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Abstract

We shall present new critical exponents+12m /N with m € [1,2] to the Cauchy
problemu;; — Au +u; = |u|P~1u with the initial data{ug, u1] € (HXRN)n L™ (RN)) x
(LZ(RN) N L™(RN)); that is, the small data global existence property can be derived to
the Cauchy problem above with power12m/N < p < 4+oo (N =1, 2). Furthermore,
the small data global nonexistence of solutions will be discussed in the case when<l
1+2m/N (N >1). 0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper we are concerned with the following Cauchy probleRYin

e (t, %) — Au(t, x) +ug (8, x) = |u(t, )P~ Lu(t, x),
(t,x) € (0,00) x RV, (1.1)
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u(0,x) =uo(x), u;(0,x)=u1(x), xeRV. (1.2)

Inthe sequell - ||, and|| - || ;2 stand for the usudl? (RN)-norm andH 1(RV)-
norm, respectively. For simplicity of notation, in particular, we wijte| instead
of || - ll2.

For the Cauchy problem (1.1)—(1.2)RY (N > 1) with the usual nonlinearity

4 N+2
1+ — < — 1.3
tYSP<y 3 (1.3)
for the small initial data withouL! x L' assumption Nakao and Ono [1] have
already derived the global existence of small weak solutignsc) and the decay
estimates

lu(e, WP <C,  Nuat, Y2+ |Vu@, )2 <Cc@+n"L (1.9)

Their argument is based on the so-called (modified) potential well method com-
bined with the energy method whose idea has originally come from [2] and [3]. In
some sense, in the?-framework we may be able to say that the critical exponent
isequalto 1 4/N.

On the other hand, very recently lkehata et al. [4] have just proved that the
small data global existence property to the problem (1.1)—(1.2) occurs in the case
when 14+ 2/N < p < +o00 (N =1, 2) to the problem (1.1)—(1.2) with the initial
dataluo, u1] € (HYRM)NLYRM)) x (L2RY)NLY(RM)). Inthis case, ¥ 2/N
is the critical exponent and in fact, it is called the Fujita exponentin the semilinear
parabolic equation case.

So, a question naturally rises whether the critical exponent is equakto 1
2m/N or not if we choose the class of the initial data to be(#'(RY) N
L™(RNY)) x (L2RN) n L™(RN)) with m € [1, 2].

Note that in [5] the same critical exponentt12/N for all N > 1 has been
already found to the problem (1.1)—(1.2) with the nonlineajity ~u replaced
by |u|? in the framework of “compactly supported” initial data. However, we
cannot find the question above from the argument in [5].

Before introducing our results we shall present a new extended critical expo-
nent,

2
l+Wm<p<+oo (N=1,2), (1.5)

wherem € [1, 2]. Our first result reads as follows.

Theorem 1.1. Let N = 1, 2. Suppose thafl.5) is satisfied. Then there exists a
real numberg > 0 such that if the initial datauo, u1) € (HX(RY) N L™ (RN)) x
(L2(RY)y n L™(RN)) with m € [1, 2] further satisfy

To.u = lluolim + lluoll g1 + lluallm + lluall < €o,
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the problem(1.1)—(1.2)admits a global solutioru € C([0, o0); HYX(RN)) N
C([0, 00); L%(RN)) satisfying the decay property

lu(t, HI? < CI§, (L4 1) NA/m=1/2),

g (2, )12+ 1 Vu (e, )P < CIG, (L4~ NW/m=12
with some generous constatit> 0.

Remark 1.1. This result implies that the decay condition of the initial data as
|x| — +oo reflects on the critical exponent, and so that on the small data global
existence property. We shall present a conjecture that for higher dimensional case
N >3 (cf. [5]), 1+ 2m/N < p < (N + 2)/[N — 2]* also becomes the region

for which the small data global existence property occurs with the initial data
as in Theorem 1.1. Note that these results are closely related with the diffusion
structure of Eq. (1.1) (see [6] and [7]).

In the case whew > 3 Theorem 1.1 can be read as follows.

Theorem 1.2. Let3 < N < 6 and suppose thain, p) satisfies

VN24+16N — N . N
— <m<miny2, —— ¢,
4 N-2
1+2m < N
— <p<L —.
N “PSN2

Then one has the same conclusion as in Thedrdm

Next let us discuss the counterpart of the condition (1.5); that is, under the
assumption

2
l<p<l+Wm (N>1) (1.6)

we shall derive the blowup property to the Cauchy problem (1.1)—(1.2).

In [8] and [5] the global nonexistence property to the problem (1.1)-(1.2)
with nonlinearity|«|?~1u replaced byju|” have already been discussed in the
casewhenk p<1+2/Norl<p<1+2/N, so thatthe present question
concerning blowup of solutions under (1.6) is quite natural. Our third result reads
as follows.

Theorem 1.3. Let N > 1 and assumél.6) with 1 < m < 2. Then, for any > 0
there existsuo, u1) € (HYRY) N L™(RY)) x (L2(RN) n L™ (RYN)) satisfying
lou = lluoll gt + lluollm + lluall + luslm <€

such that the associated solutioly, x) to the problem(1.1)—(1.2)does not exist
globally in time.
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By the way, in the occasion of the proof of Theorems 1.1 and 1.2, we shall
proceed our argument based on the following well-known result (cf. [9] and [1]):

Proposition 1.1. Supposd. < p < N/[N — 2]™ with N > 1. For each(ug, u1) €
HYRYM) x L2(RY), there exists a maximal existence tiffigax > O such that
the problem(1.1)—(1.2)has a unique solution: € C([0, Tmax; HX(RN)) N
CL([0, Tmax); L2(RM)). If Tmax < 400, then
lim [llue, )+ IVul, )l + llu, )] = +oo.
11 Tmax

2. Proof of Theorems1.1, 1.2 and 1.3

In this section first let us prove Theorems 1.1 and 1.2. For this aim we first
prepare the following lemma, that is the Gagliardo—Nirenberg inequality.
Lemma2.l.Letl<r <q <2N/[N—-2]*,2 < g andN > 1. Thenthe inequality

lvlly < Kol Vol® vl ™, ve HYRY),

holds with some constaikfy > 0 and

g (L)t 1 1 -1
\r ¢J\r 2 N
provided that0 < 6 < 1.

Now we shall consider the linear wave equation

v (,x) — Av(t, x) + v, (1, x) =0, (t,x) € (0,00) x RV, (2.1)
v(0,x) =vo(x), v/(0,x)=v1(x), xeRV. (2.2)

For this linear problem, in [10] and [11] the so-called — L? estimates of solu-
tions have been already derived. Thus by using tligse L? estimates and the
so-called Duhamel principle we shall handle the semilinear problem (1.1)—(1.2).

Proposition 2.1 [10, Proposition 3.2]Let N > 1. Then for each(vo, v1) €
(HYRM)yn L™(RN)) x (L2RN) n L™(RN)) with m € [1, 2], the solutionv of
(2.1)—(2.2)satisfies

2 _ _
lo(t, )12 < C(llvoll + lvollm + llvall + vallm) (L + 1)~ NE/m=1/2,

Proposition 2.2 [11, Lemma 1]Let N > 1. Then for eacKuvo, v1) € CSO(RN) X
CS°(RY), the solutiornv of (2.1)—(2.2)satisfies
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llve (2, )IP + 1V, |12
2 1 _
< C(llvoll ga + llvollm + llvall + lvallm) “ (L + =N Em=1/2),
Of course, in [10] and [11] the more precise estimates have been derived.

Anyway, based on Propositions 2.1 and 2.2 let us derive the following total energy
decay estimates to the weak solution of the linear problem (2.1)—(2.2).

Proposition 2.3. Let N > 1. Then for eachvo, v1) € (HYX(RY) n L™ (RY)) x
(L2(RN) n L™(RN)) with m € [1,2], the weak solutionv € C([0, +00);
HYRM)) N ([0, +00); L3(RM)) to the problem(2.1)—(2.2)has the decay es-
timates
2 _ _
oz, )12 < C(lIvoll + vollm + lvall + llvallm) (@ + 1) =N/ m=1/2]
o (2, )12 + IV o(t, |2
2 _1— _
< C(llvoll g1 + lvollm + llvall + lvallm) (A + 1)~ N/ m=1/2),

Proof. Since vg € HX(RM) N L™(RN) and v € L2(RY) n L™ (RN) can be
approximated by smooth functiorg,} C C§°(RY) and {y,,} C C(R") sat-
isfying

lgn —voll g2 + lign — vollm — 0 (n — +00),

Vn —vall + l1¥n — villm = 0  (n — +00),

the desired statement is rather standam.

Under these preparations we can prove Theorem 1.1. The proof will be done
along the same way as in [12].

Proof of Theorem 1.1. First define a semigroug(r): HX(RY) x L2(RN) —
HYRYM) x L%(RM) by

.| “o U(t, )
S0): H - [w’ _)},
whereuv(t, -) € C([0, +00); HL(RN)) N CL([0, +00); L2(RY)) is a unique solu-
tion to the “linear” problem (2.1)—(2.2).

The following well-known inequalities are useful in order to derive some decay
rate (see [13]).

Lemma2.2.1f 8§ > 1andn < B, then there exists a constafig , > 0 depending
only ong andn such that
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t
/(1+t—S) "(145)Pds < <CppA+0)7"
0

forall r > 0.

In the following paragraph we séj , = I for simplicity. Now we shall derive
the decay property of a nonlinear problem (1.1)—(1.2). By a standard semigroup
theory, the nonlinear problem (1.1)—(1.2) is rewritten as the integral equation

t
U() :S(Z)U0+/S(t —s)F(s)ds, (2.3)
0
where

_ u(t, ) _ | 4o _ 0
U(t)_[u;(t, -)} UO_[MJ’ F(s)_[f(“(s’ '))}

with f () (x) = (o) 1P~ u(x).
We proceed our argument based on the way of [14]. In order to show global
existence, it suffices to obtain the a priori estimateg|fotz, -)|| + || Vu(z, -)|| and
llu(z, -)| in the interval of existenc, Tmax) (see Proposition 1.1). As a result of
Proposition 2.3, first one has
Lemma 2.3. Under the assumptions as in Theorérf, we have
IS Uollp < Clo(L+ 1)~ H2- N2/ m=1/2

N[0, Tmax), Where we set

I,

Furthermore, if

I(s) = | fluts, N + | f@is, ), <—+o0 (2.4)
for eachs € [0, ¢t] with ¢ € [0, Tmax), then from Proposition 2.3 we have

= [lvll + Vull.

ISt —$)F($)|lg < CI(s)(L+1 — )~ Y2 N/2A/m=1/2) (2.5)
Thus from (2.3) one can estimalt&z) as follows:

U@ E < Clo(1+ 1)~ Y2 WN/2A/m=1/2)

+C /(1 +1— ) Y WNDAm=1/2 [ gy 4. (2.6)

TakeK > 0 so large and choose € (0, 7;,,) so small such as
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UM < K Io(1+ 1)~ V2= WN/2A/m=1/2) gn 0, 1), (2.7)
lu@)|| < K Ip(1+ 1)~ N/PA/m=1/2)on(0, T). (2.8)
By Lemma 2.1 and the assumption (1.5) we have
| fuls. N, =l )y < Kolluls, ) PE | Vu(s, ) |7
with 61 = N(mp — 2)/2mp € (0, 1]. Note that (1.5) implies
mp > 2 (2.9

for eachm € [1, 2]. Similarly one has
| fats, 0] < Kolluls, )P 2 | Vu(s, 117
with 6o = N(p — 1)/2p € (0, 1]. Therefore, as long as (2.7) and (2.8) hold one
gets
« {K10(1+s)—l/Z—(N/Z)(l/m—l/Z)}P91
= KoK P ID (14 5) P 1/2+(N/2A/m=1/2),
| £uts. D] < KoK Io(1+5)~N/2A/m=1/21}pd=0)
« {KIO(1+S)fl/Zf(N/Z)(l/mfl/Z)}P92
— KoKpIé)(l—i— s)*P(92/2+(N/2)(1/m*1/2))’
Summarizing these calculations we have the following lemma which shows the
validity of the condition (2.4).
Lemma 2.4. As long ag2.7)and(2.8) hold on[O, T') we have
Hf("‘(t .))H KOKPIP(1+,)fp(N/Z)(l/mfl/Z)fN(mpr)/4m7
Hf(u(l ))H KOKP]P(]__,_[) p(N/2)(1/m=1/2)=N(p=1)/4m

By applying Lemmas 2.3 and 2.4 to (2.3) we see that
IU@lE < C10(1+ nYE WA=

+C /(1 1) YEWRA M2 g g PP

X {(1 +HM+ A4+ s)fyz} ds
< Clo(1+ 1)~ Y2-N/21/m=1/2)
t
+CKoK "1 /(1 1 —5) V2 WN2A/M=1/2) (1 4 5)"rigs,
0
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where
N 1 1 +N(mp—2)
N=5P"2 dm
N (1 1\ N@p-1
_N (L 1 = 2.10
Y2 2p<m 2>+ 1 (2.10)

Note thaty; > 1 because of the assumptions (1.5) gnd< y». Thus from
Lemma 2.2 and again (1.5) it follows that

IU@)|lg < Clo(1+ 1)~ Y2 (N/2A/m=1/2)
+ CKoKP 1§ (14 1)~ Y2 (N/2A/m=1/2)
with some constant > 0. Setting
Qo(lo, K)=C + CKOKPIé’*l,

we get the following lemma.

Lemma 2.5. As long ag2.7)and(2.8) hold on[0, T') we get
IUlE < ToQo(lo, K)(L+ 1) Y2 N/2A/m=1/2)

Next let us derive thé 2-estimates for the local solutiar(z, x) to the problem
(1.1)—(1.2). Indeed, we have from (2.3) and Proposition 2.3 that

lu(t, )| < Clo(L+ 1)~ N/2L/m=1/2)
t
+c/(1+t—s)*(N/2>(1/’"*1/2>1(s)ds.
0

Therefore, it follows from Lemma 2.4 and the similar argument to Lemma 2.5
that

lu(e, )| < Clo(L+ 1y~ M/2Am=1/2

t
+C /(1+ t —5)”WRAmY2 KoK P 1Y
0
X [(1+ S)—N('"P—Z)/4m—p(N/2)(l/m—1/2)

+ (14 5)"N-D/A-pN/DWm=1/2)] 4

< Clp(1+ 1)~ W/2A/m=1/2)
t
+CKoK" 1§ /(1+; — 5~ N/21/m=1/2)
0

x (1+S)—N(mp—2)/4m—p(N/Z)(l/m—l/Z) ds
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with some generous constafit> 0, whereN (mp — 2)/4m + p(N/2)(1/m —
1/2) > 1 because of (1.5). This together with Lemma 2.2 implies

lutt, Y < Clo(L+ 1)~ N/PAm=2) 4 cgok P I] (14 1)~ N/2A/m=1/2),

Thus we have

Lemma 2.6. As long ag2.7)and(2.8) hold onl[O, T) it follows that
lu(z, )1l < ToQo(lo, K)(L4 1)~ N/AE/m=1/2),

TakeK > C so large and také so small such as
CKok"Il™" <K —C. (2.11)
For suchK > 0 and/p we have
Qo(lo, K) <K.
Therefore, by combining this with Lemmas 2.5 and 2.6 we see that
IU@ e < K Io(1+ 1)~ H2-N2Em=172), (2.12)
lu(t, )| < KIo(1+ 1)~ N/2A/m=1/2 (2.13)

on [0, T). Thus (2.7), (2.8) and (2.12), (2.13) show that under the assumption
(2.11), the local solution(z, -) exists globally in time and these estimates hold in
fact for all+ > 0. Taking

K—C 1/(p-1)

€0 = )
<CK0KP>

the proof of Theorem 1.1 is now finished

Proof of Theorem 1.2. Under the assumptions as in Theorem 1.2, we have
mp > 2, N(@mp — 2)/2mp € (0, 1], y1 > 1 andy1 < y2 (see (2.9) and (2.10)). So

the same argument as in Theorem 1.1 can be proceeded and we have the desired
conclusion. O

Finally let us prove Theorem 1.3. For this purpose we set

E@n)=J@+ 3015 J@=3IVul® = 2 lul.

In the occasion of the proof of Theorem 1.3 the following blowup result due to
Levine [15] is crucial in our argument (see also [16]).

Lemma 2.7 ([15]). If (uo, u1) € HL(RN) x L2(RV) satisfiesE (ug, u1) < 0, then
the associated solution to the probléinl)—(1.2)does not exist globally in time.
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Proof of Theorem 1.3. Let ¢ € (HY(RY) n L™ (RV))\{0} and« > O such that
N/m < a < 2/(p — 1) be arbitrarily fixed. This is guaranteed by an assump-
tion (1.6). Fora > 0, set

dr(x) =A% (Ax).
Then one has

E($.,0)=J(¢) <0 (2.14)
for sufficiently smallr > 0. Indeed, first we have
L 20+2—N 2 1 a(p+1)—N p+1
J(n) = 5/\ IVell~ — m/\ 141

Sincea < 2/(p — 1) implies 2+ + 2 — N > a(p + 1) — N, the desired (2.14)
can be derived if we take > 0 small enough. Therefore, the soluti@g(z, x) to
the problem (1.1)—(1.2) witlig, , 0) as the initial data blows up in a finite time
because of Lemma 2.7. On the other hand, we see that

I3 llm + 11l + I Vsl
= 22N By 4+ 22N 2P 4+ 20 TIN2 V).

Sincem <2andN/m <aimplyO<a—-N/m<a—N/2<a—N/2+1,for
eache > 0 if we takex > O further sufficiently small, one has

P2.llm + Il + IVl <,
which implies the desired statement:
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