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Abstract

We shall present new critical exponents 1+ 2m/N with m ∈ [1,2] to the Cauchy
problemutt −∆u+ut = |u|p−1u with the initial data[u0, u1] ∈ (H1(RN)∩Lm(RN))×
(L2(RN) ∩ Lm(RN)); that is, the small data global existence property can be derived to
the Cauchy problem above with power 1+ 2m/N < p < +∞ (N = 1,2). Furthermore,
the small data global nonexistence of solutions will be discussed in the case when 1< p <

1+ 2m/N (N � 1).  2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper we are concerned with the following Cauchy problem inRN :

utt (t, x) − ∆u(t, x) + ut (t, x) = |u(t, x)|p−1u(t, x),

(t, x) ∈ (0,∞) × RN, (1.1)
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u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ RN . (1.2)

In the sequel,‖ ·‖q and‖ ·‖H1 stand for the usualLq(RN)-norm andH 1(RN)-
norm, respectively. For simplicity of notation, in particular, we write‖ · ‖ instead
of ‖ · ‖2.

For the Cauchy problem (1.1)–(1.2) inRN (N � 1) with the usual nonlinearity

1+ 4

N
� p <

N + 2

N − 2
, (1.3)

for the small initial data withoutL1 × L1 assumption Nakao and Ono [1] have
already derived the global existence of small weak solutionsu(t, x) and the decay
estimates

‖u(t, ·)‖2 � C, ‖ut (t, ·)‖2 + ‖∇u(t, ·)‖2 � C(1+ t)−1. (1.4)

Their argument is based on the so-called (modified) potential well method com-
bined with the energy method whose idea has originally come from [2] and [3]. In
some sense, in theL2-framework we may be able to say that the critical exponent
is equal to 1+ 4/N .

On the other hand, very recently Ikehata et al. [4] have just proved that the
small data global existence property to the problem (1.1)–(1.2) occurs in the case
when 1+ 2/N < p < +∞ (N = 1,2) to the problem (1.1)–(1.2) with the initial
data[u0, u1] ∈ (H 1(RN)∩L1(RN))× (L2(RN)∩L1(RN)). In this case, 1+2/N
is the critical exponent and in fact, it is called the Fujita exponent in the semilinear
parabolic equation case.

So, a question naturally rises whether the critical exponent is equal to 1+
2m/N or not if we choose the class of the initial data to be in(H 1(RN) ∩
Lm(RN)) × (L2(RN) ∩ Lm(RN)) with m ∈ [1,2].

Note that in [5] the same critical exponent 1+ 2/N for all N � 1 has been
already found to the problem (1.1)–(1.2) with the nonlinearity|u|p−1u replaced
by |u|p in the framework of “compactly supported” initial data. However, we
cannot find the question above from the argument in [5].

Before introducing our results we shall present a new extended critical expo-
nent,

1+ 2m

N
< p < +∞ (N = 1,2), (1.5)

wherem ∈ [1,2]. Our first result reads as follows.

Theorem 1.1. Let N = 1,2. Suppose that(1.5) is satisfied. Then there exists a
real numberε0 > 0 such that if the initial data(u0, u1) ∈ (H 1(RN)∩Lm(RN))×
(L2(RN) ∩ Lm(RN)) with m ∈ [1,2] further satisfy

I0,u = ‖u0‖m + ‖u0‖H1 + ‖u1‖m + ‖u1‖ � ε0,
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the problem(1.1)–(1.2)admits a global solutionu ∈ C([0,∞);H 1(RN)) ∩
C1([0,∞);L2(RN)) satisfying the decay property

‖u(t, ·)‖2 � CI2
0,u(1+ t)−N(1/m−1/2),

‖ut (t, ·)‖2 + ‖∇u(t, ·)‖2 � CI2
0,u(1+ t)−1−N(1/m−1/2)

with some generous constantC > 0.

Remark 1.1. This result implies that the decay condition of the initial data as
|x| → +∞ reflects on the critical exponent, and so that on the small data global
existence property. We shall present a conjecture that for higher dimensional case
N � 3 (cf. [5]), 1+ 2m/N < p < (N + 2)/[N − 2]+ also becomes the region
for which the small data global existence property occurs with the initial data
as in Theorem 1.1. Note that these results are closely related with the diffusion
structure of Eq. (1.1) (see [6] and [7]).

In the case whenN � 3 Theorem 1.1 can be read as follows.

Theorem 1.2. Let 3 � N � 6 and suppose that(m,p) satisfies
√

N2 + 16N − N

4
� m < min

{
2,

N

N − 2

}
,

1+ 2m

N
< p � N

N − 2
.

Then one has the same conclusion as in Theorem1.1.

Next let us discuss the counterpart of the condition (1.5); that is, under the
assumption

1< p < 1+ 2m

N
(N � 1) (1.6)

we shall derive the blowup property to the Cauchy problem (1.1)–(1.2).
In [8] and [5] the global nonexistence property to the problem (1.1)–(1.2)

with nonlinearity|u|p−1u replaced by|u|p have already been discussed in the
case when 1< p � 1 + 2/N or 1< p < 1 + 2/N , so that the present question
concerning blowup of solutions under (1.6) is quite natural. Our third result reads
as follows.

Theorem 1.3. Let N � 1 and assume(1.6)with 1 � m � 2. Then, for anyε > 0
there exists(u0, u1) ∈ (H 1(RN) ∩ Lm(RN)) × (L2(RN) ∩ Lm(RN)) satisfying

I0,u ≡ ‖u0‖H1 + ‖u0‖m + ‖u1‖ + ‖u1‖m � ε

such that the associated solutionu(t, x) to the problem(1.1)–(1.2)does not exist
globally in time.
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By the way, in the occasion of the proof of Theorems 1.1 and 1.2, we shall
proceed our argument based on the following well-known result (cf. [9] and [1]):

Proposition 1.1. Suppose1< p � N/[N − 2]+ with N � 1. For each(u0, u1) ∈
H 1(RN) × L2(RN), there exists a maximal existence timeTmax > 0 such that
the problem(1.1)–(1.2) has a unique solutionu ∈ C([0, Tmax);H 1(RN)) ∩
C1([0, Tmax);L2(RN)). If Tmax< +∞, then

lim
t↑Tmax

[‖u(t, ·)‖ + ‖∇u(t, ·)‖ + ‖u(t, ·)‖] = +∞.

2. Proof of Theorems 1.1, 1.2 and 1.3

In this section first let us prove Theorems 1.1 and 1.2. For this aim we first
prepare the following lemma, that is the Gagliardo–Nirenberg inequality.

Lemma 2.1. Let1 � r < q � 2N/[N −2]+, 2 � q andN � 1. Then the inequality

‖v‖q � K0‖∇v‖θ‖v‖1−θ
r , v ∈ H 1(RN

)
,

holds with some constantK0 > 0 and

θ =
(

1

r
− 1

q

)(
1

r
− 1

2
+ 1

N

)−1

provided that0< θ � 1.

Now we shall consider the linear wave equation

vtt (t, x) − ∆v(t, x) + vt (t, x) = 0, (t, x) ∈ (0,∞) × RN, (2.1)

v(0, x) = v0(x), vt (0, x) = v1(x), x ∈ RN. (2.2)

For this linear problem, in [10] and [11] the so-calledLp − Lq estimates of solu-
tions have been already derived. Thus by using theseLp − Lq estimates and the
so-called Duhamel principle we shall handle the semilinear problem (1.1)–(1.2).

Proposition 2.1 [10, Proposition 3.2].Let N � 1. Then for each(v0, v1) ∈
(H 1(RN) ∩ Lm(RN)) × (L2(RN) ∩ Lm(RN)) with m ∈ [1,2], the solutionv of
(2.1)–(2.2)satisfies

‖v(t, ·)‖2 � C
(‖v0‖ + ‖v0‖m + ‖v1‖ + ‖v1‖m

)2
(1+ t)−N(1/m−1/2).

Proposition 2.2 [11, Lemma 1].LetN � 1. Then for each(v0, v1) ∈ C∞
0 (RN) ×

C∞
0 (RN), the solutionv of (2.1)–(2.2)satisfies



R. Ikehata, M. Ohta / J. Math. Anal. Appl. 269 (2002) 87–97 91

‖vt (t, ·)‖2 + ‖∇v(t, ·)‖2

� C
(‖v0‖H1 + ‖v0‖m + ‖v1‖ + ‖v1‖m

)2
(1+ t)−1−N(1/m−1/2).

Of course, in [10] and [11] the more precise estimates have been derived.
Anyway, based on Propositions 2.1 and 2.2 let us derive the following total energy
decay estimates to the weak solution of the linear problem (2.1)–(2.2).

Proposition 2.3. Let N � 1. Then for each(v0, v1) ∈ (H 1(RN) ∩ Lm(RN)) ×
(L2(RN) ∩ Lm(RN)) with m ∈ [1,2], the weak solutionv ∈ C([0,+∞);
H 1(RN)) ∩ C1([0,+∞);L2(RN)) to the problem(2.1)–(2.2)has the decay es-
timates

‖v(t, ·)‖2 � C
(‖v0‖ + ‖v0‖m + ‖v1‖ + ‖v1‖m

)2
(1+ t)−N(1/m−1/2),

‖vt (t, ·)‖2 + ‖∇v(t, ·)‖2

� C
(‖v0‖H1 + ‖v0‖m + ‖v1‖ + ‖v1‖m

)2
(1+ t)−1−N(1/m−1/2).

Proof. Since v0 ∈ H 1(RN) ∩ Lm(RN) and v1 ∈ L2(RN) ∩ Lm(RN) can be
approximated by smooth functions{φn} ⊂ C∞

0 (RN) and {ψn} ⊂ C∞
0 (RN) sat-

isfying

‖φn − v0‖H1 + ‖φn − v0‖m → 0 (n → +∞),

‖ψn − v1‖ + ‖ψn − v1‖m → 0 (n → +∞),

the desired statement is rather standard.✷
Under these preparations we can prove Theorem 1.1. The proof will be done

along the same way as in [12].

Proof of Theorem 1.1. First define a semigroupS(t) :H 1(RN) × L2(RN) →
H 1(RN) × L2(RN) by

S(t) :

[
u0
u1

]
�→

[
v(t, ·)
vt (t, ·)

]
,

wherev(t, ·) ∈ C([0,+∞);H 1(RN)) ∩ C1([0,+∞);L2(RN)) is a unique solu-
tion to the “linear” problem (2.1)–(2.2).

The following well-known inequalities are useful in order to derive some decay
rate (see [13]).

Lemma 2.2. If β > 1 andη � β , then there exists a constantCβ,η > 0 depending
only onβ andη such that
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t∫
0

(1+ t − s)−η(1+ s)−β ds � Cβ,η(1+ t)−η

for all t � 0.

In the following paragraph we setI0,u = I0 for simplicity. Now we shall derive
the decay property of a nonlinear problem (1.1)–(1.2). By a standard semigroup
theory, the nonlinear problem (1.1)–(1.2) is rewritten as the integral equation

U(t) = S(t)U0 +
t∫

0

S(t − s)F (s) ds, (2.3)

where

U(t) =
[

u(t, ·)
ut (t, ·)

]
, U0 =

[
u0
u1

]
, F (s) =

[
0

f (u(s, ·))
]

with f (u)(x) = |u(x)|p−1u(x).
We proceed our argument based on the way of [14]. In order to show global

existence, it suffices to obtain the a priori estimates for‖ut (t, ·)‖+‖∇u(t, ·)‖ and
‖u(t, ·)‖ in the interval of existence[0, Tmax) (see Proposition 1.1). As a result of
Proposition 2.3, first one has

Lemma 2.3. Under the assumptions as in Theorem1.1, we have

‖S(t)U0‖E � CI0(1+ t)−1/2−(N/2)(1/m−1/2)

on [0, Tmax), where we set∥∥∥∥
[
u

v

]∥∥∥∥
E

= ‖v‖ + ‖∇u‖.

Furthermore, if

I (s) = ∥∥f (u(s, ·))∥∥ + ∥∥f (u(s, ·))∥∥
m

< +∞ (2.4)

for eachs ∈ [0, t] with t ∈ [0, Tmax), then from Proposition 2.3 we have

‖S(t − s)F (s)‖E � CI (s)(1 + t − s)−1/2−(N/2)(1/m−1/2). (2.5)

Thus from (2.3) one can estimateU(t) as follows:

‖U(t)‖E � CI0(1+ t)−1/2−(N/2)(1/m−1/2)

+ C

t∫
0

(1+ t − s)−1/2−(N/2)(1/m−1/2)I (s) ds. (2.6)

TakeK > 0 so large and chooseT ∈ (0, Tm) so small such as
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‖U(t)‖E � KI0(1+ t)−1/2−(N/2)(1/m−1/2) on [0, T ), (2.7)

‖u(t)‖ � KI0(1+ t)−(N/2)(1/m−1/2) on [0, T ). (2.8)

By Lemma 2.1 and the assumption (1.5) we have∥∥f (u(s, ·))∥∥
m

= ‖u(t, ·)‖p
mp � K0‖u(s, ·)‖p(1−θ1)‖∇u(s, ·)‖pθ1

with θ1 = N(mp − 2)/2mp ∈ (0,1]. Note that (1.5) implies

mp > 2 (2.9)

for eachm ∈ [1,2]. Similarly one has∥∥f (u(s, ·))∥∥ � K0‖u(s, ·)‖p(1−θ2)‖∇u(s, ·)‖pθ2

with θ2 = N(p − 1)/2p ∈ (0,1]. Therefore, as long as (2.7) and (2.8) hold one
gets ∥∥f (u(s, ·))∥∥

m
� K0

{
KI0(1+ s)−(N/2)(1/m−1/2)}p(1−θ1)

× {
KI0(1+ s)−1/2−(N/2)(1/m−1/2)}pθ1

= K0K
pI

p

0 (1+ s)−p(θ1/2+(N/2)(1/m−1/2)),∥∥f (u(s, ·))∥∥ � K0
{
KI0(1+ s)−(N/2)(1/m−1/2)}p(1−θ2)

× {
KI0(1+ s)−1/2−(N/2)(1/m−1/2)}pθ2

= K0K
pI

p
0 (1+ s)−p(θ2/2+(N/2)(1/m−1/2)).

Summarizing these calculations we have the following lemma which shows the
validity of the condition (2.4).

Lemma 2.4. As long as(2.7)and(2.8)hold on[0, T ) we have∥∥f (u(t, ·))∥∥
m

� K0K
pI

p

0 (1+ t)−p(N/2)(1/m−1/2)−N(mp−2)/4m,∥∥f (u(t, ·))∥∥ � K0K
pI

p

0 (1+ t)−p(N/2)(1/m−1/2)−N(p−1)/4m.

By applying Lemmas 2.3 and 2.4 to (2.3) we see that

‖U(t)‖E � CI0(1+ t)−1/2−(N/2)(1/m−1/2)

+ C

t∫
0

(1+ t − s)−1/2−(N/2)(1/m−1/2)K0K
pI

p

0

× {
(1+ s)−γ1 + (1+ s)−γ2

}
ds

� CI0(1+ t)−1/2−(N/2)(1/m−1/2)

+ CK0K
pI

p

0

t∫
0

(1+ t − s)−1/2−(N/2)(1/m−1/2)(1+ s)−γ1 ds,
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where

γ1 = N

2
p

(
1

m
− 1

2

)
+ N(mp − 2)

4m
,

γ2 = N

2
p

(
1

m
− 1

2

)
+ N(p − 1)

4
. (2.10)

Note thatγ1 > 1 because of the assumptions (1.5) andγ1 � γ2. Thus from
Lemma 2.2 and again (1.5) it follows that

‖U(t)‖E � CI0(1+ t)−1/2−(N/2)(1/m−1/2)

+ CK0K
pI

p
0 (1+ t)−1/2−(N/2)(1/m−1/2)

with some constantC > 0. Setting

Q0(I0,K) = C + CK0K
pI

p−1
0 ,

we get the following lemma.

Lemma 2.5. As long as(2.7)and (2.8)hold on[0, T ) we get

‖U(t)‖E � I0Q0(I0,K)(1+ t)−1/2−(N/2)(1/m−1/2).

Next let us derive theL2-estimates for the local solutionu(t, x) to the problem
(1.1)–(1.2). Indeed, we have from (2.3) and Proposition 2.3 that

‖u(t, ·)‖ � CI0(1+ t)−(N/2)(1/m−1/2)

+ C

t∫
0

(1+ t − s)−(N/2)(1/m−1/2)I (s) ds.

Therefore, it follows from Lemma 2.4 and the similar argument to Lemma 2.5
that

‖u(t, ·)‖ � CI0(1+ t)−(N/2)(1/m−1/2)

+ C

t∫
0

(1+ t − s)−(N/2)(1/m−1/2)K0K
pI

p

0

× [
(1+ s)−N(mp−2)/4m−p(N/2)(1/m−1/2)

+ (1+ s)−N(p−1)/4−p(N/2)(1/m−1/2)]ds
� CI0(1+ t)−(N/2)(1/m−1/2)

+ CK0K
pI

p

0

t∫
0

(1+ t − s)−(N/2)(1/m−1/2)

× (1+ s)−N(mp−2)/4m−p(N/2)(1/m−1/2) ds
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with some generous constantC > 0, whereN(mp − 2)/4m + p(N/2)(1/m −
1/2) > 1 because of (1.5). This together with Lemma 2.2 implies

‖u(t, ·)‖ � CI0(1+ t)−(N/2)(1/m−1/2) + CK0K
pI

p

0 (1+ t)−(N/2)(1/m−1/2).

Thus we have

Lemma 2.6. As long as(2.7)and(2.8)hold on[0, T ) it follows that

‖u(t, ·)‖ � I0Q0(I0,K)(1+ t)−(N/2)(1/m−1/2).

TakeK > C so large and takeI0 so small such as

CK0K
pI

p−1
0 < K − C. (2.11)

For suchK > 0 andI0 we have

Q0(I0,K) < K.

Therefore, by combining this with Lemmas 2.5 and 2.6 we see that

‖U(t)‖E < KI0(1+ t)−1/2−(N/2)(1/m−1/2), (2.12)

‖u(t, ·)‖ < KI0(1+ t)−(N/2)(1/m−1/2) (2.13)

on [0, T ). Thus (2.7), (2.8) and (2.12), (2.13) show that under the assumption
(2.11), the local solutionu(t, ·) exists globally in time and these estimates hold in
fact for all t � 0. Taking

ε0 =
(

K − C

CK0Kp

)1/(p−1)

,

the proof of Theorem 1.1 is now finished.✷
Proof of Theorem 1.2. Under the assumptions as in Theorem 1.2, we have
mp > 2, N(mp − 2)/2mp ∈ (0,1], γ1 > 1 andγ1 � γ2 (see (2.9) and (2.10)). So
the same argument as in Theorem 1.1 can be proceeded and we have the desired
conclusion. ✷

Finally let us prove Theorem 1.3. For this purpose we set

E(u,v) = J (u) + 1

2
‖v‖2, J (u) = 1

2
‖∇u‖2 − 1

p + 1
‖u‖p+1

p+1.

In the occasion of the proof of Theorem 1.3 the following blowup result due to
Levine [15] is crucial in our argument (see also [16]).

Lemma 2.7 ([15]). If (u0, u1) ∈ H 1(RN) ×L2(RN) satisfiesE(u0, u1) < 0, then
the associated solution to the problem(1.1)–(1.2)does not exist globally in time.
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Proof of Theorem 1.3. Let φ ∈ (H 1(RN) ∩ Lm(RN))\{0} andα > 0 such that
N/m < α < 2/(p − 1) be arbitrarily fixed. This is guaranteed by an assump-
tion (1.6). Forλ > 0, set

φλ(x) = λαφ(λx).

Then one has

E(φλ,0) = J (φλ) < 0 (2.14)

for sufficiently smallλ > 0. Indeed, first we have

J (φλ) = 1

2
λ2α+2−N‖∇φ‖2 − 1

p + 1
λα(p+1)−N‖φ‖p+1

p+1.

Sinceα < 2/(p − 1) implies 2α + 2 − N > α(p + 1) − N , the desired (2.14)
can be derived if we takeλ > 0 small enough. Therefore, the solutionuλ(t, x) to
the problem (1.1)–(1.2) with(φλ,0) as the initial data blows up in a finite time
because of Lemma 2.7. On the other hand, we see that

‖φλ‖m + ‖φλ‖ + ‖∇φλ‖
= λα−N/m‖φ‖m + λα−N/2‖φ‖ + λα+1−N/2‖∇φ‖.

Sincem � 2 andN/m < α imply 0< α − N/m � α − N/2< α − N/2 + 1, for
eachε > 0 if we takeλ > 0 further sufficiently small, one has

‖φλ‖m + ‖φλ‖ + ‖∇φλ‖ � ε,

which implies the desired statement.✷
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