loss Requires RAC1
ROS. RAC1 is a member of the superoxide-generating NADPH

oxidase complex, and RAC1B overexpression has been shown

to lead to ROS production (Bromberg et al., 1994; Radisky

et al., 2005). The generation of ROS by NADPH oxidase involves

the conversion of NADPH to NADP+ so its activity can be evalu-

ated by the ratio of these molecules. We observed a shift in the

NADP+/NADPH ratio in APC intestinal extracts compared to

WT, indicating increased complex activity that wasRAC1 depen-

dent (Figure S3A). To analyze ROS levels within the intestinal

epithelium, we stainedWT, Rac1, APC, and APCRac1 intestines

with the ROS-responsive dye dihydroethidium (DHE). We
764 Cell Stem Cell 12, 761–773, June 6, 2013 ª2013 Elsevier Inc.
observed a significant increase in staining intensity in APC but

not APC Rac1 intestines (Figures 3A and 3B). Thus, Apc loss

leads to increased ROS generation in the intestinal epithelium

via activation of the RAC1-containing NADPH oxidase complex.

Moreover, DHE staining indicated that in WT tissue ROS gener-

ation was particularly high at the crypt base (Figure 3A). Scoring

DHE fluorescence intensity based on crypt cell position showed

that ROS generation was highest at cell positions 1–3 (where

LGR5+ cells reside) and was absent in RAC1-deficient intestines

(Figure S3B). To confirm that LGR5+ cells have high levels of

ROS, we isolated intestinal epithelial cells from mice carrying
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Figure 3. RAC1 Is Required for ROS Production in the Intestine
(A) Dihydroethidium (DHE) staining of frozen sections from WT, Rac1, APC, and APC Rac1 intestines; DAPI counterstain.

(B) Quanitification of DHE staining (error bars represent SD; t test, n = 3, *p < 0.05, **p < 0.01).

(C) Representative fluorescence-activated cell sorting (FACS) plot of CellROX Deep Red-stained epithelial cells from an Lgr5GFP-CREER-expressing mouse.

(D) Quantification of CellROX Deep Red staining (error bars represent SEM; t test, n = 3, ***p < 0.001).

(E) Expression of Rac signaling components and control ISCmarkers in LGR5-GFP+ cells relative to LGR5-GFP� cells (error bars represent SEM; t test, n = 3, *p <

0.05, **p < 0.01). See also Figure S3.

Cell Stem Cell

The Stem Cell Phenoytpe of APC Loss Requires RAC1
the Lgr5GFP-CREER transgene (Barker et al., 2007), stained them

with the ROS-responsive dye CellROX Deep Red, and analyzed

them by flow cytometry. We found that LGR5-GFP-expressing

cells contained around 2-fold more ROS than the cell population

as a whole (Figures 3C, 3D, and S3C). As ROS generation at the

crypt base was Rac1 dependent (Figures 3A and S3B), we inves-

tigated the expression of Tiam1, Vav3, andRac1b in LGR5+ cells

sorted by qRT-PCR and found that all were significantly en-

riched, though Rac1 levels were unchanged (Figure 3E).

We hypothesized increased RAC1-driven ROS generation

may be a critical process in conferring the ISC/progenitor pheno-

types associated with Apc loss. We tested this hypothesis in two
ways. First, we assessed whether reduction of intracellular ROS

levels through NAC treatment could recapitulate the phenotypes

associated with Rac1 deletion. Remarkably, treatment of APC-

deficient mice with NAC strongly suppressed overexpression

of the ISC signature genes (Lgr5, Olfm4, and Rgmb) (Figure 4A).

This suppression did not extend to non-ISC WNT target genes,

indicating that WNT signaling was not perturbed by this treat-

ment (Figure S4A). NAC treatment also significantly attenuated

proliferation in APC intestines (Figures 4B and S4B). Importantly,

NAC treatment had no effect on proliferation, number of LGR5-

GFP cells, or gross villus histology in WT mice (4 day and

8 week time points) (Figure 4B and data not shown). Second,
Cell Stem Cell 12, 761–773, June 6, 2013 ª2013 Elsevier Inc. 765
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Figure 4. ROS Is Required for Expansion of the

ISC Signature

(A) qRT-PCR of three ISCmarkers (error bars represent

SD; t test, n = 3, *p < 0.05, **p < 0.01).

(B) Quantification of BrdU staining of intestinal crypts

fromWT, APC,WT+NAC, and APC+NACmice (Mann

Whitney, n = 4).

(C) qRT-PCR of three ISC markers, downregulated in

APC Rac1-deficient intestines (AR) and upregulated

upon treatment with paraquat (AR + PQ) (error bars

represent SD; t test, n = 3, *p < 0.05, ***p < 0.001).

APC + PQ has been removed for clarity and is included

in Figure S4C.

(D) Quantification of BrdU positivity (Mann Whitney,

n = 6). All experiments are 4 days after induction. Scale

bars represent 100 mm. See also Figure S4.
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we asked whether induction of ROS could rescue the reduced

ISC signature in APC Rac1 intestines. Systemic treatment with

the ROS-inducing compound paraquat led to increased expres-

sion of ISC marker genes in APC Rac1 intestines (Figures 4C

and S4C). In situ microscopy of APC Rac1 mice carrying the

Lgr5GFP-CREER transgene demonstrated a significant expansion

of the ISC zone upon paraquat treatment (Figure S4D). In WT

and APC-deficient mice treated with paraquat, the majority of

ISC markers were unaffected. We also observed a significant in-

crease in proliferation in the intestines of the three cohorts of

paraquat-treated mice (Figures 4D and S4E). Thus, induction

of ROS can induce proliferation and, in the absence of RAC1,

can partially compensate for its loss.

RAC1-Driven NF-kB Signaling Mediates LGR5
ISC/Progenitor Hyperproliferation
We have recently demonstrated a requirement for the NF-kB

transcription factor P65 in ISC expansion after b-catenin activa-

tion (Schwitalla et al., 2013). Given the remarkable overlap with

this study, we addressed whether NF-kB signaling is an impor-

tant mediator of LGR5 ISC/progenitor proliferation after Apc

loss. We observed a significant reduction of NF-kB signaling

components P65, IKKb, and acetyl-P65 in APC Rac1 compared

to APC-deficient intestines (Figures 5A, S5A, and S5B). Also, NF-

kB binding activity was perturbed in APC Rac1 compared to

APC intestinal extracts (Figure S5C). We also observed an in-
766 Cell Stem Cell 12, 761–773, June 6, 2013 ª2013 Elsevier Inc.
crease in p65 binding to the promoters of

Lgr5, Olfm4, and Rgmb after Apc loss that

was lost upon codeletion of Rac1 (Figures

5B and 5C). Thus, efficient activation of NF-

kB signaling in the intestine requires RAC1.

We next sought to functionally determine

whether constitutive NF-kB signaling can

compensate for Rac1 deletion. We crossed

APC Rac1 mice to mice carrying the

R26StopFLikk2ca allele (an inducible, consti-

tutively active Ikk2 allele from nowon referred

to as IKK) to generate APC Rac1 IKK mice

(Sasaki et al., 2006) (Figure 5D). This model

permits constitutive activation of NF-kB

signaling in the absence of RAC1. This was

sufficient to almost completely rescue the
proliferation defect and partially rescue ISC marker expression

in APC Rac1 mice (Figures 5E, 5F, and S5D). Thus, NF-kB

signaling is an important downstream effector of RAC1 signaling

in promoting the phenotypes of Apc loss. We noted that neither

increased ROS nor NF-kB activation were able to completely

rescue the APCRac1 deletion phenotype. This is perhaps unsur-

prising given that we also observed effects on a number of other

pathways downstream of RAC1 signaling, such as STAT3 and

MTOR, which could impinge on the phenotypes of Apc loss

(Figure S5E).

Rac1 Deletion Prevents Transformation after Apc Loss
Our previous studies have shown that Apc deletion within ISCs

using Lgr5GFP-CREER leads to rapid tumorigenesis (Barker et al.,

2009). Given that Rac1 deletion prevents increased Lgr5 expres-

sion within Apc-deficient crypts, we hypothesized that this

would reduce the tumor-forming capacity of ISCs. To test this,

we generated control Lgr5GFP-CREER Apcfl/fl (Lgr5 APC) and

experimental Lgr5GFP-CREER Apcfl/fl Rac1fl/fl (Lgr5 APC Rac1)

mice. To induce recombination, we gave mice a daily injection

of tamoxifen for 4 days (a total of four injections). Most control

Lgr5 APC mice developed a lethal intestinal adenoma burden

by 20 days; however, none of the Lgr5 APC Rac1 did until

much later time points (Figure 6A). When they did succumb to

adenoma formation, all adenomas expressed Rac1, indicating

that they most likely arose from cells in which Rac1 deletion
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Figure 5. NF-kB Signaling after Apc Loss Requires RAC1

(A) P65 IHC shows decreased expression in APC Rac1 crypts.

(B) ChIP of P65 to the Lgr5, Olfm4, and Rgmb promoters and a control region (error bars represent SD; Mann Whitney, n = 3, p = 0.04).

(C) Control ChIP showing no binding to ISC promoters of a nonspecific IgG (error bars represent SD).

(D) Crossing strategy to generate Vil APC Rac1 IKK mice.

(E) Quantification of BrdU positivity (Mann Whitney, n = 4).

(F) qRT-PCR of three ISC markers showing increased expression in APC Rac1 mice after NF-kB activation (error bars represent SEM; t test, n = 3, *p < 0.05). All

experiments were performed 4 days after induction. Scale bars represent 100 mm. See also Figure S5.
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had not occurred (Figure S6A). Histological analysis revealed

that in contrast to the adenomas found in controls, Lgr5 APC

Rac1 mice developed numerous cystic structures and micro ad-

enomas (Figures 6B and 6E). These lesions phenotypically

resemble those that arise via Apc deletion outside the stem

cell zone (Barker et al., 2009) and had a very low proliferative in-

dex (Figure 6E). Despite high levels of nuclear b-catenin, they

had reduced levels of LGR5-GFP, suggesting that RAC1 activity
is essential for tumor growth and the efficient expansion of LGR5

cells after Apc loss (Figures 6F, 6G, and S6B). LGR5 also marks

colonic stem cells, and deletion of Apc with Lgr5GFP-CREER leads

to formation of colonic adenomas (Barker et al., 2009). At the

time of sacrifice, few colonic adenomas were macroscopically

visible in either Lgr5 APC or Lgr5 APC Rac1 mice. However,

microscopic analysis uncovered numerous aberrant crypt foci

andmicro adenomas in the colons of Lgr5 APCmice that stained
Cell Stem Cell 12, 761–773, June 6, 2013 ª2013 Elsevier Inc. 767
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Figure 6. RAC1 Is Required for Tumorigenesis Downstream of Apc Loss

(A) Compared to Lgr5 APC, Lgr5 APC Rac1 mice were strongly protected against tumorigenesis (Kaplan Meier, p < 0.0001, n = 15).

(B and C) Lgr5 APC mice developed adenomas (B, H&E) that were highly proliferative (C, BrdU).

(D and E) Lgr5 APC Rac1 mice predominantly developed small intestinal lesions or cysts (D, H&E) that were poorly proliferative (E, BrdU IHC, red arrows). BrdU

incorporation was higher in neighboring normal intestine (black arrows).

(F and G) GFP IHC showing high levels of Lgr5-GFP staining in Lgr5 APC adenomas (F) compared to Lgr5 APC Rac1 lesions (G).

(H) NAC treatment protected Lgr5 APC mice from intestinal tumorigenesis (Kaplan Meier, p = 0.001, n = 7).

(I) Tumor volume scores of allografts derived from 100 APC Kras and APC Kras Rac1-purified crypts (error bars represent SD; t test, n = 3, *p < 0.05, **p < 0.01).

(J) Quantification of FACS analysis demonstrating a significant reduction in LGR5-GFP positivity in tumors deficient in RAC1 (Mann-Whitney, nR 5). Scale bars

represent 200 mm. See also Figure S6.
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vation of the RAC1-ROS-NF-kB pathway

throughout the crypt is critical for intestinal ade-

noma formation.
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positive for nuclear b-catenin (Figure S6C and data not shown).

We observed a significant reduction in the number of these le-

sions in the colons of Lgr5 APC Rac1 mice (Figure S6D), with

the majority of these mice (6/8) being tumor free. Thus, RAC1

is required for intestinal and colonic adenoma formation after

Apc loss. To test whether ROS production by RAC1 was also

important, we treated Lgr5 APCmice with NAC. This led to a sig-

nificant extension of tumor-free lifespan, further emphasizing the

role ROS plays in intestinal transformation (Figure 6H).

As CRC progresses, tumors accumulate additional mutations,

of which the activation of KRASG12D (Kras) is one of the most

common (Cancer Genome Atlas Network, 2012). Therefore, we

generated vil-Cre-ERT2 Apcfl/fl KrasG12D/+ (APC Kras) and

vil-Cre-ERT2 Apcfl/fl KrasG12D/+ Rac1fl/fl (APC Kras Rac1) mice.

Three days after induction, we purified crypts from these mice

and assessed their tumor formation capacity by injecting them

into nude mice. Strikingly, crypts from APC Kras intestines

were able to efficiently form tumors, whereas those from APC

Kras Rac1 animals did not (Figure 6I). In the two out of six cases
Cell Stem Cell 12, 761–
in which delayed tumor formation

occurred from Apc Kras Rac1 crypts,

they were found to express Rac1, indi-

cating that these grew from rare crypts

that had not lost Rac1 (data not shown).

Together, these data strongly indicate

an essential role for RAC1 in intestinal ad-

enoma formation.

A recent study has demonstrated that

LGR5 marks a population of cancer

stem cells (CSCs) within mouse intestinal

adenomas (Schepers et al., 2012). As

RAC1 permits the proliferation of LGR5

ISCs after Apc loss, we asked whether

RAC1 is important for maintaining this

population in established tumors. Specif-

ically, we wanted to assess the impact of

deletion of Rac1 from the LGR5+ popula-

tion within adenomas. For this, we inter-

crossed mice carrying the Apc1322T allele

(Pollard et al., 2009) to Lgr5GFP-CREER

mice. To test recombination within tu-

mors, we aged Lgr5GFP-CREER Apc1322T

carrying the Rosa26-RFP reporter (Fig-

ure S6E) to 60 days, when mice have
small tumors and induced recombination with tamoxifen. In

agreement with previously published work, we observed lineage

tracing within both wild-type epithelium and in adenomas, with

marked RFP-positive clones 3 weeks after induction in both (Fig-

ures S6F and S6G) (Schepers et al., 2012). Given that we were

able to induce recombination within adenomas, we aged

Lgr5GFP-CREER Apc1322T/+ Rac1fl/fl mice until they developed

signs of intestinal tumor burden (weight loss and anemia) and

induced recombination. Rac1 deletion significantly reduced the

number of LGR5-GFP-positive cellswithin the tumors (Figure 6J).

Moreover, the reduction in the number of LGR5-GFP-positive

cells was partially ablated by concurrent treatment of mice

with paraquat (Figure S6J). Thus, RAC1 is required for LGR5

maintenance in intestinal adenomas.

DISCUSSION

Here, we demonstrate a critical requirement for RAC1 in intesti-

nal transformation after Apc loss (Figure 7). In contrast to
773, June 6, 2013 ª2013 Elsevier Inc. 769
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previous studies suggesting that RAC1 is required for nuclear

localization of b-catenin (Wu et al., 2008), we find that RAC1

acts downstream of constitutive WNT signaling to promote pro-

genitor cell proliferation and expansion of the LGR5 ISC popula-

tion. This may reflect a difference between the effects of WNT3A

stimulation andApc loss or may indicate a tissue-specific role for

RAC1 in b-catenin activation. We find that the dependence on

RAC1 for crypt hyperproliferation is translated to a tumor model

driven by Apc loss in LGR5 ISCs. These findings are striking as

other oncogenic mediators overexpressed after Apc loss,

including CYCLIN D1/D2, CD44, and MBD2, show much less

dramatic effects on crypt hyperproliferation or intestinal tumori-

genesis (Cole et al., 2010; Phesse et al., 2008; Zeilstra et al.,

2008). As RAC1 also suppresses proliferation of APC-deficient

cells after KRAS activation, we propose that it is essential for in-

testinal transformation.

Mechanistically, these phenotypes depend on RAC1-driven

production of ROS and NF-kB signaling. The role of ROS in

stem cell maintenance, cellular transformation, and CSC survival

appears to be context and tissue specific. In proliferative neural

stem cells, high levels of ROS regulate self-renewal by driving

PI3K/AKT signaling (Le Belle et al., 2011). Conversely, hemato-

poietic stem cells are sensitive to ROS levels and higher levels

limit their lifespan (Ito et al., 2006). Additionally, although produc-

tion of ROS via NOX1 upregulation is important for tumorigenesis

(Mitsushita et al., 2004), it has been reported that low levels of

ROS in CSCs help protect against radiotherapy-induced DNA

damage (Diehn et al., 2009). Our data suggest that after Apc

loss, LGR5 ISC/progenitor cell expansion is a critical process

during tumor initiation and is dependent on RAC1-driven ROS

production. Given that LGR5 ISCs maintain high levels of ROS

but are not dependent on it, we would hypothesize that

increased RAC1-ROS is critical for proliferation outside the

normal niche (Figure 7). RAC1 is also required for efficient

NF-kB signaling after Apc loss and, importantly, constitutive

activation of NF-kB in the absence of RAC1 partially rescued

the attenuated proliferation and ISC expansion phenotypes.

We also found that loss of RAC1 prevented p65 recruitment to

the promoters of ISC genes after Apc deletion. Our findings

are similar to those observed with p65 deletion after b-catenin

activation and suggest that after Apc loss, LGR5 ISC marker

genes require both b-catenin and p65 for full transcriptional acti-

vation (Schwitalla et al., 2013). RAC1 deficiency prevents this by

impairing NF-kB signaling, despite b-catenin nuclear accumula-

tion. The finding that ROS andNF-kBboth play important roles in

intestinal tumor initiation indicates a role for inflammation in this

process. Interestingly, a recent report outlines a role for inflam-

matory pathways in progenitor cell transformation in the foregut

(Liu et al., 2013). Thus, it is tempting to speculate that inflamma-

tory pathways are common mediators of stem/progenitor trans-

formation in multiple tissues.

The LGR5 ISC Signature and CRC
There is evidence of two different ISC populations (Barker et al.,

2007; Sangiorgi and Capecchi, 2008). One is highly proliferative,

located at the crypt base, and marked by LGR5 and the other is

relatively quiescent, label retaining, and expresses BMI1. The

focus of our study was on the proliferative LGR5 population

and we have not directly addressed whether RAC1 is required
770 Cell Stem Cell 12, 761–773, June 6, 2013 ª2013 Elsevier Inc.
for the transformation of BMI1 ISCs. A level of hierarchy between

ISC populations has been proposed. Under normal homeostatic

conditions, Lgr5 ISCs populate the intestine, but this population

can be depleted during times of intestinal stress. When this oc-

curs, Bmi1+ cells can produce Lgr5 ISCs and subsequently re-

populate the intestine (Tian et al., 2011). Interestingly, LGR5+

cells are also capable of generating the +4 population (Takeda

et al., 2011). This would argue against a strict hierarchical rela-

tionship between these populations and instead indicate that,

depending on various contexts, these ISC populations are inter-

changeable. The location, function, and plasticity of ISC popula-

tions are still subject to keen debate. Recent data has argued

that LGR5+ cells express markers of alternative ISC populations

and that immediate progenitor cells can regain stemness after

crypt damage (Muñoz et al., 2012; van Es et al., 2012). Perhaps

the simplest explanation is that LGR5+ ISCs are defined by their

crypt location and progenitor cells can regain ISC properties if

they enter the LGR5+ niche. Interestingly, we observed LGR5+

cells throughout the crypt after Apc loss, and this is dependent

on RAC1. Perhaps this is why RAC1 deletion and ROS inhibition

do not affect normal LGR5 ISC function, i.e., these factors are

critical for unrestrained proliferation outside the conventional

niche. It should be noted that despite being expanded after

Apc loss, the LGR5+ zone does not encompass all APC-defi-

cient cells and Apc deletion alone in LGR5� cells does not

lead to tumorigenesis. Thus, other mutations are probably

required to permit tumor formation from non-ISCs. We have

recently shown that activation of KRAS in concert with Apc

loss can induce dedifferentiation of villus enterocytes, leading

to tumor formation (Schwitalla et al., 2013). It would be inter-

esting to determine whether this process is RAC1 dependent.

Given the plasticity of the normal intestine, this may also relate

to how intestinal CSCs behave. If multiple CSC populations exist

and are interconvertible, then so-called stem cell therapies,

which specifically target a particular subpopulation of cells

would be unlikely to prove beneficial. As specific CSC popula-

tions are depleted, theymay be rapidly repopulated fromalterna-

tive ‘‘reserve’’ CSCs or progenitor populations. In this case, it

would be important to target both the CSCs and the proliferative

capacity of their descendants. In this regard, our data demon-

strate that RAC1 would be a particularly attractive candidate to

target these populations. Rac1 deletion suppressed both LGR5

ISC and progenitor hyperproliferation after deletion of Apc and

prevented tumor formation from LGR5+ cells. Importantly, delet-

ing Rac1 also suppressed proliferation of cells with activated

KRAS, thus expanding the potential range of tumors likely to

respond to RAC1 inhibition.

It is currently unclear whether LGR5 marks APC-deficient

ISCs. LGR5 marks a CSC population with tumor lineage-tracing

properties in murine adenomas and LGR5+ APC-deficient cells

have enhanced in vitro clonogenicity over LGR5� cells, but no

in vivo clonogenicity data are available (Schepers et al., 2012).

We have shown that LGR5 ISC expansion, in vitro clonogenicity

of APC crypts, and adenoma initiation are RAC1 dependent.

However, as sorted cells from adenomas do not transplant, we

were not able to determine their clonogenicity in vivo. Thus, we

cannot state categorically that RAC1 is required for APC-defi-

cient ISC function. Two recent studies have suggested very

different outcomes for CRC patients with high levels of LGR5
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ISC markers. Merlos-Suarez and colleagues have shown that

expression of EphB receptors is closely correlated with LGR5

and other ISC markers in CRC, and those cancers with high

levels of these markers had a greater chance of relapse (Mer-

los-Suárez et al., 2011). In contrast, de Sousa E Melo and col-

leagues showed that while high levels of WNT signaling marks

CSC populations, those cancers in which the promoters of

LGR5 ISC markers were methylated were more likely to relapse

(de Sousa EMelo et al., 2011). Thus, it is not clear howwell LGR5

ISC marker expression defines CSCs in human tumors and how

this is linked to disease progression.

RAC1 as a Therapeutic Target?
We previously demonstrated that deletion of Myc was sufficient

to rescue all of the phenotypes of Apc loss. Although Rac1 dele-

tion did not completely recapitulate this, the comprehensive

suppression of tumor formation suggests that RAC1 is required

for transformation after Apc loss. As the majority of CRCs

contain APC mutations, this has been the focus of our study.

However, it would be interesting to determine whether Rac1

deletion also suppresses tumorigenesis in Apc-independent

murine CRC models (Heid et al., 2011; Li et al., 2012). Thus,

RAC1 may be a worthwhile therapeutic target during the early

stages of CRC. Interestingly, our data indicate that ROS and

NF-kB are two parallel pathways involved in promoting ISC/pro-

genitor proliferation downstream of RAC1. It should be noted

that activation of ROS or NF-kB was not sufficient to completely

rescue the phenotypes associated with Rac1 loss. This is impor-

tant in two respects. First, it demonstrates how robust the

requirement for RAC1 is to intestinal tumor formation. As a key

signaling node that integrates numerous downstream signaling

pathways, the potential therapeutic benefits of targeting it

should be high. Also, it would likely increase the range of tumors

that would be sensitive to its inhibition and reduce the scope for

drug resistance to develop. Second, it indicates that the RAC1

phenotype may also involve additional downstream pathways.

Indeed, activation of two other known target pathways of

RAC1, MTOR (Saci et al., 2011) and STAT3 (Simon et al.,

2000), were attenuated in intestines lacking APC and RAC1.

Both of these pathways have been shown to reduce though

not prevent polyposis in the ApcMin/+ mouse (Fujishita et al.,

2008; Musteanu et al., 2010). This may also explain why our

results do not perfectly phenocopy studies on any of the

RAC1-modified factors that we have examined. For example,

Ikkb deletion in an AOM/DSS-driven model does not completely

prevent tumorigenesis, whereas in our model, Rac1 deletion

does (Greten et al., 2004). Thus, the combined suppression of

a number of downstream effectors appears to have a much

more profound effect than deleting them individually. Thus, if effi-

cient RAC1 inhibitors remain elusive, it may be worth combining

inhibition of these downstream pathways. Another question that

remains is what happens at more advanced stages of CRC.

Would other mutations overcome the dependence of RAC1? It

is interesting to note that in the case of mTOR inhibition, addi-

tional KRAS mutation strongly suppresses the efficacy of rapa-

logs inmousemodels (Hung et al., 2010).We have demonstrated

that RAC1 is essential for the transformation of KRAS-mutated

crypts. Given previous reports that the transformation activity

of KRAS is dependent on RAC1 (Qiu et al., 1995), it seems likely
that RAC1 would remain an efficacious target even in the setting

of a KRAS mutation.

In summary, we have elucidated an important axis down-

stream of WNT/MYC signaling after Apc loss that is crucial

for LGR5 ISC/progenitor hyperproliferation and hence

tumorigenesis.

EXPERIMENTAL PROCEDURES

Mouse Experiments

All experiments were performed under the UK Home Office guidelines. The

background ofmicewere as follows:AhCre experiments were at least ten gen-

erations C57Bl6J, Apc1322T experiments were at least five generations

C57Bl6J, VilCre-ER experiments were performed on a mixed background

(50% C57Bl6J, 50% S129). The alleles used for this study were as follows:

c-Mycfl (Sansom et al., 2007), AhCre (Ireland et al., 2004), Apc580S (Sansom

et al., 2007), Rac1fl (Walmsley et al., 2003), VilCre-ER (el Marjou et al., 2004),

Lgr5-CreER (Barker et al., 2007), ROSA-tdRFP (Luche et al., 2007), and

R26StopFLikk2ca (Sasaki et al., 2006). Recombination by VilCreER was

induced with one intraperitoneal (i.p.) injection of 80 mg/kg tamoxifen per

day for 4 days. Analyses of VilCreER-induced mice were at day 4 after induc-

tion. GFP lineage tracing was performed by inducing recombination by AhCre

using a single i.p. injection of 80 mg/kg b-napthoflavone and analyzing GFP

expression 14 days later. Mice carrying the Lgr5-CreER transgene were given

one i.p. injection of 120 mg/kg tamoxifen, followed by one daily i.p. injection of

80 mg/kg tamoxifen for 3 days. This protocol was also used for inducing

recombination within preformed adenomas. For ROS inhibition, 0.5%N-acetyl

cysteine was added to drinking water for 1 week prior to Cre induction by

tamoxifen treatment. Treatment with paraquat was 10 mg/kg i.p. injection

every other day starting 2 days prior to tamoxifen induction.

Immunohistochemistry

Standard immunohistochemistry techniques were used throughout this study.

Primary antibodies and concentrations can be found in the Supplemental

Experimental Procedures. For each antibody, staining was performed on at

least threemice of each genotype and average staining intensity over the entire

tissue area was scored. Representative images are shown for each staining.

Microarray Analysis

We reverse transcribed 1 mg of total RNA isolated from intestinal tissue was to

cDNA and hybridized to Affymetrix Mouse Genome 430 2.0 microarrays. Cell

files of six samples were normalized and analyzed in Partek Genomics Suite

Software. RMA normalization and log2 transformation of the data was followed

by the differential gene expression analysis using ANOVA and post hoc linear

contrasts between all pairs of experimental conditions. Multiple test correc-

tions were performed for all calculated p values. Finally, the fold change values

were considered in ranking genes of interest. Enrichment analysis was per-

formed with chi-square test with Yates’s correction (Gold et al., 2007).

Additional methods are in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes six figures, Supplemental

Experimental Procedures, and two tables and can be foundwith this article on-

line at http://dx.doi.org/10.1016/j.stem.2013.04.006.
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