
Journal of Computer and System Sciences 64, 153�159 (2002)

Inductive Inference with Additional Information1

Mark Fulk

Received November 28, 1988; revised July 13, 1998

We consider the problem of inductively inferring a grammar for a language,
given (positive) examples of the language and putative (possibly faulty)
grammars for the complement of the language. The criterion of success is
identification in the limit, defined by E. M. Gold (1967, Inform. and Control
10, 447�474). Additional information is useful insofar as it allows the identifi-
cation of language classes that would not be identified with positive examples
alone. An infinite sequence of grammars past some finite position are correct
for the complement of the input language, is not as useful a form of additional
information as a single correct grammar for the complement. Grammars that
are almost correct for the complement (that is, that make finitely many
errors) are not as useful as correct grammars, and the usefulness of a grammar
decreases with increasing numbers of errors. � 2002 Elsevier Science (USA)

1. INTRODUCTION

Consider the communications of a programmer and his or her employer. If the
employer can only give examples of the behavior of a desired program, the programmer
is in a situation very much like that of the inductive inference machines of Gold
[Gol67]. However, this is not normally the case. Any employer is likely to provide
further information about the problem, information which extends the provision of
examples. We will consider situations in which the programmer is to produce a
grammar for some language and the employer supplies examples of the language
and information (perhaps a grammar) about the complement of the language.

Freivalds and Wiehagen [FW79] first considered this problem. Some of our
definitions are variants of theirs; the motivation from the interaction of a programmer
and his or her employer is also theirs. More recently, Jain and Sharma [JS91] have
considered the case when the learning machine is given a grammar enumerating a large

doi:10.1006�jcss.2000.1702, available online at http:��www.idealibrary.com on

153 0022-0000�02 �35.00
� 2002 Elsevier Science (USA)

All rights reserved.

1 Mark Fulk unexpectedly passed away at the age of 45 in May 1997. Revisions to the original manuscript
were carried out by Sanjay Jain and Arun Sharma. Correspondence should be addressed to Professor Arun
Sharma, School of Computer Science and Engineering, The University of New South Wales, Sydney,
Australia.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82506114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

enough subset of the language and�or its complement. Jain and Sharma [JS93] have
also considered the case when the learner is given a bound on the minimal size
grammar of the language.

2. MATHEMATICAL PRELIMINARIES

The recursion theoretic notions are from the books of Odifreddi [Odi89] and
Soare [Soa87]. N=[0, 1, 2, ...] is the set of all natural numbers, and this paper
considers r.e. subsets L of N. N +=[1, 2, 3, ...], the set of all positive integers. Nl

denotes the set [x | x<l]. All conventions regarding range of variables apply, with
or without decorations2, unless otherwise specified. We let g, i, j, k, l, m, n, s, t, x,
y, and z, range over N. <, # , �, $, /, and # denote empty set, member of,
subset, superset, proper subset, and proper superset, respectively. max(), min(),
and card() denote the maximum, minimum, and cardinality of a set, respectively,
where by convention max(<)=0 and min(<)=�. card(S)�V means cardinality
of set S is finite. a, b range over N _ [V]. (} , }) stands for an arbitrary but fixed,
one-to-one computable encoding of all pairs of natural numbers onto N. (} , } , })
and similarly denotes a computable, 1�1 encoding of all triples of natural numbers
onto N. L� denotes the complement of set L. /L denotes the characteristic function
of set L. L1 2L2 denotes the symmetric difference of L1 and L2 , i.e., L12L2=
(L1&L2) _ (L2&L1). L1= a L2 means that card(L12L2)�a. If L1=a L2 , then we
refer to L1 as a-variant of L2 and a grammar for L1 as a grammar for a-variant of
L2 . Quantifiers \�, _�, and _! denote for all but finitely many, there exist infinitely
many, and there exists a unique, respectively.

R denotes the set of total recursive functions from N to N. R0, 1 denotes the set
of 0�1 valued recursive functions. f, h range over total recursive functions. C ranges
over subsets of R. E denotes the set of all recursively enumerable sets. REC denotes
the set of all recursive sets. L ranges over E. L, S range over subsets of E.
. denotes a standard acceptable programming system (acceptable numbering).
.i denotes the function computed by the i th program in the programming system ..
We also call i a program or index for .i . For a (partial) function ', domain(') and
range(') respectively denote its domain and range. We often write '(x) a ('(x) A)
to denote that '(x) is defined (undefined). Wi denotes the domain of .i . Wi is
considered as the language enumerated by the i th program in . system, and we say
that i is a grammar or index for Wi . 8 denotes a standard Blum complexity
measure [Blu67] for the programming system .. Wi, s=[x<s | 8i (x)<s].

A text is a mapping from N to N _ [*]. Intuitively, *'s denote the pauses in
the presentation of data. We let T range over texts. content(T) is defined to be set
of natural numbers in the range of T (i.e., content(T)=range(T)&[*]). T is a
text for L iff content(T)=L. That means a text for L is an infinite sequence whose
range, except for a possible *, is just L. Note that the only text for < is an infinite
sequence of *'s.

An information sequence or informant is a mapping from N to (N_N) _ [*].
We let I range over informants. content(I) is defined to be the set of pairs in the

154 MARK FULK

2 Decorations are subscripts, superscripts, primes, etc.

range of I (i.e., content(I)=range(I)&[*]). An informant for L is an infinite
sequence I such that content(I)=[(x, b) | /L(x)=b]. It is useful to consider a
canonical information sequence for L. I is a canonical information sequence for L
iff I(x)=(x, /L(x)).

_ and { range over finite initial segments of texts or information sequences, where
the context determines which is meant. We denote the set of finite initial segments
of texts by SEG and the set of finite initial segments of information sequences by
SEQ. We use _PT (respectively, _PI, _P{) to denote that _ is an initial segment
of T (respectively, I, {). If _ # SEQ is an initial segment of some canonical infor-
mation sequence, then we refer to _ as canonical. |_| denotes the length of _.
T[n] denotes the initial segment of T of length n. Similarly, I[n] denotes the initial
segment of I of length n.

A learning machine M is a mapping from initial segments of texts (information
sequences) to N. We say that M converges on T to i (written: M(T) a =i) iff, for
all but finitely many n, M(T[n])=i. Convergence on information sequences is
defined similarly.

Definition 1 [Gol67]. M TxtEx-identifies L (written L # TxtEx(M)), iff for all
texts T for L, M(T) a and WM(T)=L.

M TxtEx-identifies L iff M TxtEx-identifies each L # L.
TxtEx=[L | (_M)[M TxtEx-identifies L]].

Definition 2 [CL82]. M TxtBc-identifies L (written L # TxtBc(M)), iff for all
texts T for L, (\�n)[WM(T[n])]=L

M TxtBc-identifies L iff M TxtBc-identifies each L # L.
TxtBc[L | (_M)[M TxtBc-identities L]].

Definition 3 [Gol67]. M InfEx-identifies L (written L # TxtEx(M)), iff for all
information sequences I for L, M(I) a and WM(I)=L.

M InfEx-identifies L iff M InfEx-identifies each L # L.
InfEx=[L | (_M)[M InfEx-identifies L]].

Definition 4 [CL82]. M InfBc-identifies L (written: L # InfBc(M)), iff for all
information sequences I for L, (\�n)[WM(I[n])=L].

M InfBc-identifies L iff M InfBc-identifies each L # L.
InfBc=[L | (_M)[M InfBc-identifies L]].

The restriction of InfEx to recursive languages is denoted ExGen0, 1 in the
literature. That is, ExGen0, 1=InfEx & [L | L�REC].

2.1. Learning with Additional Information

In the previous section, in learning from informants, we have already considered
a situation in which negative information is available to the learner. In this section
we consider the situation when the learner is given a sequence of grammars, all or
all but finitely many of which approximately or perfectly generate the complement
of the language.

155INDUCTIVE INFERENCE

For this, let G denote a mapping from N to N. Then we can consider G as a
sequence of grammars and carry over the notation for texts to sequences of grammars
(except that the grammar sequences do not contain *'s).

For learning with additional information, we consider a machine as a function
from SEG_SEG to N. Intuitively, M gets both a text and a sequence of grammars.

We say that M(T, G) a =i, iff for all but finitely many m, for all but finitely many
n, M(T[m], G[n])=i. Otherwise, we say that M(T, G) diverges.

The following definition formalizes the situation in which an employer provides
the machine, in addition to a text of the language L being learned, with a sequence
of grammars that converges to a grammar for the complement of L.

Definition 5. M CTxtEx-identifies L, iff for all texts T for L, for all grammar
sequences G such that limi � � G(i) a to a grammar for L� , M(T, G) a , and WM(T, G)=L.

Freivalds and Wiehagen [FW79] considered a variant of the above criterion in
which the learning machine initially gets a grammar for the complement of L and
then a text for L. It is easy to show that Freivalds and Wiehagen's variation is
equivalent to the above. We used the above version in order to contrast it with
Definition 7 below.

Definition 6. M CnTxtEx-identifies L iff for all texts T for L, for all grammar
sequences G such that limi � � G(i) a to a grammar for n variant of L� , M(T, G) a , and
WM(T, G)=L.

One might work for an employer who frequently provides a new grammar, osten-
sibly for L� . For some time, the employer might provide incorrect grammars; after
a while, however, he or she would start providing only correct grammars. Nonethe-
less, the employer would keep providing new grammars. Unfortunately, one has no
way of knowing which grammars are correct for L� and no way of knowing when
two grammars are for the same set. The following definition models such a situation.

Definition 7. M CSTxtEx-identifies L iff for all texts T for L, for all grammar
sequences G such that (\�i)[WG(i)=L�], M(T, G) a , and WM(T, G)=L.

One might want to consider another variant in which the employer, instead of
providing a sequence of grammars, gives an algorithm to generate a sequence of
grammars, all but finitely many of which are grammars for the complement. Using
a trick similar to the one used in Theorem 2 below, it is easy to cancel out all
grammars, in the sequence generated by the algorithm, which output an element
of L. Thus, one can easily show that this variation leads to a class equivalent
to CtxtEx.

3. RESULTS

Theorem 1. CSTxtEx/CTxtEx.

Proof. Suppose G is a sequence of grammars which converges to a grammar for
L� . Then clearly, (\�n)[G(n) is a grammar for L�]. Thus CSTxtEx�CTxtEx. We
will now exhibit L # CTxtEx&CSTxtEx.

156 MARK FULK

Let partner be a recursive function such that, for all x, partner(2x)=2x+1 and
partner(2x+1)=2x. Let L=[L | (\x)[x # L � partner(x) � L]]. That is to say
L # L iff for every x, exactly one of x and partner(x) is in L.

Let h be a recursive function such that, for all i, Wh(i)=[x | partner(x) # Wi].
Note that if Wi # L then Wh(i)=L� .

Claim 1. L # CTxtEx.

Proof. Define M as follows: for m, n>0, M(T[m], G[n])=h(G(n&1)). Suppose
L # L, T is a text for L, G is a sequence of grammars such that limn � � G(n) a =i, and
Wi=L� . It is then easy to verify that M CTxtEx-identifies L. K

Claim 2. (_L$�L)[L$ # TxtBc&TxtEx].

Proof. For any f # R, let L1
f denote the language [(x, y) | f (x)= y] and L2

f

denote the language [2(x, y) | f (x)= y] _ [2(x, y)+1 | f (x){ y].
For any C�R0, 1 , let S1

C =[L1
f | f # C] and S2

C =[L2
f | f # C].

One can easily verify that a grammar for L1
f (L

2
f) can be effectively converted into

a grammar for L2
f (L1

f). Moreover, a text for L1
f (L2

f) can be effectively converted
into a text for L2

f (L1
f). Thus S1

C # TxtEx � S2
C # TxtEx and S1

C # TxtBc �
S2

C # TxtBc.
Essentially based on the techniques of [CS83] one can construct a class of functions

C such that S1
C # TxtBc&TxtEx. It follows that S2

C # TxtBc&TxtEx. Taking
L$=S2

C proves the claim. K

Claim 3. Let L$ be as in Claim 2. Then L$ � CSTxtEx. Thus L � CSTxtEx.

Proof. Suppose by way of contradiction that L$ # CSTxtEx. We will then show
that L$ # TxtEx, contradicting Claim 2. Let M$ be a machine which CSTxtEx-iden-
tifies L$. Let M" be a machine which TxtBc-identifies L$. We define a machine
M as follows. Suppose T is a text. Define G(i)=h(M"(T[i])). Define M(T[i])=
M$(T[i], G[i]).

Now suppose L # L, and T is a text for L. Now, since M" TxtBc-identifies L, for
all but finitely many i, M"(T[i]) is a grammar for L. Thus, for all but finitely many
i, G(i) is a grammar for L� . Thus, since M$ CSTxtEx-identifies L, limi � � M(T[i])
=limi � � M$(T[i], G[i]) converges to a grammar for L. Thus, M TxtEx-identifies
L. Since L was an arbitrary member of L$ it follows that L$ # TxtEx. A contradic-
tion to Claim 2. Thus, L$ � CSTxtEx.

The theorem follows from the above claims. K

The proof of the above theorem is modeled after a simplification of the proof of
Theorem 5 in [FW79] (Corollary 1 below). However, the construction in that
paper would not have sufficed for the above theorem.

Corollary 1 [FW79]. ExGen0, 1 /CTxtEx.

The above corollary follows from Theorems 1 and 2.

Theorem 2. ExGen0, 1 �CSTxtEx.

157INDUCTIVE INFERENCE

Proof. Suppose M ExGen0, 1 -identifies L. Suppose T is a text for L and G is
grammar sequence such that (\�i)[WG(i)=L�]. Using such a T and G we first show
how to construct an information sequence for L. This will then allow us to show
that L # CSTxtEx.

Fix a text T and a grammar sequence G. For any n we define Sqn as follows (Sqn

depends on T[n] and G[n]; we have omitted parameters T and G for ease of notation).
Let Xn=[G(i) | i<n 7 WG(i), n & content(T[n])=<].
Intuitively, Xn is obtained by removing the ``bad'' grammars for G[n].
Let Compn=�j # Xn Wj, n .
Let ln be the largest integer such that N ln �content(T[n]) _ Compn .
Let Sqn be a canonical information segment such that Pos(Sqn)=content(T[n])

& Nln and Neg(Sqn)=Compn & Nln .
Suppose L is any recursive language. Suppose I is the canonical information

sequence for L. Suppose T is a text for L and G is a sequence of grammars such
that (\�i)[WG(i)=L�]. Then, for all but finitely many n, Compn �content(T).
Moreover, for each x # content(T), for all but finitely many n, x # Compn . Thus,
(\�n)[Sqn PI] and limn � � |Sqn |=�.

Now define M$(T[n], G[m])=M(Sqmin([m, n])).
It is easy to verify that if M ExGen0, 1 -identifies L, then M$ CSTxtEX-identifies L.

K

It is open at present whether ExGen0, 1 is a proper subset of CSTxtEX.
We now examine the effects of slightly erroneous grammar as additional information.

Theorem 3. (\n)[CnTxtEx&Cn+1 TxtEx{<].

Proof. Fix n. Let L i
n=N&[x | (n+1) } i�x<(n+1) } (i+1)]. Note that L i

n

leaves out exactly n+1 elements of N.
Let Ln=[N] _ [L i

n | i # N].

Claim 4. Ln � Cn+1 TxtEx.

Proof. Let g< be a grammar for <. Let G(i)= g< . It is easy to verify that, for
all L # Ln , g< is a grammar for n+1 variant of L� . Thus, Ln # Cn+1TxtEx iff Ln #
TxtEx. Also, note that one can effectively convert a grammar for L i

n to a grammar
for L i

0 (and vice versa). Furthermore one can effectively convert a text for L i
0 to a

text for L i
n (and vice versa). Thus, Ln # TxtEx iff L0 # TxtEx. It was shown in

[CL82] that L0 � TxtEx. Thus, Ln � TxtEx and Ln � Cn+1 TxtEx. K

Claim 5. Ln # CnTxtEx.

Proof. Let gN denote a grammar for N. Let g i denote a grammar for L i
n . We

define M as follows:

M(T[m], G[j])={
gN ,

g i

,
if WG(j), j �content(T[m]);

otherwise, where i=\min(content(T[M]))
n+1 �

.

It is easy to verify that M CnTxtEx-identifies L. K

Theorem follows from the above claims.

158 MARK FULK

4. CONCLUSIONS

In this paper we considered the case when the learning machine is given addi-
tional information about the language L being learned in the form of sequence of
grammars converging to a grammar for the complement of L. We extended this
criteria allowing (a) the converged to grammar being for a variant of the comple-
ment of L, and (b) the sequence of grammars converging semantically rather than
syntactically to grammar for the complement of L. We compared the above criteria
with each other showing (a) a hierarchy based on the quality of grammar converged
to (Theorem 3), and (b) semantic convergence (in additional information) is more
restrictive than syntactic convergence (Theorem 1).

ACKNOWLEDGMENT

We thank John Case for suggesting the topic of this paper.

REFERENCES

[Blu67] M. Blum, A machine-independent theory of the complexity of recursive functions, J. Assoc.
Comput. Mach. 14 (1967), 322�336.

[CL82] J. Case and C. Lynes, Machine inductive inference and language identification, in ``Proceedings
of the 9th International Colloquium on Automata, Languages and Programming'' (M. Nielsen
and E. M. Schmidt, Eds.), Lecture Notes in Computer Science, Vol. 140, pp. 107�115,
Springer-Verlag, Berlin�New York, 1982.

[CS83] J. Case and C. Smith, Comparison of identification criteria for machine inductive inference,
Theoret. Comput. Sci. 25 (1983), 193�220.

[FW79] R. Freivalds and R. Wiehagen, Inductive inference with additional information, Electron.
Inform. Kybernetik 15 (1979), 179�195.

[Gol67] E. M. Gold, Language identification in the limit, Inform. and Control. 10 (1967), 447�474.

[JS91] S. Jain and A. Sharma, Learning in the presence of partial explanations, Inform. and Comput.
95 (1991), 162�191.

[JS93] S. Jain and A. Sharma, Learning with the knowledge of an upper bound on program size,
Inform. and Comput. 102 (1993), 118�166.

[Odi89] P. Odifreddi, ``Classical Recursion Theory,'' North-Holland, Amsterdam, 189.

[Soa87] R. Soare, ``Recursively Enumerable Sets and Degrees,'' Springer-Verlag, Berlin�New York,
1987.

159INDUCTIVE INFERENCE

	1. INTRODUCTION
	2. MATHEMATICAL PRELIMINARIES
	3. RESULTS
	4. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

