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Abstract

We study the arithmetic aspects of the finite group of extensions of abelian varieties defined
over a number field. In particular, we establish relations with congruences between modular
forms and special values af-functions.
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1. Introduction

Milne [16,17] has established striking connections between arithmetic and the exten-
sions of abelian varieties over finite fields (see TheodmOur aim here is to relate
extensions of abelian varieties over number fields to congruences between modular
forms and special values @ffunctions of motives.
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For abelian varietieA and B over a fieldK, consider the group E%t(A, B) of
isomorphism classes of Yoneda extensionAdfy B in the category of commutative
group schemes ové¢. This group is torsion by the Poincaré reducibility theorem, but it
need not be finite. For instance, %}(14 B)~(Q/7)* whenA andB are non-isogenous
elliptic curves overC. If A is an elliptic curve with complex multiplication ovet,
then a beautiful result of Lichtenbauf20, Theorem 6.1]states that E%I(A,A) is
naturally isomorphic to the torsion subgroup 4tC).

When K is a number field, the group Ek((A, B) is finite (Theorem2). We show
that the order of E)k(A, B) is related to the following objects:

e (Corollary 5) congruences between modular forms, witeand B are elliptic curves

over Q;

e (Theorems6, 7) the congruence modulus and modular degree of an elliptic curve

over Q;

e (Theorem10) the special value of thé-function L(SynPE, s) at s = 2 for certain

elliptic curvesE over Q.

It is important to note that the third result is simply a restatement of the deep results
of Diamond, Flach, and Gufb,6] in our context.

2. Preliminaries
2.1. Extensions over finite fields

We recall the fundamental results of Milfig6,17] on Ext(A, B) over a finite field.
Theorem 1 (Milne (a) [16, Theorem 3] (b) [17]). Let A and B be abelian varieties

over a finite fieldl, .
(a) The groupExt%q (A, B) is finite, and its order is given by

dadp .
q aj
#Ext[qu(A,B)zi 5 | | (1—b—j),

a,-;ébj

wherea; and b; are the eigenvalues of Frobenius associated with A and B over
F;, da and dp are the dimensions of A and, Bnd D is the discriminant of the
trace pairing Homg, (A, B) x Homg, (B, A) — End(A) — Z.

(b) Let J be the Jacobian of a smooth projective curve C dyeiThe groupExt%q(J, A)

is isomorphic to the Tate-Shafarevich grolid(A/F,(C)) of the constant abelian
variety A over the function field, (C) of C.

Remark. Every abelian varietA defines integral motivesl(A) andz1(A); note that
h1(A) is isomorphic tohl(AY)(1) defined by the dual abelian variety”. Part (a)
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of Theorem1 relates the order of E#}(A, B) to the special value at = 0 of the
L-function L(k1(A) ® h'(B), s) of the tensor product motivel9, Theorem 10.1]

2.2. Finiteness oExt}<(A, B) over number fields

For any abelian group (schem@) let G,, denote the kernel of multiplication by the
integern. For a primep, let T,G = lim G,» denote the associated Tate module, and

let TG = lim G,, denote the total Tate module.
<«

Theorem 2 (Milne—Ramachandrgn Let A and B be abelian varieties over a number
field K ThenExtk (A, B) is finite

Proof. For any integem, taking Efo(—, B) of the Kummer sequence

0—>An—>Al>A—>O

gives a short exact sequence
0 — Homg (A, B) ® Z/nZ % Homg (A, B,) — Extk (A, B), — O, (1)

using Honk (A,,, B) = Homg (A,,, B,). Now taking the inverse limit ofl) over powers
n = p™ of a primep and using that Hom(A yn, B,») = Homg (T, A, B,»), we have
an exact sequence

0 — Homg (A, B) ® Z,, = Homg (T, A, T, B) — T,Extk (A, B) — 0. 2)

By Faltings’ theoren{7, Section IV.1] « is an isomorphism, and s:DpExt}((A, B)=0
for all p. As Extk (A, B), is finite for all n by (1), the p-primary subgroup EXt(A, B)
(p) of Ext}<(A, B) is finite for all p. To prove the theorem, it now suffices to show
that Ext}((A, B)(p) is nonzero only for finitely many. This follows from[7, Section
IV.4] which says thatx, in (1) is an isomorphism for sufficiently large primgs [

Remark. (i) In the case of an elliptic curvé\ over Q, the results of Serrg24]
provide upper bounds on the order of E)@H A). (ii) There are explicit bounds (see
[14, Corollary 1) for the primes dividing #ExX¢ (A, B). (i) The group Ext (A, B) is
not invariant under isogeny.
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2.3. Representability issues

Fix abelian varietiesA and B over a fieldK. The group Ex}((A, B) is similar to
the group Ex}((A, G,,), but there are some differences. For example, the furiter
Ext%(AxS, G,,) on the category of schemes o\eiis representable (by the dual abelian
variety). However, the corresponding functor for E((A B) is not representable. I
is an extension oK, then the natural map ExtA, B) — Ext} (A, B) need not be
injective. In fact, if L/K is a Galois extension with Galois gro@® the kernel of this
map can be computed via the exact sequence

0 — HY(G,Hom, (A, B)) — Extk (A, B) — Ext} (A, B)C.

Over a number fielK, the group Ext (A, G,,) can be infinite whereas EXtA, B)
is always finite.

3. Congruences between modular forms

We will maintain the following notations throughout this section. Kebe a number
field with ring of integersO and discriminanD. Let A andB be abelian varieties over
K, and letR > 1 be the least integer such that béttand B extend to abelian schemes
(denotedA and B) over O[#]. Let

S:=R l_[ p,

p prime
3plp, e(p) = p-1

wheree(p) is the ramification index op in O. Now take Exé)[ll(A, B) for the Ext-
S

group in the category of commutative group schemes aﬁ?[a%]. The necessity of
changing fromR to S will be explained below.

Proposition 3. For abelian varieties A and B over a number field tie natural map
Exté[ll(/l, B) — Extk (A, B) is an isomorphism
S
Now suppose tha and B are elliptic curves. Lep be an ideal of© coprime toS
Both A and B have good reduction at; let A and B denote the corresponding elliptic
curves overly,.

Theorem 4. Let A and B be elliptic curves over a number field &hd let e be the
exponent oiExt}<(A, B). For a prime idealp of O coprime to $

#A(F,) = #B(F,) (mode).
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This theorem has the following corollary for congruences between Fourier coeffi-
cients of modular forms. We provide two proofs of this corollary. The first is a direct
application of Theorend. The second proof, found by Ribet after reading a previous
version of this paper, is direct and relies on the theta operator.

Corollary 5. Suppose A and B are elliptic curves ov@r of conductors M and N
respectivelyLet f =Y a,q" andg = >_b,q" be the associated normalized newforms
of A and B and let e be the exponent E‘xtb(A, B). Then for any integer n with
gcdn, 2MN) =1,

a, =b, (mode).

Remark. It is possible to strengthen the corollary. Sirfcand g depend only on the
isogeny class oA and B and yet the group E&t(A, B) is not invariant under isogeny

(in general), one can replaaein the corollary above by (i) the exponeat of the
group EXE(A’, B") where A’ and B’ are isogenous t@ and B over Q; or, (ii) the

least common multiple of the set of all.

Proof of Proposition 3. Let n be any positive integer. We first show that the natural
map

b : Homg, 1, (An, B,)—Homg (A,, B,)
S

is an isomorphism. This follows from standard patching argumgths pp. 43-45]
once we show that, for each primecoprime toS, the natural map

Hom(')q (-Ans Bn):) Hoqu (Ay, By)

is an isomorphism. Leq be the residue characteristic @ The second map is clearly an
isomorphism ifgtn: the étale group scheme$, and 53, over Spe®, are determined
by the Galois modulest, (K4) and B,(K) [15, pp. 43-45] In the case thay | n,
write n = dr with d a power ofg and r coprime tog. We apply[26, Corollary of
Theorem 4.5.1}to the commutative finite flat group schemds, B; over Sped,
which implies that the natural map

Hoqu (Ag, Ba) — HomGa|(fq/Kq) (Ad(fq)» Bd(Fq))

is an isomorphism. As the resuU26, Corollary of Theorem 4.5.1assumes that the
ramification indexe(q) of Oy is less tharny — 1, we are forced to switch froR to S
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We obtain a commutative diagram frort) (with exact rows

0 —> Homg (A, B)®Z/nZ —> HOMg(An. By) —>= Extk(A,B)y —>= 0

aq\z hq\z cﬁ‘z (3)

Hom, 1.(A,B)®Z/nZ _. HomOl%J(An,Bn) o Exté[%](A,B)n ~ 0

0 > o141

The second row is obtained by the analogue Hf sing 0— A4, > A > A —

0 [18, Section I1.5] The vertical maps are the natural restriction maps. Noug an
isomorphism by the Néron mapping properties/oaind B. By the preceding paragraph,
b is also an isomorphism. Therefore,is an isomorphism. [

Proof of Theorem 4. Let p be a prime ofO, coprime toS with residue characteristic
p. We obtain the following diagram that can be appended3jo (

1
0 — Homo[%](A,B)(@Z/nZ . Homo[%](A,,,B,,) > EXtO[%J(A’B)" >~ 0

hl/ ii/ J'¢/ (4)

0 —> Homg (A, B)®Z/nZ —> Homg, (Ay, By) —> Ext%v(g, By — 0.

Puta =hoa 1, f=iob 1 andy = joc~ Ll Itis important to note that
B - Homg (A, B,) — Homp, (A,, By)

is injective: if gcdn, p) = 1, this is clear; and ifn = p”, this follows from the
faithful nature of the functolG~G x ¢, F, which maps commutative finite flat group
schemes ove®, of p-power order to their special fiber (s Theorem 4.5jand[10,
Theorem 1, p. 171; Theorem 2, p. 2L7These references give the required result as
the ramification indexe(p) is less thanp — 1. The injectivity of f provides an exact
sequence

0 — ker(y) — cokena) — cokerf) — cokerny) — 0. (5)

We can now complete the proof of the theorem. We consider the non-trivial case that
#A(Fp) # #B(Fp). This implies that Hom, (A, B) =0, and so combining3)—(5) and
Theorem2, we have the injectivity ofy : Extk (A, B) < Extt (A, B). By Theorem

P
1(a),

H#EXE (A, B) = (#A(Fy) — #B(Fy))°.
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Moreover, sinceA and B are elliptic curves, Theoremi(b) and the Cassels—Tate
pairing combine to give

HI(B/Fy(A) =T x T,

for some abelian group. Thus the exponere of Ext%p(g, B) divides #' = [#A(F)) —
#B([Fp)|. This, with the injectivity ofy, gives

e | (#A(Fy) —#B(Fp)), VpfS. O

Proof of Corollary 5. The corollary follows almost immediately from TheoreinWe
need only note that sinc& = @, the primes which divideS are exactly the primes
which divide 24 N. The congruence for alh with gcd(z, S) = 1 follows sincef and
g are Hecke eigenforms.]

Remark. Suppose thatk = Q@ and thatR is odd. (i) The map E%ll(/l, B) —
R

Ext}Q(A, B) may not be an isomorphism. However, it is injective. &ss an isomor-
phism even ove%[%] by the Néron mapping property, it suffices to show that the map
Homz[%](An,Bn) — Homg(A,, B,) is injective. Given thab is injective overZ[%],

it suffices to check that the map HogiA,, B,) — Homg,(A,, B,), with n =2", is
injective. This is cleaf26, p. 152] Thus, the Ext-group oveZ[%] might be smaller
than Ex%[ %](A, B), and so a potential analogue of Theordmvill be weaker.

(i) In addition, the definition off overZ[%] is problematic, due to the non-exactness
of the Néron model functor fop = 2 (see[1, Exercise 4, p. 190for a counterexample
to [1, Theorem 4, p. 187]

Direct Proof of Corollary 5. (This proof is due to Ribet.) Sinckand g are Hecke
eigenforms, it suffices to show that, = b, (mod /) for all primes p{2MN and
prime powersi = ¢™ dividing e. Fix now suchp and 1 = ¢™.

Suppose first thap # ¢. Let Gg := Gal(@/Q). Now lettings € Gg be a Frobenius
element atp, the Eichler—Shimura relationid2, Theorem 4.2.2fictate that

az—apa—i—p =0 onAy,
az—bp0+p =0 onB3B,.

Now from (1) with n = 4, it follows that there is a Galois equivariant morphism
A; — B, with exponentl. Becausex is Gg-equivariant, it follows that the operators
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apo and b,o agree on the image of in B;, which has exponent. Hencea, = b,
(mod A).

Now suppose thap = ¢. In particular,£12M N. Now by the preceding paragraph,
we see thaiu, = b, (modA) whenevern is coprime to 2/N¢. Let f and g be
modular forms with Fourier expansions

00 0
r n A n
f= anq", g= ) bnq".
n=1 n=1
gcd(n,2MN)=1 ged(n,2MN)=1

(These modular forms can be obtained by twisting twice by appropriate quadratic
characters, and as such have level divididg?#/2.) Thus, if we let@ = q% be the

usual © operator on modular forms, we see th@f' annihilatesf — g modulo /. In
particular, as power series @

O(f -2 =0 (mod?).

Since is odd, the® operator is injective modulé on modular forms of weight 213,
Section I} Thereforef = g (mod ¢). Moreover, ifm > 1, we see tha® annihilates
(f — %)/t modulo¢, and thusf = ¢ (mod¢2). By induction, f =g (mod /). O

Remark. (Ribet) Wheneis odd, the arguments in both proofs of Coroll&imply that

ap, = b, (mode) for gcd(n, MN) = 1 instead of gch, 2MN) = 1. In some sense,
having the® operator injective modulo odd primes is similar to having the absolute
ramification index ofZ,, strictly less thanp — 1 in the first proof of Corollarys.

4. Modular parametrizations and congruence moduli

We now investigate how the theory of congruence moduli of HiH, Ribet[22]
and Zagier[28] fits in with the Ext-group.

Let Jo(N) be the Jacobian of the modular cur¥g(N) over Q, and letS>(I'g(N))
be the space of weight two cusp forms éla(N). For an elliptic curveA over Q
of conductorN, let f = > a,q" € So(I'o(N)) be its associated normalized newform.
The congruence modulus of 8, Section 5]is

g =Y buq" € (f)F NZ[q] so that}

= max VA
MA {m © ’ b, =a, (modm) for all n
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where (f)1 C S»(I'o(N)) is the orthogonal complement with respect to the Petersson
inner product. Theestricted congruence modulus ofié

g =Y byq" € () N Z[q] so that
= Z .
A max{r < ’ b, =a, (modr) for all n with gcdn, 2N) =1

Assume thatA is an optimal quotient of/o(N) (i.e. a strong Weil curve) and that
¢4 : Xo(N) — A is its modular parametrization. This induces an exact sequence of
abelian varieties ove@,

n: 0—>C—>Jo(N)ﬂ*>A—>0. (6)

A well-known result of Ribet and Zagid28] is that:the degreeiy of ¢, dividesmy,
i.e.

da | my.

Of coursem, divides ry. Our next result, that the exponeaj of Ext}Q(A, C) sits
betweend, andry, ultimately relies on the Eichler—Shimura relations.

Theorem 6. With notations as aboyene has

dalealra.

Remark. Sinced, is unbounded, Theoreré shows that the order of Eg(A, C)is
unbounded.

In general,e4 does not divide the congruence modulug. The analogous result
for m4 requires a refinement of EB(A, C), which involves the Hecke algebrh =

Z[Ty, T», ...] associated with/o(N). Namely, let Ex&D (A, C) be the Yoneda Ext-
group in the category of commutativie-group schemes ovdb, i.e. groupsG together
with a homomorphisml' — Endg(G). Write e4 1 for the exponent of E%h(A, C).

We show below that the natural forgetful map Ext(A, C) — Extf (A, C) is injective,
and thusey T | ea.

Theorem 7. With notations as aboyene has

daleaT | ma.
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The sequencef] is also an exact sequence 6fgroup schemes ovel). For any
integern, we have the following commutative diagram with exact rows,

0 - Homg 1(A,C)® Z/nZ — Homg 1(A,, Cp) — Extql;D!T(A,C)n — 0

| ) ¥

0 — Homg(A,C)® Z/nZ — Homg(A,,C,) — EXté(A,C)n — 0.

The bottom row is preciselyl}, and since the Kummer sequence-0 A, — A —

A — 0 is a sequence of -group schemes, the top row is obtained in the same manner
as () but with the requirement ofl -equivariance. Note also that the top row is an
exact sequence of -modules. Now since Hom(A, C) = 0 = Homg 1(A, C) and

the mapx is injective, it follows that: is also injective. Alternately, any element of
Extg, (A, C) which splits in Exf (A, C) is split by a T-equivariant morphism. By
Theorem?2, the injectivity of 1 shows that E)ﬁ’T(A, C) is finite.

Proposition 8. The order ofy in Extb,T(A, C) is equal to the degree ap,.

Proof. Let d4 = deg¢,. BecauseA is an optimal quotient ofXo(N), the dual
¢* : A — Jo(N) of ¢, is injective, and the composition, o ¢* € Homg(A, A) is
multiplication by d4. From the exact sequence9 A — Jo(N) — C* — 0 and the
fact that Hongy(A, C*) = 0, it follows that the map

Homg (A, A)—Homg (A, Jo(N))
induced by¢* is an isomorphism. Furthermore, the map
Homg (A, A) — Homg (A, Jo(N)) — Homg(A, A),
induced by¢, o ¢*, is multiplication byd,, and so the image of Hof(A, Jo(N)) is

preciselyds(Homg (A, A)). _
The long exact sequence for ExtA, —) applied ton begins

0 — Homg(A, Jo(N)) % Homg (A, A) — Extj(A, C)

and the image of an endomorphisme Homg(A, A) in Extql;D(A, C) is the pull-back
o*n. Therefore, because HafiA, A) = Z, it follows that the image of Hog(A, A)
in Ext},(A, C) is the subgroup generated by Thus the order ofy in Ext},(A, C) is

d,, and since; represents a class in %%(A, C) S Ext},(A, C), we are done. [J
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Now there are two ways to define Te=module structure on Ebt(A, C), namely by
pushing out alongC or pulling back alongA. These twoT-module structures need
not coincide. However, because @(f(A, C) consists of classes of extensions that are
T-equivariant, it follows that the twd -module definitions restricted to %tT(A, )

are the same. In fact, E&;‘T(A, C) is the largest subgroup of %(A, C) on which
the two T-module structures agree.

Proof of Theorem 7. By Proposition8 it suffices now to prove thats T | ma. Let
I, and I be the kernels of the map% — Endg(A) and T — Endg(C). By the
general considerations ¢#, Section 2] we see thain, is the exponent ofl 4 ¢ :=
T/(I4+ 1) as an abelian group. Now clearly both and I~ annihilate ExéM(A, 0),

and so E)%D (A, C) is a T4 c-module. Thus we must hawey 1 | ms. [

Proof of Theorem 6. Again by Proposition8 it suffices to prove that, | r4. Let
T' € T be the subalgebra generated by &}l with gcd(n,2N) = 1, and let/)
and /. be the kernels of the map§’ — Endg(A) and T' — Endg(C). From [4,
Section 2] it follows thatr, is the exponent ofl’y - := T'/(I, +1). If we can show

that EXGED(A, C) is a Ty ~-module, then we are done. Namely, we need to show that
the two operations off” on Ext%l(A, C) coincide.

ConsiderT, with p{2N. Since Hony(A, C) = 0, (1) implies that EX&(A, C) =
Homg(A,, C,). From the Eichler—Shimura relatiofi$2, Theorem 4.2.1]we have that

T, =F +V € Endg, (J), )

where J is the reduction of/o(N) modulop, andF andV are thep-th power Frobenius
and the Verschiebung os. As in (4), the natural map

HomQ(Ans Cy) <= Hom[Fp(ANnv 6)1) (8)

is injective. Since bottA and C are subabelian varieties ob(N), the action of7),
on A, and C, is determined by the restriction of7)( In particular, for anyx €
Homg(A,, C,), its imagea € Homg, (An, Cn) satisfies

oo Tp|;n = Tp|5n od.

The injectivity of @) shows that in factio T4, = Tplc, o, and we are done.[]

Corollary 9. If the conductor N of A is square-frethends = e 1 = ma.
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Proof. For primeN, Ribet and Zagief28, Theorem 3have shown thatly = m 4. For
square-freeN, thatdy, = m4 has been proved recently by Rije8] as a consequence
of his proof of a conjecture of Agashe and Stei.l

Remark. If N is prime and if the formg = Y b,q" € (f)* N Z[q]l, which gives
b, =a, (modr,) for all n with gcd(n, 2N) = 1, also satisfied, = ax (modry),
then in factds = eq 1 =m4 = es = ry by the Sturm bound25].

Example. Theorems6 and 7 are best possible in the following sense. The mod 3
representation of the elliptic curve @Q in [3] of conductor 90,

A:y2+xy+y=x3—x2+l3x—61,

has image(g "l‘) [21, Theorem 3.2]Likewise, the mod 3 representation of the elliptic
curve 9M1 in [3], also of conductor 90,

B:y2+xy=x3—x2+6x,

has image(é :) Both A andB are strong Weil curves. By their mod 3 representations,

there is a non-trivial element € Homg (A3, B3), which induces a homomorphism:
A3z — C3, whereC is the kernel ofJg(90) — A. Thus EXE(A, C)z=~Homg(Asz, C3)
has a non-trivial element of order 3. However, direct computation provitles- 16
andmy = 16. In particularyng # ra andes{mgy.

Remark. If Ais an elliptic curve over@Q and ¢ : J — A realizesA as an optimal
quotient of the Jacobiad of a Shimura curve, then we have an exact sequence

n: O—>C—>J—¢>A—>0.

Theorem6 suggests that the exponent of E)@A C) provides a “congruence modulus”.
In fact, the Hida constant, defined by Ullmo[27, p. 326]is the order ofy €
Extd (A, ).

5. Special values ofL-functions

We provide a restatement in terms of Ext-groups of the deep results of Diamond,
Flach, and Gud5,6] on the Bloch—Kato conjecture.



398 M.A. Papanikolas, N. Ramachandran/Journal of Number Theory 112 (2005) 386-400

5.1. Symmetric square of an elliptic curve

Let E be an elliptic curve ovef) of conductorN with Endg(E) = Z. Consider the
symmetric squaré.-function L(Syn?E, s) of E [9]. Note that

L(Syn?E, s) = L(SynPh1(E), s) = L(SymPhY(E), s + 2).

The Bloch—Kato conjecturf9, Eq. (2)] on the special value at= 2 of L(SynfE, s)
states that

L(Syn?E,2) Hl11(Q, A(2)
Ayl ©

Q2 T #HO(Q, A(L)) - #HO(Q,

For the sake of brevity we refer to Fla¢d, Sections 0—1for definitions, and we use
his notation.

For a fieldK, setGg := Gal(K/K). Let P denote the finite set of rational primes
consisting of (a) alle | 2N; and (b) all¢ such that the Galois representation Bp
restricted toGr, where F = Q(/(=1)¢-D/2¢), is not absolutely irreducible. For
¢ ¢ Pg, the ¢-part of the Bloch—Kato conjecture has been proved by Diamond, Flach,
and Guo[5, Theorem 0.2][6, Theorem 8.9] The following theorem is a reformulation
of their result in terms of Ext-groups.

Theorem 10. If E is an elliptic curve overQ with End@(E) = 7, then up to powers
of ¢ for ¢ € Pg,

L(SynPE,2) ALEXT(E, E))

Q(2)  HEXE(E,E) - #Extl (E, E)(1)Ga H p- (10)

Proof. Because of the resulf®, Theorem 0.2]and [6, Theorem 8.9]it suffices to
match the terms in9) with those of (0).
The total Tate moduldE of E is a rank two module oveZ := I|m Z/nZ. By the

Weil pairing, TE is isomorphic to the Tate twist EV (1) of the dual moduIeiFEv From
(2), we see thafTExt1 (E, E) is isomorphic to the quotient of EpdT E) by the 7-

submodule generated by the identity map. Via the self-duality;Efd) ~TEQTE",
we have

TEX%(E, E)=~(Syn?TE)(-1). (11)
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The terms in the denominator 09)(can easily be identified as
#H(Q, A(D) = #H"(Gq, (SynPTE)(-1) ® Q/2),
#H°(Q, A(2) = #H"(Gq, (Syn?TE) ® Q/Z).

By (11), the former is #E)%(E, E)Ge, and the latter is #E%(E, E)(1)e. Moreover,
the numerator of9) is

HIU(SynPTE) @ Q/7) = #HII(SynfTE)(—1) @ Q/Z),

where the equality follows froni8, Theorem 1] The proof of the theorem is then
complete by the following lemma.]

Lemma 11. Let E be an elliptic curve over a number field K wiimdg(E) = Z. For
any odd integer NExty (E, E), ~ExtL(E, E)ok,

Proof. By taking the long exact sequence Gfy-cohomology of 1) with K = K, we
obtain an exact sequence

0 — HOmk (E, E) ®7 Z/nZ — Homg (E,, E,) — Extlf(E, E)Ck
~ Hom(Gk.Z/nZ) % HY(Gg. Home(Ey, En)).

If f € kerg, theng(f) is represented by a coboundary which takes values in the trace
0 space of Hog(E,, E,). However, by definitiond(f)(c) = f(0) -id, for ¢ € G.
Thus for all ¢ € Gk, we have Z (o) = 0, which implies f = 0. Therefore,¢ is
injective, and the result follows froml). O
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