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1. Introduction

A maximal hypersurface in a Lorentzian manifold is a spacelike hypersurface with zero mean curvature. Besides of their
mathematical interest these hypersurfaces and more generally those having constant mean curvature have a significant im-
portance in physics [9,10,12]. When the ambient space is the Minkowski space L

n , one of the most important results is the
proof of a Bernstein-type theorem for maximal hypersurfaces in L

n . Calabi [4] proved that the only complete hypersurfaces
with zero mean curvature in L

3 (i.e. maximal surfaces) and L
4 are spacelike hyperplanes, solving the so called Bernstein-

type problem in dimensions 3 and 4. Cheng and Yau [6] extended this result to L
n , n � 5. It is therefore meaningless to

consider global problems on maximal and everywhere regular hypersurfaces in L
n . In contrast, there exists a lot of results

about existence of non-flat maximal surfaces with singularities [7,8,11].
It is well known the close relationship between maximal surfaces in L

3 and minimal surfaces in R
3 (see Remark 1 in

Section 2.2). This fact lets us solve some problems on maximal surfaces by solving the analogous ones for minimal surfaces,
and vice versa. This is not the case of the Calabi–Yau problem. In 1965 Calabi asked whether or not it is possible for a
complete minimal surface in R

3 to be bounded. Much work has been done on it over the past four decades. The most
important result in this line was obtained by Nadirashvili [16], who constructed a complete minimal surface in the unit
ball of R

3. See [2] for more information about this topic. From a Nadirashvili’s surface and using the relationship between
maximal and minimal surfaces, we can obtain as most the existence of a weakly complete maximal surface contained in a
cylinder of L

3. Here, we use the concept of weakly completeness (see Definition 2 in Section 2.2) that was introduced by
Umehara and Yamada [18].

In this paper, we construct an example of a weakly complete maximal surface in L
3 with singularities, which is bounded

by a hyperboloid. We would like to point out that our example does not have branch points, all the singularities are of
lightlike type (see Definition 1 in Section 2.2).

More precisely, we prove the following existence theorem.
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Theorem 1. There exists a weakly complete conformal maximal immersion with lightlike singularities of the unit disk into the set
{(x, y, z) ∈ L

3 | x2 + y2 − z2 < −1}.

For several reasons, lightlike singularities of maximal surfaces in L
3 are specially interesting. This kind of singularities

are more attractive than branch points, in the sense that they have a physical interpretation [9,10]. At these points, the limit
tangent plane is lightlike, the curvature blows up and the Gauss map has no well defined limit. However, as in the case of
minimal surfaces, if we allow branch points, then proving the analogous result of Theorem 1 has less technical difficulties.

The fundamental tools used in the proof of this result (Runge’s theorem and the López–Ros transformation) are those
that Nadirashvili utilized to construct the first example of a complete bounded minimal surface in R

3. Improvements of his
technique have generated a lot of literature on the Calabi–Yau problem for minimal surfaces in R

3 [3,14,15].
Similarly to the case of minimal surfaces, it would be stimulating to look for an additional property for a weakly complete

bounded by a hyperboloid maximal surface: properness in the hyperboloid. In order to achieve it, the technique showed in
this paper could be combined with the reasonings used in the construction [1] of a proper conformal maximal disk in L

3,
following the ideas of [13]. The main objection of this argument is that the sharpest result known about the convex hull
property for maximal surfaces [5] needs the control of the image of the singularities of the surface.

2. Background and notation

2.1. The Lorentz–Minkowski three space

We denote by L
3 the three dimensional Lorentz–Minkowski space (R3, 〈·, ·〉), where 〈·, ·〉 = dx2

1 + dx2
2 − dx2

3. The

Lorentzian norm is given by ‖(x1, x2, x3)‖2 = x2
1 + x2

2 − x2
3, and ‖x‖ = sign(‖x‖2)

√|‖x‖2|. We say that a vector v ∈
R

3 \ {(0,0,0)} is spacelike, timelike or lightlike if ‖v‖2 is positive, negative or zero, respectively. The vector (0,0,0) is
spacelike by definition. A plane in L

3 is spacelike, timelike or lightlike if the induced metric is Riemannian, non-degenerate
and indefinite or degenerate, respectively.

In order to differentiate between L
3 and R

3, we denote R
3 = (R3, 〈·, ·〉0), where 〈·, ·〉0 is the usual metric of R

3, i.e.,
〈·, ·〉0 = dx2

1 + dx2
2 + dx2

3. We also denote the Euclidean norm by ‖·‖0.
By an (ordered) L

3-orthonormal basis we mean a basis of R
3, {u, v, w}, satisfying

• 〈u, v〉 = 〈u, w〉 = 〈v, w〉 = 0;
• ‖u‖ = ‖v‖ = −‖w‖ = 1.

Notice that u and v are spacelike vectors whereas w is timelike.
We call H

2 := {(x1, x2, x3) ∈ R
3 | x2

1 + x2
2 − x2

3 = −1} the hyperbolic sphere in L
3 of constant intrinsic curvature −1. Notice

that H
2 has two connected components H

2+ := H
2 ∩ {x3 � 1} and H

2− := H
2 ∩ {x3 � −1}. The stereographic projection η for

H
2 from the point (0,0,1) ∈ H

2+ is the map η : H
2 → C ∪ {∞} \ {|z| = 1} given by

η(x1, x2, x3) = x1 + ix2

1 − x3
, η(0,0,1) = ∞.

Notice that η(H2+) = {|z| > 1} and η(H2−) = {|z| < 1}.
Given r � 0, we denote by B(r) as the lower convex domain determined by the set {‖x‖ = −r}, i.e.,

B(r) = {
(x1, x2, x3) ∈ R

3 | ∥∥(x1, x2, x3)
∥∥ < −r, x3 < −r

}
.

We also denote b(r) = ∂B(r). Observe that b(1) = H
2− . Moreover, if r1 < r2, then B(r2) ⊂ B(r1) and b(r1) ∩ b(r2) = ∅.

Finally, we define the maps N : B(0) → H
2+ and N0 : B(0) → S

2 by the following way. Consider p ∈ B(0) and label
r = −‖p‖ > 0. Let N r : b(r) → H

2+ and N r
0 : b(r) → S

2 be the outward pointing L
3-normal Gauss map and the Euclidean

outward pointing unit normal of b(r), respectively. Then, we define

N (p) = N r(p), N0(p) = N r
0(p).

Equivalently, N (p) = −p/‖p‖ and N0(p) = J (p)/‖p‖0, where J (p1, p2, p3) = (p1, p2,−p3). Hence, both maps are differ-
entiable and N0(p) = −J (N (p))/‖N (p)‖0.

2.2. Maximal surfaces

Any conformal maximal immersion X : M → L
3 is given by a triple Φ = (Φ1,Φ2,Φ3) of holomorphic 1-forms defined

on the Riemann surface M , having no common zeros and satisfying

|Φ1|2 + |Φ2|2 − |Φ3|2 �= 0; (1)

Φ2
1 + Φ2

2 − Φ2
3 = 0; (2)
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and all periods of the Φ j are purely imaginary. Here we consider Φi to be a holomorphic function times dz in a local
parameter z. Then, the maximal immersion X : M → L

3 can be parameterized by z → Re
∫ z

Φ . The above triple is called
the Weierstrass representation of the maximal immersion X . Usually, the second requirement (2) is guaranteed by the
introduction of the formulas

Φ1 = i

2

(
1 − g2)η, Φ2 = −1

2

(
1 + g2)η, Φ3 = gη

for a meromorphic function g with |g(p)| �= 1, ∀p ∈ M (the stereographically projected Gauss map) and a holomorphic
1-form η. We also call (g, η) or (g,Φ3) the Weierstrass representation of X .

Remark 1. If (Φ1,Φ2,Φ3) is the Weierstrass representation of a simply connected maximal surface, then (iΦ1, iΦ2,Φ3) are
the Weierstrass data of a simply connected minimal surface in R

3 [17]. Moreover, both surfaces have the same meromorphic
Gauss map g .

We are going to deal with maximal immersions with lightlike singularities, according with the following definition.

Definition 1. A point p ∈ M is a lightlike singularity of the immersion X if it is not a branch point and |g(p)| = 1.

In this article, all the maximal immersions are defined on simply connected domains of C, thus the Weierstrass 1-forms
have no periods and so the only requirements are (1) at the points that are not singularities, and (2). In this case, the
differential η can be written as η = f (z)dz. The metric of X can be expressed as

ds2 = 1

2

(|Φ1|2 + |Φ2|2 − |Φ3|2
) =

(
1

2

(
1 − |g|2)| f ||dz|

)2

. (3)

We use a concept of completeness that is less exigent than the classical one. The following definition was given by Umehara
and Yamada [18].

Definition 2. A maximal immersion X : M → L
3 is weakly complete if the Riemann surface M is complete with the metric

dσ 2 = 1

2

(|Φ1|2 + |Φ2|2 + |Φ3|2
) =

(
1

2

(
1 + |g|2)| f ||dz|

)2

. (4)

The metric dσ 2 will be called the lift metric of X .

The Euclidean metric on C is denoted as 〈,〉 = |dz|2. Note that ds2 = (λX )2|dz|2 and dσ 2 = (λ0
X )2 |dz|2 where the confor-

mal coefficients λX and λ0
X are given by (3) and (4), respectively.

Remark 2. Observe that if X has a singularity of lightlike type in a point z ∈ M , then λX (z) = 0 but λ0
X (z) �= 0. On the other

hand, if z is a branch point of X , one has λX (z) = 0 = λ0
X (z).

Throughout this paper, we use some L
3-orthonormal bases. Given X : Ω → L

3 a maximal immersion and S an L
3-

orthonormal basis, we write the Weierstrass data of X in the basis S as

Φ(X,S) = (Φ(1,S),Φ(2,S),Φ(3,S)), f(X,S), g(X,S), η(X,S).

In the same way, given v ∈ R
3, we denote by v(k,S) the kth coordinate of v in S . We also represent by v(∗,S) =

(v(1,S), v(2,S)) the first two coordinates of v in the basis S .
Given a curve α in Ω , by length(α,ds) we mean the length of α with respect to the metric ds. Let W ⊂ Ω be a subset,

then we define

• dist(W ,ds)(p,q) = inf{length(α,ds) | α : [0,1] → W , α(0) = p, α(1) = q}, for any p,q ∈ W .
• dist(W ,ds)(U , V ) = inf{dist(W ,ds)(p,q) | p ∈ U , q ∈ V }, for any U , V ⊂ W .

Given a domain D ⊂ C, we say that a function, or a 1-form, is harmonic, holomorphic, meromorphic, . . . on D , if it is
harmonic, holomorphic, meromorphic, . . . on a domain containing D .

Let P be a simple closed polygonal curve in C. By Int P we mean the bounded connected component of C \ P . For a
small enough ξ > 0, we denote by P ξ as the parallel polygonal curve in Int P , satisfying that the distance between parallel
sides is equal to ξ . Whenever we write P ξ we are assuming that ξ is small enough to define the polygon properly.
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2.3. The López–Ros transformation

The proof of Lemma 1 exploits what has come to be call the López–Ros transformation. If (g, f ) are the Weierstrass data
of a maximal immersion X : Ω → L

3 (being Ω simply connected), we define on Ω the data

g̃ = g

h
, f̃ = f h,

where h : Ω → C is a holomorphic function without zeros. Observe that the new meromorphic data satisfy (1) at the regular
points, and (2), so the new data define a maximal immersion (possibly with different lightlike singularities) X̃ : Ω → L

3.
This method provides us with a powerful and natural tool for deforming maximal surfaces. One of the most interesting
properties of the resulting surface is that the third coordinate function is preserved.

3. Proof of Theorem 1

In order to prove Theorem 1 we will apply the following technical lemma. It will be proved later in Section 4.

Lemma 1. Consider r > 0, P a polygon in C and X : Int P → L
3 a conformal maximal immersion (possibly with lightlike singularities)

satisfying

X(Int P ) ⊂ B(r). (5)

Let ε and s be positive constants with
√

r2 − 4s2 −ε > 0. Then, there exist a polygon Q and a conformal maximal immersion (possibly
with lightlike singularities) Y : Int Q → L

3 such that

(L.1) Int P ε ⊂ Int Q ⊂ Int Q ⊂ Int P .
(L.2) s < dist(Int Q ,dσ 2

Y )(P ε, Q ), where dσ 2
Y is the lift metric associated to the immersion Y .

(L.3) Y (Int Q ) ⊂ B(R), where R = √
r2 − 4s2 − ε .

(L.4) ‖Y − X‖0 < ε in Int P ε .

Using this lemma, we construct a sequence of immersions {ψn}n∈N that converges to an immersion ψ which proves
Theorem 1, up to a reparametrization of its domain.

First of all, we consider a sequence of reals {αn}n∈N satisfying

∞∏
k=1

αk = 1

2
, 0 < αk < 1, ∀k ∈ N.

Moreover, we choose r1 > 1 large enough so that the sequence {r′
n}n∈N given by

r′
1 = r1, r′

n =
√

(r′
n−1)

2 − (2/n)2 − 1

n2

satisfies

r′
n > 1, ∀n ∈ N. (6)

Now, we are going to construct a sequence {Υn}n∈N , where the element

Υn = {Pn,ψn, εn, ξn}
is composed of a polygon Pn , a conformal maximal immersion ψn : Int Pn → L

3, and εn < 1
n2 , and ξn are positive real

numbers. We will choose εn and ξn so that the sequences {εn}n∈N and {ξn}n∈N decrease to zero.
We construct the sequence in order to satisfy the following list of properties.

(An) Int P
ξn−1
n−1 ⊂ Int P εn

n−1 ⊂ Int P εn
n−1 ⊂ Int P ξn

n ⊂ Int P ξn
n ⊂ Int Pn ⊂ Int Pn ⊂ Int Pn−1.

(Bn) 1/n < dist
(Int P ξn

n ,dσ 2
ψn

)
(P

ξn−1
n−1 , P ξn

n ), where dσ 2
ψn

is the lift metric of the immersion ψn .

(Cn) ψn(Int Pn) ⊂ B(rn), where rn =
√

r2
n−1 − (2/n)2 − εn . Notice that (6) guarantees that {rn}n∈N decreases to a real number

r∞ > 1.
(Dn) ‖ψn − ψn−1‖0 < εn in Int P εn

n−1.

(En) λ0
ψn

� αn · λ0
ψn−1

in Int P
ξn−1
n−1 .

The sequence {Υn}n∈N is constructed in a recursive way. The existence of a family Υ1 satisfying assertion (C1) is straight-
forward. The rest of the properties have no sense for n = 1.
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Suppose that we have Υ1, . . . ,Υn . We are going to construct Υn+1. We choose a decreasing sequence of positive reals
{εm}m∈N ↘ 0 with εm < min{1/(n + 1)2, εn} for all m ∈ N. For each m, we consider the polygon Q m and the conformal
maximal immersion Ym : Int Q m → L

3 given by Lemma 1 for the following data:

r = rn, P = Pn, X = Xn, ε = εm, s = 1

n + 1
.

For a large enough m, (L.1) in Lemma 1 guarantees that Int P ξn
n ⊂ Int Q m . Moreover, from property (L.4), we deduce that the

sequence {Ym}m∈N uniformly converges to ψn in Int P ξn
n . Then, taking into account that Ym is a harmonic map and that its

Weierstrass data are given by its derivatives, we conclude that the sequence {λ0
Ym

}m∈N uniformly converges to λ0
ψn

in Int P ξn
n .

Hence, there exists m0 ∈ N satisfying

Int P ξn
n ⊂ Int P

εm0
n ⊂ Int P

εm0
n ⊂ Int Q m0 , (7)

λ0
Ym0

� αn+1 · λ0
ψn

, in Int P ξn
n . (8)

In order to obtain (8) we have taken into account that the immersion ψn has no branch points, it only has singularities of
lightlike type (see Remark 2).

At this point, we define Pn+1 = Q m0 , ψn+1 = Ym0 and εn+1 = εm0 . From (L.2) in Lemma 1, we conclude that 1/(n + 1) <

dist(Int Pn+1,dσ 2
ψn+1

)(P
εn+1
n , Pn+1). Therefore, taking into account (7) we can take ξn+1 small enough so that (An+1) and (Bn+1)

hold. Properties (Cn+1) and (Dn+1) are consequence of (L.3) and (L.4), respectively, whereas (8) implies (En+1). This concludes
the construction of the sequence {Υn}n∈N .

Now, define Δ := ⋃
n∈N

Int P
εn+1
n = ⋃

n∈N
Int P ξn

n . Since (An), the set Δ is an expansive union of simply connected domains
resulting in Δ being simply connected. Moreover, Δ is bounded since properties (An), n ∈ N, so it is biholomorphic to a disk.
On the other hand, from (Dn) we obtain that {ψn}n∈N is a Cauchy sequence, uniformly on compact sets of Δ. Then, Harnack’s
Theorem guarantees the existence of a harmonic map ψ : Δ → L

3 such that {ψn}n∈N → ψ , uniformly on compact sets of Δ.
Then, ψ has the following properties.

• ψ is maximal and conformal. These facts are consequence of that ψ is harmonic.
• ψ has no branch points. For any z ∈ Δ there exists n ∈ N so that z ∈ Int P ξn

n . Given k > n and using (E j), j = n + 1, . . . ,k,
one has λ0

ψk
(z) � αk · · ·α1λ

0
ψn

(z). Hence, taking the limit as k → ∞, we infer that

λ0
ψ(z) � 1

2
λ0

ψn
(z) > 0,

and so, ψ has no branch points. Notice that the last inequality holds because of ψn has no branch points.

Remark 3. Observe that this argument does not work if we use the conformal coefficients λψk instead of λ0
ψk

. This fact is
implied by the possible existence of singularities of lightlike type.

• ψ is weakly complete. This fact follows from properties (Bn), (En), n ∈ N, and the fact that the sum
∑∞

n=1 1/n diverges.

• ψ(Δ) ⊂ B(1). Let z ∈ Δ and n ∈ N such that z ∈ Int P ξn
n . For each k � n, property (Ck) guarantees that ψk(z) ∈ B(rk) ⊂

B(r∞). Taking limit as k → ∞, we obtain ψ(z) ∈ B(r∞) ⊂ B(1).
This completes the proof of Theorem 1.

4. Proof of Lemma 1

The first step of the proof consists of the construction of a labyrinth on Int P which depends on the polygon P and a
positive integer N . Let � be the number of sides of P . From now on, N is a positive multiple of �. Although N is fix, we will
assume throughout the proof of the lemma that we have taken it large enough so that some inequalities hold. Without loss
of generality, we assume 0 ∈ Int P ε .

Remark 4. Throughout the proof of the lemma, a set of positive real constants depending on the data of the lemma, i.e.,
r, P , X , ε and s, will appear. The symbol “const” will denote these different constants. It is important to note that the
choice of these constants does not depend on N .

First of all, consider ζ0 ∈ ]0, ε[. Therefore, P ζ0 is well defined and Int P ε ⊂ Int P ζ0 . We also assume that N satisfies
2/N < ζ0.

Let v1, . . . , v2N be a set of points in the polygon P (containing the vertices of P ) which divides each side of P into 2N/�

equal parts. Let v ′
1, . . . , v ′

2N be the points resulting from transferring the above partition to the polygon P 2/N . Then, we
define the following sets.

• Li is the segment that joins vi and v ′
i , i = 1, . . . ,2N .

• Gi = P i/N3
, i = 0, . . . ,2N2.
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Fig. 1. The labyrinth.

• A = ⋃N2−1
i=0 (Int G2i) \ (Int G2i+1) and Ã = ⋃N2

i=1 (Int G2i−1) \ (Int G2i).

• R = ⋃2N2

i=0 Gi .
• B = ⋃N

i=1 L2i and B̃ = ⋃N−1
i=0 L2i+1.

• L = B ∩ A, L̃ = B̃ ∩ Ã and H = R ∪ L ∪ L̃.
• ΩN = {z ∈ (Int G0) \ (Int G2N2 ) | dist(C,〈·,·〉)(z, H) � 1/(4N3)}.
• ωi is the union of the segment Li and those connected components of ΩN that have nonempty intersection with Li , for

i = 1, . . . ,2N .
• �i = {z ∈ C | dist(C,〈·,·〉)(z,ωi) < δ(N)}, is chosen so that the sets �i , i = 1, . . . ,2N , are pairwise disjoint.

After constructing the labyrinth (see Fig. 1), we are going to list some of its properties.

Claim 1. If N is large enough, for any i = 1, . . . ,2N, one has

A. diam(C,〈·,·〉)(�i) < const/N.
B. diam

H
2+ (N (X(�i))) < 1/

√
N, where diam

H
2+ is the intrinsic diameter in H

2+ . Here, N is the map defined in Section 2.1.

C. Denote by (g,Φ3) the Weierstrass data of the immersion X. Then, there exists a subset I0 ⊂ {1, . . . ,2N} such that
• |g(z)| �= 1 ∀z ∈ � j , ∀ j ∈ I0 .
• g(z) �= ∞ ∀z ∈ � j , ∀ j ∈ J0 = {1, . . . ,2N} \ I0 .

D. Let λ2〈·, ·〉 be a conformal metric in Int P . Assume there exists c ∈ R
+ so that

λ �
{

c in Int P ,

cN4 in ΩN .

Then, for any curve α in Int P connecting P ζ0 and P , one has length(α,λ〈·, ·〉) > const cN, where const does not depend on c.

Proof. Checking item A in the above claim is straightforward. Item B is a consequence of item A and the fact that N is
a differentiable map. For a sufficiently large N , item C holds since item A and because of g is a meromorphic function. In
order to prove item D, we denote by α j as the piece of α connecting P j/N and P ( j+1)/N , for j = 0, . . . , N2 − 1. Then, either
the Euclidean length of α j is greater than const/N or the length of α j ∩ ΩN is greater than 1/2N3. This fact and our
assumption about λ imply item D. �

At this point, we construct a sequence F0 = X, F1, . . . , F2N of conformal maximal immersions (with boundary and, pos-
sibly, lightlike singularities) defined in Int P .

Claim 2. We will construct the sequence in order to satisfy the following list of statements, for i = 1, . . . ,2N.

(a1i) Fi(z) = Re(
∫ z

0 φi(u)du) + V . Here, V ∈ R
3 is a fixed vector. It does not depend on i.

(a2i) ‖φi − φi−1‖0 � 1/N2 in Int P \ �i .
(a3i) ‖φi‖0 � N7/2 in ωi .
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(a4i) ‖φi‖0 � const/
√

N in �i .
(a5i) Assume (gi, φ

i
3) are the Weierstrass data of Fi . Then, the following two assertions hold.

(a5.1i) |gi(z)| �= 1, ∀z ∈ � j , ∀ j ∈ I0 , j > i. Hence, the Gauss map Gi of the immersion Fi is well defined in � j for those j.
Moreover, distH2 (Gi(z), Gi−1(z)) < 1/N2 , for any z ∈ � j and for any j ∈ I0 , j > i, where by distH2 we mean the
intrinsic distance in H

2 .
(a5.2i) gi(z) �= ∞, ∀z ∈ � j , ∀ j ∈ J0 , j > i. Furthermore, one has |gi(z) − gi−1(z)| < 1/N2 , for any z ∈ � j , for any of those j.

(a6i) There exists Si = {e1, e2, e3} an orthonormal frame in L
3 , such that

(a6.1i) dist
H

2+ (e3, N (X(z))) < const/
√

N, for any z ∈ �i .

(a6.2i) (Fi(z))(3,Si) = (Fi−1(z))(3,Si) , for all z in Int P .
(a7i) ‖Fi − Fi−1‖0 < const/N2 in (Int P ) \ �i .

Proof. The sequence F0, F1, . . . , F2N is constructed in a recursive way. Assume that we already have F0, F1, . . . , F j−1 satis-
fying the assertions (a1i), . . . , (a7i), i = 1, . . . , j − 1. Before constructing F j , we need to check the following claim.

Claim 3. For a large enough N, the following statements hold.

(b1) ‖φ j−1‖0 � const in (Int P ) \ (
⋃ j−1

k=1 �k).

(b2) ‖φ j−1‖0 � const in (Int P ) \ (
⋃ j−1

k=1 �k).

(b3) The diameter in R
3 of F j−1(� j) is less than 1/

√
N.

(b4) Assume j ∈ I0 . Then,
(b4.1) The diameter in H

2 of G j−1(� j) is less than 1/
√

N. In particular, there exists p ∈ G j−1(� j) such that distH2 (p,

G j−1(z)) < 1/
√

N, for any z ∈ � j .
On the other hand, suppose j ∈ J0 .
(b4.2) Consider the set

Γ :=
{

G j−1(z)

‖G j−1(z)‖0

∣∣ z ∈ � j,
∣∣g j−1(z)

∣∣ �= 1

}
.

Denote by Γ + (resp. Γ −) as the part of Γ corresponding to H
2+ (resp. H

2−). Then, there exists p ∈ Γ + so that

distS2 (±p,q) < 1/
√

N, for all q ∈ Γ ± .
(b5) There exists an orthonormal frame S j = {e1, e2, e3} in L

3 , where e3 ∈ H
2+ and the following assertions hold.

(b5.1) dist
H

2+ (e3, N (X(z))) � const/
√

N, for all z ∈ � j .

(b5.2) dist
H

2+ (e3,±q) � const/
√

N and dist
H

2− (−e3,±q) � const/
√

N, for any q in the set {G j−1(z) | z ∈ � j, |g j−1(z)| �=
1}. We mean that we only have to compute the distance if both points are in the same connected component of H

2 .

Proof. To deduce (b1) and (b2) we have to use just (a2k), k = 1, . . . , j − 1. Item (b3) is a consequence of (b1) and Claim 1.A.
In order to prove (b4) we distinguish cases. If j ∈ I0, taking into account Claim 1.A and Claim 1.C we obtain that the
diameter of G0(� j) is bounded by const/N . Then, we can apply (a5.1k), k = 1, . . . , j − 1, to conclude (b4.1). On the
other hand, if j ∈ J0, we use again Claim 1.A and Claim 1.C to deduce that diamC(g0(� j)) < const/N . Therefore, (a5.2k),
k = 1, . . . , j − 1, imply that diamC(g j−1(� j)) < const/N . This fact guarantees (b4.2) for a large enough N . We also have
taken into account that if |gi−1(z)| < 1 < |gi−1(z′)| and gi−1(z) ≈ gi−1(z′), then G j−1(z) ≈ −G j−1(z′).

The proof of (b5) is slightly more complicated. First, assume that j ∈ I0. Without loss of generality we can assume that
G j−1(� j) ⊂ H

2+ , otherwise we would work with −G j−1(� j). Consider p given by property (b4.1), then to obtain (b5.2), it
suffices to take e3 in C = {q ∈ H

2+ | dist
H

2+ (p,q) > 2/
√

N}. Moreover, in order to satisfy (b5.1), the vector e3 must be chosen

as follows.

• If C ∩ N (X(� j)) �= ∅, then we take e3 in that set. Therefore (b5.1) holds because of Claim 1.B.
• If C ∩ N (X(� j)) = ∅, then we take e3 ∈ C such that dist

H
2+ (e3,q′) < 2/

√
N for some q′ ∈ N (X(� j)). This choice is

possible since (b4.1). Again Claim 1.B. guarantees (b5.1).

Assume now that j ∈ J0. We define the sets

Λ± :=
{

q

‖q‖0
| q ∈ H

2±
}

⊂ S
2, Ξ :=

{ N (X(z))

‖N (X(z))‖0
| z ∈ � j

}
⊂ Λ+.

In order to prove assertion (b5) in this case, we are going to use the following statement. There exists e3 ∈ H
2+ so that the

vector ê3 = e3/‖e3‖0 satisfies

(i) distΛ+ ( ê3,q) � const/
√

N , for all q ∈ Ξ .
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(ii) distΛ+ ( ê3,±q) � const/
√

N and distΛ− (−̂e3,±q) � const/
√

N for any q ∈ Γ . Again, we mean that we only have to
compute the distance if both points are in Λ+ or both in Λ− .

Indeed, the proof consists of the same arguments as above but using (b4.2) instead of (b4.1). Then, (b5.1) is a consequence
of (i) and the fact that ‖N (X(� j))‖0 is bounded (not depending on N). Moreover, (ii) implies (b5.2). Hence, e3 proves
property (b5) in this case. �

Now, we can continue with the proof of Claim 2. Let (g j−1, φ
j−1
3 ) be the Weierstrass data of the immersion F j−1 in the

basis S j given by (b5). For any α > 0, consider hα : Int P → C a holomorphic function without zeros and satisfying

• |hα − 1| < 1/α in Int P \ � j .
• |hα − α| < 1/α in ω j .

This family of functions is given by Runge’s Theorem. Using hα as a López–Ros parameter, we define F j in the coordinate

system S j as g j = g j−1/hα and φ
j
3 = φ

j−1
3 . Taking into account that hα → 1 (resp. hα → ∞) uniformly in Int P \ � j (resp.

in ω j ), as α → ∞, it is clear that properties (a1 j ), (a2 j ), (a3 j ), (a5 j) and (a7 j ) hold for a large enough (in terms of N) value

of the parameter α. Moreover, using (b5.1) we obtain (a6.1 j ) and to get (a6.2 j ) we use that φ
j−1
3 = φ

j
3 in the frame S j .

Finally, we are going to prove (a4 j). Consider z ∈ � j with |g j−1(z)| �= 1. Using the stereographic projection for H
2 from the

point e3 ∈ H
2+ , from property (b5.2) one has

sinh
(const√

N

)
cosh

(const√
N

) + 1
�

∣∣g j−1(z)
∣∣ �

sinh
(const√

N

)
cosh

(const√
N

) − 1
.

On the other hand, if |g j−1(z)| = 1, then the above inequalities trivially hold, so they occur for any z ∈ � j . Therefore,

∥∥φ j
∥∥

0 �
∣∣φ j

3

∣∣ = ∣∣φ j−1
3

∣∣ �
√

2
∥∥φ j−1

∥∥
0

|g j−1|
1 + |g j−1|2 � const · tanh

(
const√

N

)
� const√

N
in � j,

where we have used (a6.2 j ) and (b2). This fact proves (a4 j) and concludes the proof of Claim 2. �
Remark 5. Notice that in the definition of Fi in property (a1i ), we need the addition of the fixed vector V . Otherwise, it
would be Fi(0) = (0,0,0). In particular, X(0) = (0,0,0) /∈ B(r), which is absurd.

Remark 6. Let Si = {e1, e2, e3} be the L
3-orthonormal basis given by property (a6i ). Consider S̃ i = {̃e1, ẽ2, ẽ3} an R

3-
orthonormal basis such that {e1, e2} and {̃e1, ẽ2} define the same plane, and e3 and ẽ3 lie in the same halfspace determined
by that plane, i.e., ẽ3 = −J (e3)/‖e3‖0, where J (e1

3, e2
3, e3

3) = (e1
3, e2

3,−e3
3). Then, one has

• distS2 (̃e3, N0(X(z))) < const/
√

N , for any z ∈ �i , where N0 is the map that was defined in Section 2.1.
• (Fi(z))(3,̃Si)

= (Fi−1(z))(3,̃Si)
.

Now, we establish some properties of the final immersion F2N .

Claim 4. If N is large enough, then F2N satisfies

(c1) 2s < dist(Int P ,dσF2N )(P , P ε), where by dσF2N we represent the lift metric of the immersion F2N .

(c2) ‖F2N − X‖0 < const/N, in Int P \ (
⋃2N

i=1 �i).
(c3) There exists a polygon Q such that

(c3.1) Int P ε ⊂ Int Q ⊂ Int Q ⊂ Int P .
(c3.2) s < dist(Int P ,dσF2N )(z, P ε) < 2s, for any z ∈ Q .

(c3.3) F2N (Int Q ) ⊂ B(R), where R = √
r2 − 4s2 − ε .

Proof. Properties (b2), (a2i ), (a3i ) and (a4i), i = 1, . . . ,2N , guarantee that the conformal coefficient λ0
F2N

of the lift metric
of F2N satisfies

λ0
F2N

= ‖φ2N‖0√
2

�

⎧⎨
⎩

const√
N

in Int P

const√
N

N4 in ΩN .

Therefore, Claim 1.D imply that

dist(Int P ,dσF2N )

(
P , P ε

)
� dist(Int P ,dσF2N )

(
P , P ζ0

)
>
const√ N = const

√
N > 2s,
N
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for a large enough N . We have proved (c1). Property (c2) trivially holds from (a2i ), i = 1, . . . ,2N .
In order to construct the polygon Q of the assertion (c3), we consider the set

K = {
z ∈ (Int P ) \ (

Int P ε
) | s < dist(Int P ,dσF2N )

(
z, P ε

)
< 2s

}
.

From (c1), K is a nonempty open subset of (Int P )\ (Int P ε), and P and P ε are contained in different connected components
of C \ K. Therefore, we can choose a polygon Q on K satisfying (c3.1) and (c3.2).

The proof of (c3.3) is more complicated. Consider z ∈ Int Q . First, we assume that z ∈ (Int P )\ (∪2N
i=1�i). Then, we can use

properties (a2i ), i = 1, . . . ,2N , to conclude that ‖F2N (z) − X(z)‖0 < const/N . Moreover, from the hypotheses of Lemma 1,
we have X(z) ∈ B(r). Hence, F2N (z) ∈ B(R), if N is large enough.

On the other hand, suppose that there exists i ∈ {1, . . . ,2N} with z ∈ �i . Choose a curve γ : [0,1] → Int P satisfying
γ (0) ∈ P ε , γ (1) = z and length(γ ,dσF2N ) < 2s. This choice is possible since (c3.2). Label

t0 = sup
{

t ∈ [0,1] | γ (t) ∈ ∂�i
}
, z0 = γ (t0).

Notice that this supremum exists because �i ⊂ (Int P )\ Int P ε (for a large enough N). Now, consider the basis S̃ i introduced
in Remark 6, then we have∥∥(

F2N (z) − X(z)
)
(∗,̃Si)

∥∥ � 2s + const√
N

, (9)∣∣(F2N (z) − X(z)
)
(3,̃Si)

∣∣ <
const

N
. (10)

Indeed,∥∥(
F2N (z) − X(z)

)
(∗,̃Si)

∥∥ �
∥∥F2N (z) − F2N (z0)

∥∥
0 + ∥∥F2N (z0) − Fi−1(z0)

∥∥
0 + ∥∥Fi−1(z0) − Fi−1(z)

∥∥
0 + ∥∥Fi−1(z) − X(z)

∥∥
0

� length(γ ,dσF2N ) + const

N
+ 1√

N
+ const

N
< 2s + const√

N
,

where we have used (a7 j ), j = 1, . . . ,2N , and (b3). On the other hand, taking Remark 6 and (a7 j ), j = 1, . . . ,2N , into
account, we conclude∣∣(F2N (z) − X(z)

)
(3,̃Si)

∣∣ �
∥∥F2N (z) − Fi(z)

∥∥
0 + ∣∣(Fi(z) − Fi−1(z)

)
(3,̃Si)

∣∣ + ∥∥Fi−1(z) − X(z)
∥∥

0

<
const

N
+ const

N
= const

N
.

At this point, consider the following statement. Its proof is elemental, we leave the details to the reader.

Claim 5. Let 0 < x < t. Consider p ∈ B(t) and v ∈ R
3 with 〈N0(p), v〉0 = 0 and ‖v‖0 = x. Then, p + v ∈ B(

√
t2 − x2).

Now, Remark 6, Eqs. (5), (9) and (10), and the above claim guarantee that F2N (z) ∈ B(R), if N was chosen large enough
(see Fig. 2). This proves (c3.3) and finishes the proof of Claim 4. �

Fig. 2. The effect of the deformation.
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From Claim 4 it is straightforward to check that (for N large enough) Y = F2N : Int Q → L
3 satisfies the conclusion of

Lemma 1.
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