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Abstract 

In this study, a compact approximate method in limiting form for calculating the solution of Burgers' equation with 
appropriate boundary conditions is presented. The results obtained by present method are found to be in good 
agreement with those due to earlier authors and offers appreciable advantages for Burgers' like nonlinear problems. 
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I. Introduction 

The study of the properties of the Burgers' equation has attracted considerable attention due to 
its application in the approximate theory of flow through shock wave propagating in a viscous 
fluid [-5] and in the modelling of turbulence. 

Burgers' equation 

~u cgu ~2u 

a t  + u 7x = v Ox 2 (1) 

is a quasilinear parabolic partial differential equation and for most of the fluid mechanics 
applications v is a small parameter. Burgers' equation and Navier-Stokes equation are similar due 
to the form of their nonlinear terms and the occurrence of higher order derivatives with small 
coefficients in both. Fortunately, Burgers' equation is one of the very few nonlinear partial 
differential equations which can be solved exactly for an arbitrary initial and boundary conditions 
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[-3, 5, 7]. Also, for v = 0, Burgers' equation reduces to the momentum equation from gas dynamics 
which is used as a test problem for several numerical schemes (see, for example, [2]). 

But, the main difficulty arises in the numerical solution of Burgers' equation for small values of 
viscosity, i.e., for large Reynolds numbers. Miller [8] obtained some results by using a pre- 
dictor-corrector method with those by an explicit method and the exact solution of Eq. (1) subject 
to boundary conditions u(x,O) = sin x, u(0, t) = u(1, t) = 0. This study showed that for 0.01 ~< v ~< 1 
the explicit method, the predictor-corrector method and the exact solution are in good agreement. 
As v decreases from 10 -2 and 10 -4 to evaluate the exact solution is not practical because of the 
slow convergence of the Fourier series. Also, the explicit method produces unacceptable kinks and 
to overcome these very small space and time increments are required [2]. 

Recently, a new finite-element method which employs space-time elements and incorporates 
characteristics has been developed for the solution of Burgers' equation [11]. Again, Galerkin and 
Petrov-Galerkin finite-element methods involving a time dependent grid have been successfully 
used to obtain accurate numerical solutions [4]. Ali et al. [1] applied the finite-element approach 
using Galerkin method with quadratic spline interpolation functions and a constant grid of 
elements. On the other hand, [6, 10] revealed how complementary variational principles can be 
applied to nonlinear equations: the example chosen was Burgers' equation and a special test, the 
steady-state form of Burgers' equation, was solved numerically. 

In this paper, direct variational method is used to solve Burgers' equation with the aim of 
generating an approximate solution with general boundary conditions in the form of the sequence 
U,(x, t) where lim,-~o~ U, = U which is the exact solution. 

2. Direct variational methods 

There is an extensive literature on direct variational methods. The comprehensive book is that of 
Rectorys [9] which contains numerous examples and references. 

To make clear the idea of the method and refresh the minds, let us consider a simple example of 
an equation of the second order. Let (2 be a bounded region in the N-dimensional Euclidean space 
EN with boundary O, let xl , . . .  ,xN be cartesian coordinates of the point x tEN. Denote 
Q = ~2 x (0, T). Let the Dirichlet problem for a parabolic equation be given 

~U 
A u + - ~ = f ( x )  inQ,  (2) 

u(x,O)=uo(x), (3) 

u = 0  onf2x(0 ,  T). (4) 

Denote 

i , j=l  

t~u Ou 
aij ~xi Oxj m m  d x  
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and (V, u) the usual scalar product of real functions V and u in region ~2. Let us divide the interval 
[0, T ]  into p subintervals of the same length h, and let us define the following functionals: 

1 2 
GI(u) = a(u,u) + -~ (u,u) - 2(f, u) - ~ (Uo,U), 

2 
G2(u) = a(u,u) + ( u , u ) - 2 ( f u ) - ~ ( U l , U ) ,  (5) 

1 2 
Gv(u ) = a(u, u) + -~ (u, u) - 2(f, u) - ~ (up_ 1, u). 

Under  well-known assumptions on a a(u, u) the functional Gl(U) attains its minimum in a certain 
class of functions satisfying condition (4) and the minimizing function Ul is the solution of elliptic 
problem 

1 
A u + - ~ ( u l - u o ) = f  in~2, u = 0 o n f 2 .  (6) 

For  every ti = i" h (i = 1, ... ,p) being 

1 ~3u 
-~ [u , ( x )  - u ,_  dx)]  ~ -b7 (x, t , )  

each of the functions u~(x) can be taken as an approximation, in the hyperplane t = t~ (x e O), of the 
solution u (x, t) of the problem (2)-(4). The approximation u l(x, t) can be defined in the whole Q, for 
example as a function continuous and piecewise linear in t for every fixed x e Q, assuming the 
values u~(x) at the points t = t~. 

Thus, 

ui(x, t )  = u j ( x )  t - tj [u j+x (x ) -u j (x ) ]  tj <~ t <. tj+ l. (7) 

Let us, in a similar way, construct uz(x, t) with the only difference that instead of dividing the 
interval [-0, T ] into p subintervals of the length h as before, we divide it into 2p subintervals of the 
length h2 = h/2. Going on in this way and dividing subsequently the interval [0, T ]  into 
4p, 8p, . . . ,  2"- 1 p, ... subintervals, we construct a sequence of functions u,(x, t), defined in Q by the 
relations 

. . ( x .  t) = u3(x )  t - t3 h. [u~+l(x) - u~(x)] for t~ ~< t ~< t~+ 1 (8) 

where h, = h/2"- 1, t~ = j" h, (j = 0, 1, . . . ,  p- 2"- 1 _ 1). 
In this way we get the sequence {u,(x, t)} of approximate solutions of the problem (2)-(4). 
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3. Application to Burgers' equation 

We are concerned with Burgers' equation 

u~ + UUx = VU~x (9) 

for a real field, u -- u(x,  t), and specially consider the initial value problem 

u(x, O) = Uo(X) = sin rex (10a) 

for periodic boundary conditions, on an interval of length L: 

u(x  + L,  t) = u(x,  t) = 0. (10b) 

Therefore, the problem involves the decay of a sinusoidal disturbance with time. Analytical 
solutions of these problems are often available through use of the Hoft-Cole [5, 7] transforma- 
tions. For the current problem, the Hoft-Cole transformation takes the form 

u(x, t) = - 2v(O~/O). (11) 

Substitution of (11) into (9) results in the following linear equation for the function O(x, t) in (11): 

vOxx = Or. (12) 

Eq. (12) is recognised as the diffusion equation with v serving as viscosity of fluid, causes diffusion of 
any differences in velocity. The transformation to the linear diffusion equation of course renders the 
nonlinear Burgers' equation analytically solvable, and great variety of solutions have been developed 
following this technique. However, the boundary and initial conditions must be similarly transformed 
into the space O(x, t) and this is where the limitations of the technique expose themselves. 

Much of Burgers' work on the equation prior to the introduction of the Holt-Cole transforma- 
tion involved simple boundary conditions, typically homogeneous initial condition exhibiting 
spatial character in x. Later, using same transformation, the approach often followed in studying 
Burgers' equation has been to transform known heat conduction solutions, representing boundary 
and initial conditions of physical relevance to those problems, into solutions of boundary-value 
problems governed by Burgers' equation. In some cases these transformed solutions have obvious 
relevance to nonlinear physics governed by Burgers' equation and in others not [12]. 

But the above mentioned limitations may be overcome by the application of direct variational 
methods to these problems after the Holt-Cole transformation. For the current problem, in this 
sense, we applied the direct variational method to generate limiting solution which can be 
generalised to any boundary-value problems governed by Burgers' equation. 

4. Solution of equivalent diffusion problem by direct variational method 

With suitable changes of nomenclature the Hoft-Cole transformations of (9), (10a) and (10b) are 

vO~x = 0~, 

0x(0,  t) = 0 (1, t) = 0, 

O(x,O) = e x p { -  (2nv)-111 - cos(rex)]} 

which is a parabolic initial-value problem. 

(13) 

(14a) 

(14b) 
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In practice, the min ima of functionals (5) are determined approximately,  using some of the 
well-known direct methods,  for example, the Ritz method.  In order to simplify matter,  we show 
how the direct variational methods  already ment ioned  in Section 2 can be applied to the reduced 
version of Burgers'  equation.  

Now, there are many  ways to choose base functions in variational calculation. A s tandard 
procedure is to choose suitable base functions containing r unknown  parameters from the finite 
dimensional  subspace, V say, of H. If we consider the problem defined by (13), (14a) and (14b), the 
suitable base functions can be chosen as 

Vl(X ) = COS(7~X), V2(X ) = COS(2~X), . . . ,  V~(x) = cos(rrcx). (15) 

Let us construct  a function 

Url (X ) = C l l VI  (X ) -~ . . .  -of- C lr Vr(x)  (16) 

determining the unknown  coefficients cli in a well-known way from the condi t ion that  GI(Url) be 
minimal.  Since cos(rex) and sin(fix) are or thogonal ,  

(((V,., Vk)))= v f ]  ircsin(i~x)'krcsin(kr~x)dx + h - '  f j  cos(inxl.cos(krcx)dx 

where h = T/p and [0, T ]. Then, 

vi2rc 2 1 
(((Vi, Vk))) = ~ - -  -1- ~ ' i = k, 

O, i ¢ k .  

The right hand  side of the system would be 

(Vb 0o) -- f ]  [1 - (2rw)- 1(1  - -  COS gX)]COS rex dx 

= f2 cosrcxdx - (2rcv)- l f2  (cosr~x - cos2rcx)dx 

1 
-- 4 ~17. 

Consequently,  Ritz system: 

2 -  l(vrc2 + h-  1)Cl i = ¼ hrcv 

and 

Cl1 = (4hv)- a/[l(vrd + h-  1)2. 

Substi tuting (17) in (16) 

Url = ½(4hzrv)- l(vrc2 + h -  1)- lco s rtx 

is obtained. Then, substitute Url into G2(url), similarly find 

Ur2 = (8h27tv) - 14(vr~2 q- h-  1)-2COS 2rex 

(17) 

(18) 

(19) 
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so that  G2(ur2 ) be minimal .  Go ing  on  this way, 

Urj(x) = (2 ~+ lhJnv)- 12J(vg2 + h -  1)-Jcos 2 j n x  (j  = 1, 2, . . . ,  p) (20) 

is easily obtained.  Having  these functions,  we cons t ruct  a funct ion 01 ( x ,  t) subst i tut ing Urj in to (8) .  
Namely ,  

t - -  to 
h [Urj+l(X)-Urj(X)]" (21) 01(x, t) = ur j (x)  

Now,  for j = 0 

01(x, t) = U,o(X) 

for j =  1 

t -- t O 
h [ U r l ( X ) -  Uro(X)] 

t -- to [- cos n x  
= 1 - (2nv)-1(1 - cos nx) + ~ [4hvn(½n2v + ½h) 

2 n v - 1  (1 t h t °  ) (rc2vh + l) - g2v(t - t°) 
- 2nv + 2nv(n2vh + 1) 

t -- t 1 
OI(X , t ) =  Url(X ) h [Ur2 (X) -  UvI(X)] 

f o r j  = 2 

(nZvh + 1) - r tZv( t  - tl) 
2vn(n2vh + 1) 2 cos  gx ;  

- 1 +  
(1 - cos nx)7 

J 2vn 

cos nx;  (22) 

(23) 

t -- t 2 
OI(X , t ) =  Ur2(X ) h [Ur3(X) -  Ur2(x)] 

(rc2vh + 1) - n2v(t - -  t2) 
cos nx. (24) 

2vn(n2vh + 1) 3 

General is ing (22)-(24) we obta ined  the first step solut ion to the p rob lem given by (13), (14a) and  
(14b) as 

~ - -  ( - - )  ( n 2 v h + l ) - r c 2 v ( t - t j )  01(x,t) - 2nv 1 1 t to + cosnx.  (25) 
2nv h 2nv(n2vh + 1)j÷ x 

Then,  dividing the interval [0, T ]  into 2p,4p, ... subintervals,  we come in the same way  to the 
functions 02(x, t), 03(x, t), ... and  general ly to the funct ion 

_ 2nv - 1 (1 t -  to)" (n2vh -~- 1)-  g2/.)(t- tj) Bn_lcosT~x. O,(x,t) 
2nv -h + 2xv(nZvh + 1) j+" 

(26) 
N / 

where  B = (nZvh + 1) - n2v(t - to), (j = O, 1, ... ,p - 1) (n = 1,2, ... ) which is of  a similar form as 
the funct ion (7). Hence,  Eq. (26) generates successive approx imat ions  to solut ion for the p rob lem 
given by (13), (14a) and  (14b). 
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Finally, to achieve the solution to the current problem (9), (10a) and (10b) we substitute relevant 
values from (26) into (11) to obtain the approximate  solution in the limiting form, i.e., 

AB"- ~ sin rtx 
U,(x, t) = 2rtv C + AB"- 1 cos rtx (27) 

where 

A = [(vTt2h -+- 1) - vTxz(t - tj)] 

[2w(v~2h + 1) J+"] ' 

B = ( o T t 2 h  - b  1) - -  o T t 2 ( t  - to), 

C (2w - 1) ( t - t o ) "  
- 2vrt 1 h " " 

Thus, lim,-.o~ U,(x,t)= u(x,t) would be the exact solution of the desired problem. I.e., this 
approach  is easily generalised to yield approximate  variational solution Ur containing r parameters  
whose fit to the exact solution increases with r and the approach  is inductive. It also indicates that  
variational scheme is converging (see [9]). It should be noted also that  all integrals in the 
calculation were carried out  analytically, because of our  choice of base functions, which makes the 
scheme more  compact .  

5. Numerical results and graphical interpretation 

In order  to evaluate the numerical  solution, the mesh data  and the problem parameters  are taken 
to be fx  = 0.02, fit = 0.02 and 0.01 and for various v values (i.e., Reynolds numbers).  

For  purpose of verification, the first step solution Ul(x, t) is illustrated in Fig. 1 and 2 for v = 1.0 
and 0.5 respectively. This simplification means that  the solution can be calculated independent ly by 
hand. For  v = 1.0, the solution for all t values is clearly symmetrical  about  x = 0.5 and the height of 
the peak in the centre and gradient at the centre point  (the peak) is always zero, and the gradients at 
x = 0 and x = 1 takes symmetrical  values for each time step. The program was then modified by 
setting v = 0.5 when the p rogram was rerun the peak clearly moved  from x -- 0.5 towards x = 1 
and as expected the gradient in the first semi-interval (0, 0.5) decreased quicker than  that  in the 
semi-interval (0.5, 1) due to the use of first step solution which is not a good approximat ion  to the 
solution of current  problem. Fig. 3 shows complete suffering for v -- 0.4 for the first step solution 
which is also expected from the qualitative findings of the method.  But the solution can easily 
be improved by using second or higher steps of the solution, when one requires a means of select- 
ing number  of the terms to be used in the solution series to obtain a "good approximat ion"  for 
the given constant  v value (i.e., Reynolds number).  To do this, we modify the p rogram in such a 
way that  the difference in nt step solution and ( n -  1)ht step should be less than the required 
tolerance value, i.e., ] U,(x, t) - U,_ l(x, t)] < e then we stop calculating higher steps of the solution 
in series and last step is taken as "good approximat ion"  solution to the problem for given constant  
V v a l u e .  
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0.2 

0.1 

U 

0 0.2 0.4 0.6 0.8 1 
X 

v=l. 0 8x=O. 02 8t=O. 1 

Fig. 1. Solution at different times for v = 1.0 for first step solution. 

To see the efficiency and the correctness of series solution, we made  the compar ison with (exact) 
Fourier  solution of [5] given by 

_=°° 1 exp{ - narcZvt}A.n sin(nnx) 
u(x,t) = 2rw Y~' = 0 e x p { _  n2rc2vt} A, cos(nrcx) (28) 

where 

Ao = ; 2  e x p { -  (2=v)-111-  cos(=x)]}dx, (28a) 

A, = 2 f2  exp { - (2rw)- 1[ 1 - cos(fix)] } cos(nrcx) dx (28b) 

are Fourier  coefficients (also see [8]). The results are shown in Table 1. The numerical  results 
indicate that  the present me thod  compare  very favourably with the results obtained from (exact) 
Fourier  solution of [-5]. In calculation we have used only six steps of our  solution to get "good 
approximat ion"  within the tolerance of 10 - 4  for v = 0.01. But the (exact) Fourier  solution is 
obtained by setting the value n = 28 in (28) which is the value used by Miller in his calculations to 
get "good approximat ion"  for v = 0.01. Even this coarse compar ison shows that  our  solution is 
much  more  economical  than (exact) Fourier  series solution of [5]. Moreover,  as Miller mentioned,  
calculation of Fourier  coefficients is not  possible analytically, therefore the choice of numerical  
me thod  is very important .  On the other hand,  Miller notes, for smaller v almost  all the area under  
the exponential  term of (28a) and (28b) occurs near the abscissa x = 0, so the oscillatory effects of 
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Fig. 2. Solution at different times for v = 0.5 for first step solution. 
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Fig. 3. Complete suffering for v = 0.4 for first step solution. 
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Table 1 
Comparison of result at different times for v = 0.01 

x Cole (1951) Present Error 

t =0.3 
0.1 0.07593 0.07587 0.00006 
0.2 0.15393 0.15390 0.00003 
0.3 0.23607 0.23605 0.00002 
0.4 0.32420 0.32421 - 0.00001 
0.5 0.41901 0.41900 0.00001 
0.6 0.51704 0.51700 0.00004 
0.7 0.60120 0.60117 0.00003 
0.8 0.61652 0.61645 0.00007 
0.9 0.44147 0.44125 0.00012 

t = 0 . 5  
0.1 0.06817 0.06810 0.00007 
0.2 0.13727 0.13722 0.00005 
0.3 0.20795 0.20793 0.00002 
0.4 0.27998 0.27999 - 0.00001 
0.5 0.35091 0.35091 0.0 
0.6 0.41306 0.41303 0.00003 
0.7 0.44734 0.44729 0.00005 
0.8 0.41517 0.41510 0.00007 
0.9 0.26610 0.26600 0.00010 

t =0.8 
0.1 0.05719 0.05715 0.00004 
0.2 0.11411 0.11409 0.00002 
0.3 0.16998 0.16997 0.00001 
0.4 0.22295 0.22295 0.0 
0.5 0.26892 0.26892 0.0 
0.6 0.29992 0.29990 0.00002 
0.7 0.30226 0.30221 0.00005 
0.8 0.25746 0.25741 0.00005 
0.9 0.15251 0.15245 0.00006 

t = 1.0 
0.1 0.05045 0.05042 0.00003 
0.2 0.10007 0.10004 0.00003 
0.3 0.14759 0.14758 0.00001 
0.4 0.19067 0.19067 0.0 
0.5 0.22521 0.22521 0.0 
0.6 0.24432 0.24431 0.00001 
0.7 0.23810 0.23808 0.00002 
0.8 0.19569 0.19566 0.00003 
0.9 0.11257 0.11253 0.00004 
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cos(nnx) will not be felt until n is large. Thus, it would serve no purpose to include that portion of 
the interval 0 ~< x ~< 1 for which the exponential factor is near zero. This handicap may be 
overcome by setting exponential factor to zero in that portion of the interval 0 ~< x ~< 1 or using the 
asymptotic expansion of exponential factor such that this expansion may be integrated directly 
with cos(nnx). This also effects the accuracy and the efficiency of the (exact) Fourier method besides 
economy. Again, Miller notes, as v become smaller, the initial values u(x,O) were not calculated 
correctly, namely, the initial values were in error after x = 0.5 for v = 0.01 and negative values 
appear beyond x = 0.6. Further, as v decreased to v = 0.0001 the initial values show errors at 
smaller x. This behaviour also resulted from the factor exp { -  n2nZvt} in solution series (28) and 
Fourier coefficients (28a) and (28b). This behaviour may be overcome by implying more terms to be 
carried before truncation of the series or by taking more intervals for the numerical integration, 
which affects again the accuracy and the economy of the solution. 

Finally, as a nature of Fourier solution, evaluation of the exact solution for v < 0.01 is not 
practical, because of the slow convergence of Fourier series (see again [-8]). 

Therefore, the values given in Table 1 are found to be adequate on the basis of the methods 
compared and no attempt is made to solve the problem for much lower values of v. Also, we have 
not felt it worthwhile to make comparison with some other solutions, partly because most of them 
only gives graphical representations of the solutions without giving more information about it, 
partly make their comparisons with Cole's solution (or Miller's numerical solution) as we did. 

On account of these, our simple approach, however, does not have this kind of inadequacy 
computationwise and the computational procedure has been found to be reasonably facile and this 
is verified by the speed of the computer calculations. The average computat ion time on the IBM 
compatible personal computers was in the vicinity of few seconds (unfortunately we cannot give 
the comparisons due to lack of the values of Miller's). All these show that our approach is much 
more economical as it stands. But, as a small drawback, for large times the accuracy and the 
stability of the numerical procedure must be questioned when v is small. A comment  concerning 
possible errors is in order. Thus the hypothesis of an error in computat ion must be rejected in 
o u r  c a s e .  

6. Concluding remarks 

An approximate method in limiting form for Burgers' equation with appropriate boundary 
conditions has been presented. The method can offer appreciable advantages for Burgers-like 
nonlinear problems involving different initial and boundary conditions. It is because the choice of 
the base functions are totally problem dependent. To use a boundary condition rather than the 
periodic one, it only makes the solution process more complicated compared to the present case. In 
special, the formulation of the problem in present form becomes computationally more economical 
partly because the incorporation of analytical calculation of the integrals makes it possible to 
achieve the high accuracy and numerical stability as demonstrated in the numerical example. 
Finally, since the method improves the solution iteratively requiring more steps and refined 
tolerance value for a given fixed v values which makes it capable of solving Burgers' equation 
accurately for values of v ranging from very small to large. 
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