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Abstract

We consider the leading twist “T -odd” contributions as the dominant source of the cos 2φ azimuthal asymmetry in unpolarized pp̄ → μ−μ+X

di-lepton production in Drell–Yan scattering. This asymmetry contains information on the distribution of quark transverse spin in an unpolarized
proton. In a parton-spectator framework we estimate these asymmetries at 50 GeV center of mass energy. This azimuthal asymmetry is interesting
in light of proposed experiments at GSI, where an anti-proton beam is ideal for studying the transversity properties of quarks due to the dominance
of valence quark effects.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

One of the persistent challenges confronting the QCD parton
model is to provide a theoretical basis to understand the experi-
mentally significant azimuthal and transverse spin asymmetries
(TSAs) that emerge in exclusive, inclusive and semi-inclusive
processes [1–6]. Generally speaking, the spin dependent am-
plitudes for the scattering will contribute to non-zero trans-
verse single spin asymmetries (TSSAs) if there are imaginary
parts of bilinear products of those amplitudes that have over-
all helicity change. For two-body exclusive reactions, TSSA
requires there to be an imaginary part of the product of an
helicity non-flip with an helicity flip amplitude. For inclusive
reactions, the same conclusion can be reached by taking the
amplitudes as two-body helicity amplitudes for the production
of a fixed hadron and a state |X〉. Through the generalized
optical theorem, TSSAs in inclusive reactions can be related
to discontinuities in helicity flip three-body forward scattering
amplitudes [7]. In perturbative QCD (PQCD), applicable to the
hard scattering region, to obtain an imaginary contribution to
quark and/or gluon scattering processes demands introducing
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higher order corrections to tree level processes. One approach
incorporates the requisite phases through interference of tree
level and one-loop contributions in PQCD in an attempt to
explain TSSAs [8,9]. On general grounds the helicity conserva-
tion property of massless QCD predicts that such contributions
are small, going like αsm/Q, where αs is the strong coupling,
m represents a non-zero quark mass and Q represents the hard
QCD scale. Such contributions have failed to account for the
large TSSAs observed in Λ production [1,9]. On the other hand,
the twist three quark–quark and quark–gluon correlations de-
scribed in [10,11] hold promise to describe the phenomena at
large pT .

By contrast, in soft contributions to hadronic processes,
when the transverse momentum of the process pT is sensitive to
the scale of intrinsic quark momenta, there arises the possibil-
ity that there are non-trivial transversity parton distributions that
contribute to transverse spin asymmetries. This was realized by
Ralston and Soper [12] when they introduced the chiral-odd
transversity distribution function [13,14] h1(x) which play a
role in doubly polarized Drell–Yan processes [15] as well as in
TSSAs in semi-inclusive deep inelastic scattering (SIDIS) [20].
In the latter case TSSAs arise from so-called naive T -odd cor-
relations (“T -odd”) of the form isT · (P ×k⊥), with transverse
quark spin sT , longitudinal hadron momentum P , and intrin-
sic quark transverse momentum k⊥, implying the existence of
“T -odd” transverse momentum distribution (TMD) functions
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[16]. The “T -odd” distributions [17–19] possess both transver-
sity properties and the necessary phases to account for TSSAs
and azimuthal asymmetries [20–23] and they exist by virtue
of non-zero parton transverse momenta [18,19,24]. They cor-
respond to distributions that would vanish at tree level in any
T -conserving model of hadrons and quarks. In this sense they
are similar to the decay amplitudes for hadrons that involve sin-
gle spin asymmetries which are non-zero due to final (and/or
initial) state strong interactions. Their existence was established
by Sivers to account for the significant SSA in inclusive reac-
tions (e.g., pp↑ → πX) [17,18], by Collins in SIDIS [20], and
by Boer [21] in Drell–Yan scattering.

In contrast to the TSSA generated from the interference of
tree-level and one loop correction in PQCD, such effects go
like αs〈k⊥〉/M , where now M plays the role of the chiral sym-
metry breaking scale and k⊥ is characteristic of quark intrinsic
motion. This realization was exploited by Brodsky, Hwang and
Schmidt [22] which several researchers generalized thereafter
[25,26] in parton inspired spectator-models of quark–hadron in-
teractions.

The possible existence of the “T -odd” quark distribution
functions are important in light of the observation some 35
years ago by Drell and Yan [27] that high energy hadron scatter-
ing processes that produce large invariant mass lepton pairs, can
be probes of quark–antiquark distribution functions. Indeed, pp̄

scattering is a preferred reaction to study the role that “T -odd”
quark distribution functions play in the transverse spin structure
of the proton through spin and azimuthal asymmetries in QCD
[21]. That is the direction we pursue herein.

2. Drell–Yan and “T -odd” correlations

At the parton level the Drell–Yan cross section receives
contributions from quark–antiquark annihilation into the heavy
photon. In unpolarized Drell–Yan scattering early cross section
data as a function of the transverse momentum of the muon pair
indicated deviations from the Bjorken scaling prediction [28,
29]. The implication was that the collinear approximation was
insufficient to describe the data [30,31]. Transverse momentum
of a parton arises due to hard Bremsstrahlung of gluons, which
is calculable from PQCD when the momentum transfers are
large [32]. On the other hand, quark confinement implies that
quarks have soft or intrinsic transverse momenta k⊥. This lat-
ter effect is significant at low transverse momentum where the
di-muon pair’s transverse momentum is much less than its in-
variant mass (mμμ ≡ Q) qT 	 Q. qT dependence has been
incorporated into the factorized Drell–Yan model [12,33]1 by
extending the parton probability distribution to be a function of
k⊥ [16]

(1)
∫

d2k⊥P(k⊥, x) = f (x).

If the parton distributions within the incoming hadrons have
transverse momentum dependence, there will be a continuum

1 New work on the factorization theorem for Drell–Yan can be found in [45].
of values of their k⊥ for which a time-like photon of fixed 4-
momentum will be formed. Ignoring or summing over spin (and
the lepton pair orientation), the k⊥ dependent distribution func-
tions appear in the differential cross section,

dσ

dQ2 dy d2qT

= 4πα2

3Q4

∑
a

e2
a

∫
d2k⊥ d2p⊥

× δ(2)(k⊥ + p⊥ − qT )

× fa/A(x, k⊥)f̄ā/B(x̄,p⊥),

where fa/A(x, k⊥) is a distribution function for a quark a to
be found in hadron A with transverse momentum k⊥ and lon-
gitudinal momentum fraction x and f̄ is the corresponding
antiquark distribution in hadron B . In case the transverse mo-
mentum qT of the muon pair is not negligible compared to the
invariant mass Q, the beam and target are not collinear in their
center of mass frame. Thus the cross section can depend on
the lepton pair orientation. The angular dependence can be ex-
pressed as

(2)

dN

dΩ
= 3

4π

1

λ + 3

(
1 + λ cos2 θ + μ sin2 θ cosφ

+ ν

2
sin2 θ cos 2φ

)
,

where dN
dΩ

≡ dσ

dQ2 dy dq2
T dΩ

/ dσ

dQ2 dy dq2
T

. The solid angle Ω refers

to the lepton pair orientation in the pair rest frame relative
to the boost direction and the incoming hadrons’ plane [33]
and y = 1/2 ln(x/x̄) rapidity. λ,μ, ν are functions that depend
on s, x,Q2,qT , the square of the center of mass energy, the
quark’s fraction of the hadron’s longitudinal momentum, the
invariant mass squared of the produced lepton pair, and the
transverse momentum of the di-muon pair.2 All of these asym-
metry functions have parton model contributions. Taking into
account NLO [32] and NNLO [46] the QCD improved parton
model predicts 1−λ−2ν = 0, the so-called Lam–Tung relation
[47]. However, experimental measurements of πp → μ+μ−X

discovered unexpectedly large values of these asymmetries [2,
3] compared to parton-model expectations resulting in a serious
violation of this relation.

An early theoretical explanation for non-trivial azimuthal
cos 2φ dependence based on the Drell–Yan model, Eq. (2), was
given by Collins and Soper [33] where the “T -even” contribu-
tion to the asymmetry

(3)ν4 =
1

Q2

∑
a e2

aF[w4f1(x, k⊥)f̄1(x̄,p⊥)]∑
a e2

aF(f1(x, k⊥)f̄1(x̄,p⊥))
,

where w4 = 2(ĥ · (k⊥ −p⊥))2 − (k⊥ −p⊥)2 and, ĥ = qT /QT

and F is the convolution integral

F[f f̄ ] =
∫

d2k⊥ d2p⊥ δ(2)(k⊥ + p⊥ − qT )

× fa/A(x, k⊥)f̄ā/B(x̄,p⊥).

2 We are working in the Collins–Soper frame where qT retains its meaning.
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However this contribution as well as attempts to account for
the violation in terms of higher twist effects [34,35] have been
unsuccessful.

Once transverse momentum dependence of parton distribu-
tions enters the picture of scattering processes a larger set of
transverse momentum distribution (TMD) [24] become rele-
vant, particularly for azimuthal and spin asymmetries. Among
such functions are the possible leading twist “T -odd” quark dis-
tribution [17] and fragmentation functions [20].

More recently, Boer [21] proposed that there is a domi-
nant leading twist contribution to ν coming from the “T -odd”
transversity distributions h⊥

1 (x, k⊥) for both hadrons, which
dominates in the kinematic range, qT 	 Q. The cos 2φ az-
imuthal asymmetry in unpolarized pp̄ → μ+μ−X involves the
convolution of the leading twist “T -odd” function, h⊥

1 [21,36–
38]

(4)ν2 =
∑

a e2
aF[w2h

⊥
1 (x, k⊥)h̄⊥

1 (x̄,p⊥)/(M1M2)]∑
a e2

aF[f1(x, k⊥)f̄1(x̄,p⊥)] ,

where w2 = (2ĥ · k⊥ · ĥ · p⊥ − p⊥ · k⊥) is the weight in
the convolution integral, F [21]. A simple model for these
distributions, inspired by Collins’ ansatz for the transversity
fragmentation function, led to qT dependent ν which could
be fit to the low values of the πp data. Further work along
those lines [36–38] incorporated a more realistic model for the
“T -odd” functions, as first developed in SIDIS [22] for the
functions f ⊥

1T (x, k⊥) which were related to the h⊥
1 (x, k⊥) in

Ref. [26]. The results were presented for pp̄ scattering.3 This
azimuthal asymmetry is interesting in light of proposed exper-
iments at Darmstadt GSI [39], where an anti-proton beam is
ideal for studying the transversity property of quarks due to
the dominance of valence quark effects [40]. Herein we extend
our calculations for “T -odd” contributions to the unpolarized
Drell–Yan scattering first reported in [37]. We perform a de-
tailed analysis displaying qT and, for the first time, x, and Q

(or mμμ) dependence of this effect. In addition we compare the
double “T -odd” contribution to the conventional sub-leading
twist “T -even” contribution [33] from Eq. (3).

3. “T -odd” transversity distribution

The leading twist “T -odd” distributions functions emerge
from the color gauge invariant factorized hadronic tensor [20,
21]. In a non-singular gauge (e.g., Feynman gauge) for pp̄ scat-
tering the generalization [41] of the Drell-Yan model [12,33] is

(5)

W(Q,PA,PB) =
∫

d2k⊥ d2p⊥ δ2(q⊥ − k⊥ − p⊥)

× Tr
(
γμΦ[−](x,k⊥)γνΦ̄

[−](x̄,p⊥)
)
.

3 Very recently instanton induced effects have been investigated [48].
Fig. 1. Above: Feynman diagram representing final state interactions giving rise
to “T -odd” contribution to Drell–Yan scattering. Below: Quark-target scattering
amplitude depicting the “T -odd” contribution to the quark distribution function
in the eikonal approximation.

Φ[−](x, k⊥) is the gauge invariant quark–quark correlations
function

Φ[−](x,k⊥) =
∑
X

∫
dξ− d2ξ⊥

(2π)3
eik·ξ 〈P |ψ̄(0)G−

[0,−∞]|X〉

× 〈X|G−
[−∞,ξ ]ψ(ξ)|P 〉|ξ+=0,

with a gauge link G−
[−∞,ξ ], running to −∞ (“past pointing”)

along the “minus” light-cone direction and Φ̄[−](x,p⊥) is the
antiquark correlator with gauge link running to −∞ along the
“plus” light-cone direction. h⊥

1 is projected from the Dirac
trace, that is

Φ[iσ⊥+γ5](x,k⊥) = Tr
(
iσ⊥+γ5Φ

[−](x,k⊥)
)

= 2ε
ij

T k⊥j

M
h⊥

1 (x, k⊥) . . . ,

where ε
ij
T = ε−+ij .

In our work on SIDIS [42–44] we used a parton model
within the quark–diquark spectator framework. Here we extend
that treatment to Drell Yan pp̄ → μμ+X scattering. We expand
the gauge link operator to leading order in the strong coupling
g. Here we have an A+ gluon collinear to the proton running
along the minus light-cone direction [41] resulting in a “T -odd”
TMD represented in Fig. 1 and given by,

(6)

Φ[−](x,p⊥) =
∑
X

∫
dξ−d2ξ⊥

(2π)3
eip·ξ 〈P |ψ̄(0)|X〉

× 〈X|
(

−ig

ξ−∫
−∞

dη− A+(η)

)
ψ(ξ)|P 〉|ξ+=0

+ H.C.

Noting that parton intrinsic transverse momentum yields a nat-
ural regularization for the moments of these distributions, we
incorporate a Gaussian from factor into our model. The non-
perturbative vertex functions entering the correlation functions
Φ[−](x,k⊥) [26,42], in this spectator framework are

(7)〈Xsdq |ψ(0)|P 〉 =
(

i

/k − m

)
Υ

(
k2⊥

)
U(P,S),
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where Υ (k2⊥) = N e−bk2⊥ and b ≡ 1/〈k2⊥〉. N is the scalar di-
quark normalization [42], k is the momentum of the quark in
the target proton, k⊥ and 〈k2⊥〉 are the intrinsic and average in-
trinsic transverse momentum respectively, and U(P,S) is the
nucleon spinor. The quark–diquark–gluon vertex function (in
momentum space) is

(8)

〈Xsdq | A+(�)

�+ + iε
ψ(k − �)|P 〉

= 1

(�2 + iε)(�+ + iε)

× ie2(2(P − k) − �)+

(P − k − �)2 − μ2 + iε

i

/k − /� − m + iε

× Υ
(
k2⊥

)
U(P,S),

where � is the loop momentum. Inserting Eqs. (7) and (8) into
(6), performing the loop integration, and finally projecting the
unpolarized piece from Φ [iσ⊥+γ5] results in the leading twist,
“T -odd”, scalar diquark contribution to the Boer Mulders func-
tion (which is equal to the Sivers function [26]),

(9)h⊥
1 (x, k⊥) =NαsM

(1 − x)(m + xM)

Λ(k2⊥)k2⊥
R

(
k2⊥;x)

,

where

R
(
k2⊥;x) = exp−2b(k2⊥−Λ(0))

(
�

(
0,2bΛ(0)

) − �
(
0,2bΛ

(
k2⊥

)))
is the regularization function, Λ(k2⊥) = k2⊥+(1−x)m2 +xμ2 −
x(1−x)M2, and M , m, and μ are the nucleon, quark, and spec-
tator diquark masses, respectively. The normalization factor N ,
and b = 1/〈k2⊥〉 are determined with respect to the unpolarized

u-quark distribution f
(u)
1 (x, k⊥)

f1(x, k⊥) = N (1 − x)((m + xM)2 + k2⊥)

Λ2(k2⊥)
Rf

(
k2⊥

)
,

where Rf (k2⊥) = e−bk2⊥ . Taking the first moment yields

(10)

f (x) = g2

(2π)2

b2

π2
(1 − x)

{
(m + xM)2 − Λ(0)

Λ(0)

− [
2b

(
(m + xM)2 − Λ(0)

) − 1
]

× e2bΛ(0)�
(
0,2bΛ(0)

)}
,

which multiplied by x with 〈k2⊥〉 = (0.4)2 (GeV/c)2, is in good
agreement [42] with the valence distribution of Ref. [49]. The
quark–gluon coupling g ≡ e1 and e2 the gluon-scalar diquark
together yield αs = CF e1e2/4π , where αs = 0.4 and CF = 4/3.

4. Drell–Yan kinematics

Before we perform the convolution integral in Eq. (4), the
Drell–Yan kinematics demand some special attention. Since the
incoming partons have non-vanishing transverse momentum k⊥
and we are considering the kinematic higher twist corrections
ν4 relative to ν2, consistency demands that we take into account
qT /Q corrections in the two body kinematics. They enter the
Fig. 2. ν plotted as a function of qT for s = 50 GeV2, x in the range 0.2–1.0,
and Q ranging from 3–6 GeV/c. Solid line leading twist contribution ν2,
dashed line leading and sub-leading twist (ν2 + ν4). Data: Diamonds are for
E615 π− + p at 252 GeV/c. Circles are for E866 p + d at 800 GeV/c. Hori-
zontal bars refer to bin size, vertical error bars refer to statistical uncertainties.

constraints among x and x̄, the fractional longitudinal momenta
of the quark and antiquark,

xx̄ = (
Q2 + q2

T

)
/s ≡ τ̃ ,

x − x̄

2
≡ η = xF /2 and

(11)x = η +
√

η2 + τ̃ 2, x̄ = −η +
√

η2 + τ̃ 2,

where xF is Feynman-x. Due to the constraint on xx̄ the al-
lowed range of x is restricted for each Q value, from xmin =
(Q2 + q2

T )/s to 1. Furthermore, evaluating the convolutions of
h⊥

1 h̄⊥
1 and f1f̄1 for a sampling of x will not treat the x̄ and

the corresponding antiparticle structure functions symmetri-
cally. So it is more appropriate to use the symmetrical variable,
xF . However, the allowed range of xF depends on Q (from
−1/2(1−(Q2 +q2

T )/s) to +1/2(1−(Q2 +q2
T )/s)). That is, the

variables xF and Q are not orthogonal. Since we aim to present
partially integrated values of ν, approximating experimental-
ists’ measurements, it is advantageous to work with orthogonal
variables. We choose the variable

(12)ζ = 1

2

xF

(1 − (Q2 + q2
T )/s)

,

with range from − 1
2 to + 1

2 , independent of q and qT . Values of
the asymmetry fill the rectangular space of variables, ζ,Q,qT .
We have been careful with this choice because our model pre-
dictions have considerable structure in all 3 variables. Hence
the meaning of a graph of ν(Q) or ν(x) has particular signifi-
cance when comparing to experimental data.

A crucial point in selecting these variables involves how ex-
perimenters determine various asymmetries and angular depen-
dences, in order to maximize statistics when extracting possibly
small effects like ν. Events appear distributed over allowed re-
gions (modified by experimental acceptances) of all three vari-
ables along with the μ pair angular variables, of course. To
obtain the dependence on one variable, large bins are defined
and event numbers averaged over those bins. How are those re-
sults to be compared with theoretical predictions [50]? The two
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Fig. 3. ν plotted as a function of Q for s = 50 GeV2, x in the range 0.2−1.0,
and qT ranging from 1–2 GeV/c. Solid line leading twist contribution ν2,
dashed line leading and sub-leading twist (ν2 + ν4).

Fig. 4. Contours of constant x (for fixed qT ) as a function of ζ and Q.

experiments for which relevant data have been published have
different ranges of variables [2,3]. The binning procedures are
not easily compared. To be most general and adaptable for fu-
ture experimental comparisons we have determined the value of
ν as a function of ζ,Q,qT . We then integrate over pairs of those
variables for particular ranges of the variables. At s = 50 GeV2

we take qT � 2 GeV/c and 3 GeV/c � Q � 6 GeV/c, while ζ

always varies from −1/2 to 1/2.
For ν(qT ) and ν(Q) the resulting values are shown in Figs. 2

and 3. There is a corresponding ν(ζ ) shown in Fig. 5. To con-
nect with the x or xF dependence we have to take the qT and q

dependence into account. For each qT the fixed x or xF values
form contours in the ζ, q plane. So an integral of ν over q for
a fixed xF follows the relevant contour in ζ,Q and has a limit
on τ̃ = (Q2 + q2

T )/s of (1 − xF

2ζ
). This limits the range of the

Q integral until the limiting value of the range at Q = 6 GeV/c

for s = 50 GeV2. Similarly, for each qT the fixed x values form
asymmetrical contours in the ζ,Q plane as shown in Fig. 4. The
limit on τ̃ for a fixed x will be (

2ζ−x
2ζx−1 ). The resulting values of

ν(x) are shown in Fig. 6.
Fig. 5. ν plotted as a function of ζ for s = 50 GeV2, qT ranging from
1−2 GeV/c and Q from 3−6 GeV/c. Solid line leading twist contribution ν2,
dashed line leading and sub-leading twist (ν2 + ν4).

Fig. 6. ν plotted as a function of x for s = 50 GeV2 qT ranging from
1−2 GeV/c and Q from 3−6 GeV/c. Solid line leading twist contribution ν2,
dashed line leading and sub-leading twist (ν2 + ν4).

The predictions shown in Figs. 2, 3, 5, and 6 are specifically
for p̄ +p scattering. While there are no data for this reaction—
a proposed facility at GSI [39] would provide this. As we have
noted, there are data on the Drell–Yan asymmetries for π + p

[2,3] and recently, p + d [52]. The analog of the T -odd contri-
bution to the ν asymmetry for the π induced process involves
a transversely polarized valence antiquark with transverse mo-
mentum, h̄

⊥(π)
1 (x, k⊥). For the sake of illustration, we include

data points from E615 [2] in Fig. 2. They fall roughly near our
predictions. This suggests that the analogous T -odd structure
function for π is comparable in magnitude to h⊥

1 for the proton
(see also [21,38]). By contrast, the E866 deuteron target data
[52] show measured values of ν between 0 and 0.1 over the
same range of qT , as indicated in Fig. 2. One of the pair of struc-
ture functions in the convolution will involve sea anti-quarks,
the h̄

⊥(sea) for N → ū or d̄ . We have not provided a model
1
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for this subprocess, but it is theoretically suppressed by an-
other factor of αs in our approach (as well as possible kinematic
factors). A consideration of this data implies that this sea struc-
ture function must be at most roughly 1

3 of the magnitude of
our predicted valence quark structure function. In making these
comparisons with the data we are only providing suggestions
about magnitudes of contributions, given that different struc-
ture functions are involved and differing kinematic regimes are
explored.

5. T -even contribution

Long before the realization that there is a leading twist 2 con-
tribution to the Drell–Yan azimuthal asymmetry, Collins and
Soper [33] proposed that the spin independent, transverse mo-
mentum dependent distributions f1 and f̄1 could contribute via
Eq. (3). It is important to compare this kinematic twist 4 con-
tribution to the leading twist contribution Eq. (4) shown above.
We combined both convolutions to determine the magnitude of
the shift. The additional contribution for s = 50 GeV2 to each
of the partially integrated functions ν is shown in Figs. 2, 3, 5, 6
as slightly higher curves (dashed lines). The additional contri-
bution is around 5–7%. For higher s values the effect is even
smaller, as expected [37].

6. Conclusion

A perusal of the figures shows that the cos 2φ azimuthal
asymmetry ν is not small at center of mass energies of 50 GeV2.
We estimated the leading twist 2 and twist 4 contributions [37].
In Fig. 2, the “T -odd” portion (solid line) contributes about
25−30% with an additional 5% from the sub-leading “T -even”
piece (dashed line). The distinction between the leading order
“T -odd” and sub-leading order “T -even” contributions dimin-
ish at center of mass energy of s = 500 GeV2 [37]. Even in
Fig. 6, ν versus x at s = 50 GeV2, where qT ranges from
1−2 GeV/c, the higher twist contribution is a rather small ad-
dition.

Thus, aside from the competing “T -even” effect, the exper-
imental observation of a strong x-dependence would indicate
the presence of “T -odd” structures in unpolarized Drell–Yan
scattering, implying that novel transversity properties of the
nucleon can be accessed without invoking beam or target po-
larization.

It should be noted that at order αs a complete analysis for the
full range of qT would entail including gluon bremsstrahlung
contributions [32]. Furthermore, collinear Sudakhov correc-
tions have not been accounted for here [51]. A thorough ex-
plication of Drell–Yan dynamics would require more care with
regions in which divergent contributions become important to
address. For this study, however, we have considered the impli-
cations of our model, unencumbered by subtleties at the edges
of the phase space on which we concentrate.

We also conclude that “T -odd” correlations of intrinsic
transverse quark momentum and transverse spin of quarks
are intimately connected with studies of the cos 2φ azimuthal
asymmetries in pp̄-Drell–Yan scattering. Due to the dominance
of valence quark effects we estimate that the proposed proton
anti-proton experiments at GSI [39] provide an excellent op-
portunity to study the role that “T -odd” correlations play in
characterizing intrinsic transverse spin effects within the pro-
ton.
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