
Electronic Notes in Theoretical Computer Science 46 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume46.html 24 pages

The Geometry of the Intersection of Voxel
Spaces

Jean-Pierre Reveillès 1,2

LLAIC
Université d’Auvergne

Clermont-Ferrand, France

Abstract

Views rendered by the numerous current digital medical facilities and 3D technolo-
gies (Positron Emission Tomography, Magnetic Resonance Imaging, Synchrotron
Radiation, Radars, Stereography, etc.) of a 3D object may often be assimilated to
tilings of R

3 space by identical cubes (or voxels). Relating two such views of a single
object obtained by two distinct processes, in order to fusion their information on
a new image, requires a processing of these two tilings specially for objects whose
size is close to the resolution of the employed technology.
Keywords: Cubes Intersection, Continued Fractions, Digital Geometry, Medical
Imaging.

1 Introduction

3D digital images being often considered as tilings of R
3 space by identical

cubes, the fusion problem of Medical Imaging tries to relate two tilings of a
same area when these tilings are built with voxels of different orientations and
resolutions. We propose a geometrical approach to this problem by computing
the intersection of overlapping voxels of both families.

This question of fusion of two 3D images is still an issue in Medical Imaging,
mainly when small crucial parts of these images have to be matched, as it is the
case, for example, with brain areas like caudate nuclei and putamen (see [2]).
Several similar areas of interest for the pathologist are contained in rather
small boxes, sometimes not larger than 10 pixels in each direction and the
precision of medical facilities being fixed for technological reasons, there is no
way of zooming in to get better views. Only a detailed mathematical study
of the situation may help the surgeon.

1 Contrat ACI no23 du Ministère de la Recherche et de la Technologie
2 Email: reveil@llaic.u-clermont1.fr

c©2001 Published by Elsevier Science B. V.

285

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82506047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Reveillès

Up to now this question is generally solved using simple Image Processing
techniques whose inaccuracy is well known.

Formulas and algorithm presented in this paper should become a reference
tool to evaluate the quality of existing fusion methods and particularly should
help designing new ones. Fusion of different 3D images depends on a more
general problem which is that of digital coordinates change in fixed accuracy
discrete spaces and such situations abound in our present digital era.

Given two regular grids of different resolution and size placed on a same
nD object, the digital coordinates change question consists in finding formulas
relating integer coordinates, and values attached to overlapping voxels, of both
parameterizations. If formulas relating coarse and fine coordinates can be
easily established, their accuracy is acceptable only if both image resolutions
are pretty distinct; they are not sufficient when resolutions are close to each
other. In this latter case actual volumes of intersection polyhedra have to be
determined and mixed into interpolation formulas.

Let us describe our approach and the content of this paper.

Digital coordinates change problem mixes polyhedra intersection with lat-
tice periodicity. This problem is trivial in dimension 1, much richer in di-
mension 2 and becomes more and more complicated as dimension increases.
This is mainly due to the increasing complexity of the intersection problem
and also because no clear way of using lattice periodicity and cubes simple
structure appears to reduce the overall amount of work as soon as n ≥ 3.

The 2D situation is instructive because the underlying intersection prob-
lem is simple and the benefit of lattice periodicity can be easily explained with
the help of continued fractions. Unhappily such lattice properties do not gen-
eralize such as in higher dimensions. This 2D case nevertheless gives precious
indications about which higher dimensions notions are worth introducing, like
plane sections of voxels spaces studied in parts 5,6, formulas giving plane
sections of cubes of part 8 and quadratic cubes of part 13.

Cubes of this kind have quadratic coordinates vertices, which allows Alge-
braic Computer Systems to exactly compute intersection points of edges and
faces. This, in turn, gives processes to express formally the vertices of the
intersection of two quadratic cubes; this is exposed in part 14.

But, coming to this point, the seemingly simple problem of intersecting
two cubes in general position, puzzling questioning arises: should one use al-
gorithms designed for any convex polyhedra or should one try, on the contrary,
to take advantage of cubes especially simple structures and numerous symme-
tries? Immediate considerations on this intersection problem show that a naive
approach along either of these ways results in a large amount of computations
and, particularly, of inequalities checking.

It appears that the specific structure of cubes, mainly their symmetries,
(used in parts 9, 10, 11) results in a very significant reduction of the number
of inequalities to be checked. More precisely exact formulas containing no
inequality, are obtained for plane sections of cubes, leading, combined with a

286

Reveillès

3D convex facets intersection algorithm (cf. part 15), to an efficient procedure
for the intersection of two voxels. A nice consequence of the formal approach
is the removal of the treatment of all particular cases from the programming
these degenerate cases being contained into the analytic formulas.

2 The 2D digital coordinates change problem

This problem occurs when information (for example gray levels) of two images
of different orientation and resolution of a same object, have to be matched.
Both kinds of pixels can be described as small and large. We suppose that

∆

(-b,a)
(a,b)

Fig. 1. Digital coordinates change.

small pixels are defined by integer vectors (m, 0) and (0,m) (i.e. they are
m×m blocks of unit squares), and large pixels are defined by integer vectors
(a, b) and (−b, a). It is easy to see that large pixel whose coordinates are (x, y)
roughly correspond to small pixel (

[
ax−by

m

]
,
[

bx+ay
m

]
). Similar formulas giving

coordinates of large pixels as functions of coordinates of small ones can be
written.

Accuracy of these simple digital coordinate change formulas is sufficient
when the euclidean norm ‖(a, b)‖/m is not to small (i.e. greater than 10),
but is to rough when ‖(a, b)‖/m is small, which means that both grids have
similar sizes. In this case one has to compute areas of intersections of small
and large pixels and take account of them into interpolating formulas.

But computing many intersections of pixels by brute force would be de-
manding; it is wise trying to optimize this task and continued fractions allow
to do so.

Vector (a, b) defining large pixels being integer, let us suppose, moreover,
that a and b are relatively prime. Let ∆ denotes euclidean line directed by

287

Reveillès

(a, b). All integer points k(a, b) where k ∈ Z belong to ∆ and similarly for the
euclidean line directed by (−b, a), (see fig. 1).

In fact square L whose vertices are (0, 0), (a, b), (a−b, b+a), (−b, a), (this is
one of the large pixels), tiles the digital plane Z

2, and this tiling is doubly pe-
riodic. Thus intersection scheme of small and large pixels is already contained
in intersections of L and all small pixels it overlaps. This reduces considering
small pixels which cover L edges. Obviously these coverings are 4-connected
digital lines whose parametrization can be obtained easily; example of such
covering is illustrated by fig. 2.

Let us say a few words of what occurs if vector (a, b) is replaced by any
real vector −→v . First this does not restrict applications, as a real vector −→v may
be arbitrarily approximated by integer vectors, (see [7]); and it is well known
that such approximations can by obtained with continued fractions associated
to −→v , (cf. [8]). Second if slope α of −→v is irrational, previous bounded square
tiles become infinite and the intersection scheme is given by the covering of
whole line ∆, and its perpendicular line, by small pixels.

Thus intersection schemes occurring in digital coordinate changes are al-
ways given by 4-connected digital lines covering of euclidean segments; these
are bounded if −→v is integer and unbounded in the opposite case.

Fig. 2. Covering pixels.

If α if an irrational or a large rational number, this scheme may be dif-
ficult to describe because no obvious parametrization of covering pixels ex-
ists in the first case, and the 4-connected parametrization may involve large
integers in the second one. The so called Klein’s diagram gives the inter-
section scheme if α is irrational and reduces its complexity when α if ratio-
nal. This diagram is simply a couple of two convex hulls, that of integer
points {(x, y) | x ≥ 0 and y ≥ αx} and similarly that of integer points
{(x, y) | x ≥ 0 and 0 ≤ y ≤ αx}. The two polygonal lines bounding line
y = αx given by Klein’s diagram are often called Klein’s funnel, see fig. 3.

It is well known (see [4], [8]) that Klein’s funnel vertices correspond to par-
tial quotients of continued fraction associated to number α. The nice property
of Klein’s funnel lies in the following.

Proposition 2.1 Intersection scheme of line y = αx with unit pixels is the
same as the intersection scheme of Klein’s funnel.

This results says that in order to get intersection scheme of line y = αx
with unit pixels, it suffices to construct that of its Klein’s funnel, (one of the

288

Reveillès

two polygonal lines of the funnel suffices). As Klein’s funnel is made of integer
segments, its covering is a union of 4-connected digital segments. This shows
how continued fractions allow to determined easily the intersection scheme of
two different 2D views of a same object.

0

2

4

6

8

2 4 6 8 10 12 14

Fig. 3. Klein’s funnel.

Formulas giving areas of intersections of any small and large pixels may
be obtained; a close question is studied in §11 and 12.

3 The 3D digital coordinates change problem

Each voxel of a 3D image being assimilated to a unit cube, such an image is
naturally a tiling of space R

3 which may be called voxels space or voxels tiling.

This problem could be solved applying a double loop to a procedure giving
the intersection polyhedron of two cubes, each of them running into one of
the collections of voxels.

But this approach could miss eventual periodicities existing among inter-
section polyhedra of cubes analogous to that sawn for the 2D digital coordi-
nates change problem. Although all aspects of lattice periodicities will not be
studied in this paper (those which are relevant of multidimentional continued
fractions will only be sketched in §16), those which are taken into account,
known as voxels space plane sections, need to depart somehow of the obvious
way of doing.

Study of the geometry of plane sections of voxels tilings and its relation-
ships with the computation of the intersection of two cubes will now occupy
the rest of this paper.

289

Reveillès

4 Intersection of voxels

If the question of the intersection of two (and only two) cubes may be con-
sidered as worthless from a theoretical point of view, this is not the case if
they belong to two voxels tilings because, in this case, they possess strong
regularity properties which reappear in their intersections.

As already mentioned, intersection of two cubes can either be considered
as a particular case of the intersection of two convex polyhedra or as the
intersection of two objects possessing really special structures. If the first
point of view is well known in Computational Geometry ([5], [9], [11]), the
second one has, to our knowledge, never been published, even if some technics
of Computer Imagery like 3D clipping, ([6]), seem close to it.

General Computational Geometry algorithms, which use rather sophisti-
cated data structures to describe convex polyhedra are not well adapted to
the present situation for two principal reasons. The first is that they avoid
degenerate cases: vertex of the first cube belonging to a face or an edge of the
second, colinear edges, edges coplanar to a face, coplanar faces and so on. The
second is that implementing them in exact arithmetic or in Computer Algebra
Systems is still ahead ([11]) and current implementations with floating point
systems destroys lattice properties, which forbids their study.

This explains main characteristics of our approach which aims to a formal
description of the intersecting polyhedron of two cubes, that is to get the exact
algebraic values of its vertices as it is the place where some lattice periodicities
hide. But this could be very costly if cube specificities like their small number
of faces and their rich symmetry group were not used.

Working Computer Scientists know the long way between theoretical algo-
rithms and their coding. This paper is not only concerned with the geometry
of voxels intersection algorithm but also with the issues in its coding. Effi-
ciency of this code, mainly the deletion of almost all control tests occurring
in main loop, is the first reason of our way of doing; the second one is to stay
within a convenient numbers system: quadratic algebraic ones.

Main idea of our algorithm consists in determining faces of the intersection
polyhedron of two cubes. If C and C ′ are two cubes in general position and F ,
F ′ denote collections of their faces, any face of the polyhedron K = C ∩C ′ is
supported either by a face f ∈ F or by one f ′ ∈ F ′. If a face of K is supported
by a face f ∈ F , it is the intersection of two polygons, namely supp(f) ∩ C ′

and the square f , and vice versa, (more precisely supp(f) ∩ C ′ denotes the
intersection of the support plane of f with cube C ′).

In fact support planes of voxels of one of the two families cuts an infinite
number of cubes of the other family. But these support planes are periodi-
cally spaced, thus the periodicity of a voxels tiling should appear in its plane
sections which are 2D ordinary tilings. Rationality hypothesis about section
planes simplifying greatly these 2D induced tilings, we are able to give explicit
formulas for the vertices of their tiles which, in turn, reduces considerably the

290

Reveillès

complexity of our intersection algorithm, this last one being reduced to poly-
gons intersections computations, a rather simple task.

Fig. 4. Principle of the voxels intersection algorithm.

Observing that the intersection polyhedron K of two cubes C and C ′ has
at most 12 faces, these being common parts of square faces of one of the cubes
with plane sections of the other one induced by their support planes, intersec-
tion algorithm is:

Loop on all 12 faces of both cubes

Determine plane section of other cube by the support plane of this face.

Compute intersection of both polygons: plane section and square face.

Figure 4 shows one face of the left cube and the intersection of its sup-
port plane with the right side one. Common part of the square face and the
intersection polygon is a face of polyhedron K = C ∩ C ′.

5 Plane sections of the voxel space

The study of the geometry of plane sections of voxels tilings is also called in-
formation extraction in Medical Imaging; it is a crucial part in our intersection
algorithm.

As can be seen on picture 5, the question is to describe all intersections
of a given plane with the tiling made of all voxels filling space R

3. That is
we want to describe all intersection polygons of this plane with each voxel it
meets.

But, as is well known, approximate knowledge of geometrical objects (as
polygons and polyhedra) destroys most of their theoretical properties avoiding
a complete study and implementation of degenerate cases. This is why we
do not look only for mere numerical approximations of the vertices of these
polygons, but for analytical expressions of their coordinates.

291

Reveillès

Fig. 5. Plane section of voxels tiling.

Figure 5 shows some voxels cut by a plane (P) on which they induce an
ordinary 2D tiling (this tiling of the plane must not be confused with the
tilings of R

3 induced by voxels).

This 2D tiling, illustrated in the following picture 6, is built by intersecting
the plane with three families of isothetical planes whose equations are x =
k, y = l, z = m, and where k, l,m are integers (here we consider small voxels
are unit cubes).

Fig. 6. 2D tiling induced by voxels on section plane.

Let us suppose our intersecting plane (P) goes through 0 and has an integer

292

Reveillès

normal vector (a, b, c), where 0 ≤ a ≤ b ≤ c, and gcd(a, b, c) = 1. Thus
equation of (P) is ax + by + cz = 0. Constrains prescribing (a, b, c) being
integer may seem surprising, but we recall that any real direction u in R

3

possesses arbitrarily close diophantine approximations, and, moreover, it is
easy to find integers a, b, c such that angle(u, (a, b, c)) is arbitrarily small. We
shall also see that constrains 0 ≤ a ≤ b ≤ c can be relaxed without producing
mountains of control tests if octahedral group Oh is used. This last point will
be treated below.

A simple computation, made in a basis attached to plane (P), shows that
above mentioned tiling is induced by the following family of four parameters
lines, x being the variable as usual.

d1(x, a, b, c, k) = k
√
(a2 + b2 + c2)/sqrt(a2 + b2)

d2(x, a, b, c) = (ax− k√(a2 + b2))sqrt(a2 + b2 + c2)/bc

d3(x, a, b, c) = −(bx+ k
√
(a2 + b2))sqrt(a2 + b2 + c2)/ac

Figure 6, which shows tiling induced by space voxels on the plane (P)
whose equation is 3x+7y+13z = 0, has been drawn using these three families
of lines.

6 Arithmetization of the tiling of the plane. Expressing
periodicity.

A closer look at figure 6 shows existence of periods, that is of identical tiles.
This is one of the (nice) consequences of our arithmetical hypothesis concern-
ing (P) normal vector (a, b, c). The problem is to express these periods, that
is two translation vectors and all tiles of one period; this is where arithmetics
comes in.

Each voxel being attached to its lower, left, bottom vertex (x, y, z), we
denote by f(x, y, z) the linear form ax + by + cz. It is clear that distances
of integer points M = (x, y, z) and M ′ = (x′, y′, z′) to plane (P) are equal
if and only if |f(x, y, z)| = |f(x′, y′, z′)| and that M and M ′ are in the same
half-space delimited by (P), and are at the same distance to (P) if and only
if f(x, y, z) = f(x′, y′, z′).

We deduce from this that to cubes C and C ′ respectively attached at M
and M ′ have the same intersection polygon with plane (P) if and only if
f(x, y, z) = f(x′, y′, z′).

Periodicity in the tiling of plane (P) is thus equivalent to solving the
diophantine problem

ax+ by + cz = 0(1)

that is of finding integer solutions (x, y, z) of this equation.

While several treatises give complete proofs and algorithms to solve general
systems of linear diophantine equations, (see for example [7]), we shall briefly
describe one algorithm due to Blankinship (see [3]), which solves the restricted

293

Reveillès

case of equation (1). Understanding and use of this algorithm should be clear
once we remind that solutions of (1) make a 2D lattice contained in (P)
and that a lattice has many basis, but that a free family of 2 vectors is not
necessarily a basis.

Given diophantine equation ax+ bx+ cz = 0 we build the matrix



a b c
1 0 0
0 1 0
0 0 1




and apply columns operations driven by first line entries a,b,c in order to
cancel two values among them. Values in lines 2, 3, 4 located below both zeros
of line 1 of the resulting matrix give two vectors of Z

3 making a basis of the
solutions of (1).

Let us solve diophantine equation 3x+7y+13z = 0 to illustrate this process
which is a simple integer clone of Gauss algorithm. Following matrices show
successive steps which have to be done.




3 7 13
1 0 0
0 1 0
0 0 1







3 1 1
1 −2 −4
0 1 0
0 0 1







0 0 1
7 2 −4
−3 1 0
0 −1 1




A possible base is thus (7,−3, 0), (2, 1,−1) as the reader may verify.

Using the same ideas he (she) shall be able to devise algorithms to solve
diophantine equation ax+ by + cz = k, where k is another integer parameter
(hint: start solving ax+ by + cz = 1).

Knowing a basis {v1, v2} of the lattice associated to equation (1) solves the
periodicity question for the plane lattice in the following way. If M = (x, y, z)
is an integer point such that voxel attached at M cuts plane (P) then all
integer points where attached voxel cuts (P) with the same polygons (within
translation) are points

M + k1v1 + k2v2(2)

where k1 and k2 are arbitrary integers.

7 Explicit description of intersecting polygons.

Once period vectors of the tiling of (P) are obtained, it remains to describe
precisely each of the tiles appearing within one period. All these tiles are
plane sections of a given unit cube. Let us suppose for the moment that this
cube (C) is [0, 1]3, [0, 1] being the unit interval of R. We denote by F1 the

294

Reveillès

subset of directions of R
3 satisfying

F1




0 ≤ a ≤ b ≤ c
a+ b ≤ c

(3)

and similarly by F2 the subset

F2




0 ≤ a ≤ b ≤ c
a+ b ≥ c

(4)

Theorem 7.1 The sequence of vertices of the unit cube crossed by the planes
ax+ by + cz = k, when k varies from −∞ to ∞, is independent of (a, b, c) as
long as it stays in F1.

Of course this result is also true when (a, b, c) ∈ F2, but order of crossed
points changes.

A few words about this theorem, before we give the precise order in which
vertices are crossed, should explain its object.

Whatever the plane cutting a cube, vertices of the resulting intersection
polygon are taken among the 12 intersections of this plane with the 12 support
lines of the cube edges.

But the number of edges of plane (non degenerate) sections of a cube is
greater than 3 and lower than 6, meaning that some of the previous intersec-
tions points must be eliminated to get the right polygons. For each polygon
this theorem will first help determining its vertices among the 12 possible
points, (remark that the choice changes with the polygon type), and second,
but this is a programmer’s consideration, also allow to list these vertices in
the order of their convex hull.

If, for example, just triangles are considered among all polygons, it is clear
that there will be only 8 cases (close to cube vertices); but the number of
cases for other polygons types would be much more difficult to find without
former theorem, and worse, the whole programming of the formulas giving
coordinates of their vertices would be very boring and difficult to debug.

If plane (P) is moved parallel to itself, under the constrain a+ b ≤ c, it is
immediately seen that the order in which (C) vertices are crossed is given by
the sorting in increasing order of the eight values f(v1), f(v2), . . . , f(v8) taken
by form f on (C) vertices. Definition of cube (C) = [0, 1]3 gives the evaluation
of these 8 values which are 0, a, b, c, a+ b, a+ c, b+ c, a+ b+ c, and hypothesis
on (a, b, c) ∈ F1 shows immediately that their increasing sorting is:

0 < a < b < a+ b < c < a+ c < b+ c < a+ b+ c(5)

As f is proportional to the distance to plane (P), this set of inequalities
says that the order in which (C) vertices are crossed by (P) displacement is:

(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1).

As (C) edges meeting at (0, 0, 0) are [(0, 0, 0), (1, 0, 0)], [(0, 0, 0), (0, 1, 0)]
and [(0, 0, 0), (0, 0, 1)], we deduce that if (P) is such that f value satisfies

295

Reveillès

0 ≤ f(x, y, z) < a, this plane cuts these three edges of (C) and no other
one. That is intersection (C) ∩ (P) is a triangle. Moreover coordinates of the
vertices of this triangle can be computed formally.

8 The fundamental sections of a cube

While present cube (C) is very convenient to explain how we can find all its
plane sections, equivalent but more useful formulas are obtained when (C)
is centered at origin and when its size is any number; these formulas are
given below (eqs(06)). Present definition of cube (C) nevertheless shortens
explanations.

Let us go on and find the next intersection polygon. As next crossed
vertex is (1, 0, 0), two new edges, [(1, 0, 0), (1, 1, 0)] and [(1, 0, 0), (1, 0, 1)] are
cut, while [(0, 0, 0), (0, 1, 0)], [(0, 0, 0), (0, 0, 1)] are also intersected, but seg-
ment [(0, 0, 0), (1, 0, 0)] is not. Thus when f value satisfies a ≤ f(x, y, z) <
b intersection polygon (C) ∩ (P) is a quadrilateral, which is, after inspec-
tion, a trapezoid because planes associated to [(0, 0, 0), (0, 1, 0), (0, 0, 1)] and
[(1, 0, 0), (1, 1, 0), (1, 0, 1)] are obviously parallel. Such a case is illustrated by
fig. 7

Fig. 7. One plane section of a cube.

Let us still treat the next case ant let the reader treat remaining ones, (all
results are gathered in the functions tri(k), etc. presented below in eqs(06)).

It suffices finding which (C) edges are cut when vertex (0, 1, 0) is crossed.
Edge [(0, 0, 0), (0, 0, 1)] starting from first vertex (0, 0, 0) is still cut, as segment
[(1, 0, 0), (1, 1, 0)] and edge [(1, 0, 0), (1, 0, 1)], but two new edges, precisely
[(0, 1, 0), (1, 1, 0)], and [(0, 1, 0), (0, 1, 1)] are also intersected by (P). Thus in
case a ≤ f(x, y, z) ≤ b, plane section of cube (C) is a five edges polygon.

296

Reveillès

Former description of (C) plane sections supposes (a, b, c) ∈ F1; other case
(a, b, c) ∈ F2 is treated similarly. Going from F1 to F2 modifies only slightly
the order in which (C) vertices are traversed. Fourth case polygon is changed
from parallelogram to hexagon, the 6 crossed edges being [(1, 0, 0), (1, 1, 0)],
[(1, 0, 0), (1, 0, 1)], [(0, 1, 0), (1, 1, 0)], [(0, 1, 0), (0, 1, 1)], [(0, 0, 1), (1, 0, 1)] and
[(0, 0, 1), (0, 1, 1)]. Thus only five kinds of polygons are obtained when a cube
is cut by a plane : triangle, trapezoid, pentagon, parallelogram and hexagon.
It is easy to collect the five functions giving their vertices into one procedure,
the forthcoming sct(k), which is well defined when (a, b, c) ∈ F1 ∪ F2. We
denote F = F1 ∪ F2.

As we already said the most useful formulas are obtained when cube (C) is
symmetric with respect to origin, for example when (C) = [−", "]3. In this case
(C) edges length is 2", " being a new parameter. Reader can notice procedure
sct(k) uses very few inequalities to give all vertices of any plane section of
cube (C) when (a, b, c) ∈ F . He (she) can also verify that these formulas
are continuous functions which give the right limit (degenerated) polygon
when parameters tend toward special values. This implies that these formulas
also give particular cases of cubes plane sections. For example vertices of a
parallelogram parallel to an edge will converge to it if the section plane tends
to this edge. Then we shall rely on cube symmetries to get (C) plane sections
for any normal vector (a, b, c), using some elementary group theory.

All these formulas, expressed as functions of parameter k = f(x, y, z), for
cube [−", "]3 are given below:

tri : k → [[", (k − " ∗ (a+ c))/b, "], [", ", (k − " ∗ (a+ b))/c],
[(k − " ∗ (b+ c))/a, ", "]]

tra : k → [[", (k − " ∗ (a+ c))/b, "], [", ", (k − " ∗ (a+ b))/c],
[−", ", (k − " ∗ (−a+ b))/c], [−", (k + " ∗ (a− c))/b, "]]

par : k → [[−",−", (k + " ∗ (a+ b))/c], [",−", (k − " ∗ (a− b))/c],
[", ", (k − " ∗ (a+ b))/c], [−", ", (k − " ∗ (−a+ b))/c]]

pen : k → [[(k + " ∗ (b− c))/a,−", "], [",−", (k − " ∗ (a− b))/c],
[", ", (k − " ∗ (a+ b))/c], [−", ", (k − " ∗ (−a+ b))/c],
[−", (k + " ∗ (a− c))/b, "]]

hex : k → [[(k + " ∗ (b− c))/a,−", "], [",−", (k − " ∗ (a− b))/c],
[", (k − " ∗ (a− c))/b,−"], [(k − " ∗ (b− c))/a, ",−"],
[−", ", (k − " ∗ (−a+ b))/c], [−", (k + " ∗ (a− c))/b, "]]

(6)

Any plane section of cube (C), when (a, b, c) ∈ F, may be given by the
following algorithm using a simple test control based on k and a + b ≤ c or

297

Reveillès

a+ b ≥ c to call the right function among the former 5 ones. Fig. 9 shows all
plane sections of cube (C) giving all tiles of a plane section of a voxels tiling.

sct:= proc(k)
local eps,u;
if is(−l ∗ (a+ b+ c) <= k) and is(k <= l ∗ (a+ b+ c)) then

if is(k >= 0) then
eps := 1: u := k

else
eps := −1: u := −k

end if;
if is(c < a+ b) then

if is(0 <= u) and is(u < l ∗ (a+ b− c)) then
eps ∗ hex(u)

elif is(l ∗ (a+ b− c) <= u) and is(u < l ∗ (a− b+ c)) then
eps ∗ pen(u)

elif is(l ∗ (a− b+ c) <= u) and is(u < l ∗ (c− a+ b)) then
eps ∗ tra(u)

else
eps ∗ tri(u)

end if
else

if is(0 <= u) and is(u < l ∗ (c− a− b)) then
eps ∗ par(u)

elif is(l ∗ (c− a− b) <= u) and is(u < l ∗ (a− b+ c)) then
eps ∗ pen(u)

elif is(l ∗ (a− b+ c) <= u) and is(u < l ∗ (c− a+ b)) then
eps ∗ tra(u)

else
eps ∗ tri(u)

end if;
end if;

end if;
end proc;

This procedure gives a formal description of all plane sections of a cube
when parameters a, b, c satisfy F1 or F2, that is when (a, b, c) ∈ F ; set F is the
fundamental domain of (C) symmetry group. Of course analogous formulas
exist for the other cases, but finding them using control tests would be very
awkward: code writing and debugging would be long and tedious tasks. Using
octahedral group, which is the group of symmetries of a cube, will simplify
this generalization.

298

Reveillès

9 The octahedral group of symmetries of a cube.

This group, denoted Oh, can be identified with the product of group (Z/2Z)3

of order 8 with the group S3 of permutations on three letters, of order 6. Order
of Oh is thus equal to 48.

While Oh is usually interpreted with the help of symmetries of a cube (like
(C)), we shall depart from this course to adopt an equivalent one where Oh

reduces any space direction to a canonical one belonging to its fundamental
domain F defined by inequalities 0 ≤ a ≤ b ≤ c.

In the sequel, first factor of Oh, that is group (Z/2Z)3, will correspond to
the obvious eight signs arrangements of the three coordinates a, b, c of a Z

3

vector, while second factor S3 will map to the 6 permutations of these three
values.

Fig. 8. Geometrical view of octahedral group.

So any direction of space is equivalent to one of F through an element
of Oh. This group induces a triangulation of (C) boundary in 48 triangles.
The triangle which is the intersection of the fundamental domain F with (C)
boundary: {(x, y, z) | max(|x|, |y|, |z|) = "} will also be denoted by F .

Otherwise said, for any vector v of Z3 there is a g ∈ Oh such that g.v
belong to F . Of course g−1.g.v = v, that is v can be easily recovered.

10 Implementing group Oh

We detail this point, which may be puzzling to reader not acquainted with
formal computing systems, and also because several solutions exist, some of
which leading to inefficient coding.

The solution we retain uses the linear representation of group Oh which is
given by the set of 3×3 matrices where each line and each column has one and

299

Reveillès

only one non-zero entry equal to 1 or −1. It is a simple verification to show
that this subgroup of O(3) (orthogonal group of dimension 3) is isomorphic
to Oh. Important point is to find element g which will reduce a given vector
v as claimed above.

Algorithm giving matrix g associated to v = (a, b, c) works as follow:

• build the 4× 3 table bounding the 3× 3 unit matrix with a first line equal
to (a, b, c), (same construction as the previous one starting Blankinship al-
gorithm).

• multiply columns by the sign of their first element (if a = −6, multiply
column 1 by −1). Thus all elements of first line become positive (or null)
and the 1 below will keep the precious sign. Take care giving sign 1 to null
elements (and not sign 0 as some compilers do).

• then exchange columns so that first line is sorted in increasing order. Re-
sulting 3 × 3 matrix below first line, denoted by h, is the inverse of the
looked for g element, that is transpose(h).v = w belongs to F and h.w = v.
As Oh is contained in O(3) we have g = h−1 = transpose(h).

Keeping matrix h or transpose(h) = g is mathematically equivalent, but
from the coding point of view, w being given as the first line of previous
algorithm there is no need for g; on the contrary it is h which is useful to
transform w (and all data found while (a, b, c) ∈ F) back to the domain of v.

Pseudo-code for this algorithm giving the linear operator h associated to
vector v = [v[1], v[2], v[3]] may be written as follows.

LinearRepr:= proc(v)
local M;
M := [[v[1], sgn(v[1]), 0, 0], [v[2], 0, sgn(v[2]), 0], [v[3], 0, 0, sgn(v[3])]];
M := sort(M, (x, y) → is(abs(x[1]) ≤ abs(y[1])));
[abs(M [1][1]), abs(M [2][1]), abs(M [3][1])],
array([[M [1][2],M [2][2],M [3][2]],

[M [1][3],M [2][3],M [3][3]],
[M [1][4],M [2][4],M [3][4]]]);

end proc:

11 Relation between sections of voxels space and digital
planes.

There are several way of extracting plane sections from a 3D image. First one
was indicated above and starts cutting all voxels with a given plane leading
to the plane tiling already studied. Second step of this approach consists in
mapping these tiles to pixels overlapping this tiling. A precise treatment of this
correspondence supposes determining all intersections of tiles and pixels, which
can be done using an algorithm for the intersection of two convex polygons

300

Reveillès

Fig. 9. Plane sections of a cube are the tiles of one period.

(see §15). We do not go into all the details of this first extract method but
rather present a simpler one using digital planes.

Correspondence between voxels and integer points has to be specified.
Voxel attached to point (x, y, z), denoted V (x, y, z), is the cube which is the
cartesian product of intervals [x, x+1]× [y, y+1]× [z, z+1], so that (x, y, z)
is its left, lower, bottom vertex. Consequently voxel V (x, y, z) cuts plane (P)
whose equation is ax+ by+ cz = 0, (condition (a, b, c) ∈ F being still fulfilled)
if and only if:

ax+ by + cz ≤ 0 and 0 ≤ a(x+ 1) + b(y + 1) + c(z + 1)

Thus voxels intersecting (P) belong to the thick digital plane defined by

−(a+ b+ c) ≤ ax+ by + cz ≤ 0.

This set of voxels is 6-connected and thicker (whose name) than the naive
18-connected digital plane defined by −c ≤ ax + by + cz ≤ 0 (remark c =
max(a, b, c)). This shows that there are at most a + b + c different tiles and
that using naive digital planes is not sufficient to extract slices in 3D images;
better results are obtained with 6-connected thick digital planes.

It is nevertheless possible to get good approximations using judicious 18-
connected digital planes centered on the euclidian plane defined by −c/2 ≤
ax+ by + cz < c/2 because these will give the largest tiles.

301

Reveillès

12 Tiles areas

As the number, five, of tiles of voxels space plane sections is rather small, it is
conceivable looking for the formulas expressing their areas in function of the
parameters a, b, c (we choose " = 1 for simplicity).

Let us denote A0 = sqrt(a
2 + b2 + c2)/abc, then we have

Type Section Area

triangle tri(k) k2A0

trapezoid tra(k) (2k − a)aA0

parallelogram par(k) 2abA0

pentagon pen(k) (2ab− (a+ b− k)2)A0

hexagon hex(k) (2ab− (a+ b− k)2 − (k − c)2)A0.

With these formulas it is easy, for example, to bound errors made if trian-
gles are neglected.

Most interesting result concerning these tiles areas formulas is that they
define a piecewise continuous function of variable k which is, surprisingly,
everywhere differentiable.

13 Intersection of two voxels tilings and quadratic cubes.

As mentioned in the introduction our main interest lies in the intersection of
two sets of voxels each one tiling R

3 space. Tiles of each partition are identical
cubes. First one can be seen as unit cube of R

3 and second one as a cube of
arbitrary size and orientation.

In order to find periodicities among intersection polyhedra of voxels of each
family, second cube must possess rather special properties to be explained right
now.

Contrary to the 2D situation where exist an infinite number of squares of
arbitrary orientation having integer vertices, there does not exist cubes of any
orientation having integer vertices. But it is easy to see that we can construct
cubes of almost any direction using quadratic real numbers, called quadratic
cubes; this is, in a certain sense the simplest family after integer cubes which
have to be isothetic or parallel to the bissector planes.

Quadratic cubes offer a second advantage : all computations can be made
exactly, at least with a computer algebra system (Maple, Mathematica, etc.)
and this allows an exact study of the geometry of the intersection polyhedron
of two such cubes.

It is not difficult to see that given an integer vector v1 = (a, b, c) approxi-
mating a direction in R

3 space, arbitrary quadratic directions can be found in
plane ax+ by + cz = 0; let v2 be one such vector. Cross product v1 ∧ v2 = v3
gives a third quadratic vector such that v1, v2, v3 is an orthogonal basis. Di-

302

Reveillès

viding v1 by its norm, ‖v1‖, does not change the algebraic property of this
basis which becomes orthonormal.

So any real cube in general position may be arbitrarily approximated by
quadratic cubes.

14 Intersection of cubes.

Now comes the main part which is to design a reasonable algorithm to compute
the intersection polyhedron of two given cubes; first one may be a unit cube
and second one is supposed to be a quadratic one as above. The requirement
is more involved than can be thought at first because we want exact results
and an efficient algorithm with the lowest possible complexity.

A very superficial analysis of the problem shows that even for two simple
cubes the number of computations to be carried out in order to get their
intersection is rather high. A brute force algorithm would begin finding all
vertices, then build their convex hull. Clearly these vertices can be obtained
intersecting edges of one cube with the faces of the other one. This leads
to 144 = 2 ∗ 6 ∗ 12 vertices. Most of them have to be deleted because one
intersection point must belong to the edge and to the square face considered
and not only to the support line or plane. This leads to 2 control tests for each
edge and to 4 control tests for each face; thus 6 control tests have to be verified
for each intersection point, giving, on the whole, 864 control tests; adding the
144 intersections and some more trifle shows that the order of magnitude is
not far from one thousand elementary computations.

This is why a more efficient solution, one which specially avoids control
tests, is welcome. This explains our use of octahedral group to get plane
sections of cubes. See above sct(k) algorithm where only 2 control tests are
carried to get one plane section polygon when (P) normal vector (a, b, c) be-
longs to the fundamental domain F . But with any (a, b, c) normal vector
computation overhead is small because a simple sorting of |a|, |b|, |c| has to be
conducted to give the reducing h ∈ Oh element.

As explained at the end of §4, our intersection algorithm consists in first
finding the polygons cut on each cube by the support planes of the faces of
the other one and, second, intersecting each polygon with the square face of
its support plane. Chance to cube plane sections formulas of §8, the polygons
are obtained very efficiently; this is the main point of our approach. It only
remains intersecting these polygons with their corresponding square faces.

15 Intersection of convex polygons

Once plane section polygons are obtained, and their are at most 12 of them, it
remains intersecting each of them with the square face which defined its sup-
port plane. This is a particular case of the well known intersection of convex
polygons problem. A clever linear algorithm (in O(m + n), m,n respective

303

Reveillès

edges numbers of each polygon) was given by O’Rourke (cf. [10]). We shall
briefly recall its principle mainly to insist on particular points O’Rourke left
out but which are crucial for our kind of data.

Clever notion O’Rourke introduced is that of an oriented edge, let us say
B = b0b1, aiming toward another one, let say A = a0a1. Let u→ fA(u) denotes
the linear form associated to A (or its support line) which is fA(u) = 0 if u
belongs to A support line, fA(u) > 0 if det(A, a0u) > 0 etc.

We say that B = b0b1 aims toward A = a0a1 if an only if (det(A,B) ≥ 0
and det(A, a0b1) < 0) or (det(A,B) <= 0 and det(A, a0b1) > 0).

Picture 10 shows some cases of vectors B aiming toward A and some others
(the B’s), which do not aim toward A.

Both convex polygons being positively oriented, one edge is chosen on each
curve and an alternate pursuit is opened. Each time the pursuit is stopped,
the intersection point of the two current edges is computed and if it is non
trivial, (segments may have a void intersection even if their support do not),
it is supposed that curves cross at this point. It is easy with the help of a
boolean variable to follow which of the two curves lies inside the other one.
Once all edges have been traversed the algorithm is over.

Unfortunately the case where both curves may be tangent was not treated
by O’Rourke and this occurs in our application. This does not need tremen-
dous changes in his code but it has to be done. Other issues with this al-
gorithm concern non intersecting curves either because they are disjoint or
because one in contained in the interior of the other one. These cases are also
easily treated.

B’B’
B

B

B’

B
B

H(A)

A

Fig. 10. O’Rourke’s notion of vector B tending toward A.

Main algorithm implementing O’Rourke’s algorithm and necessary modifi-
cations follows. It uses two readily written functions: left(M,V) which says if

304

Reveillès

pointM is located on the left side of vectorM and procedure i
¯
nterSgt(Sg1,Sg2)

which gives the intersection point of segments Sg1 and Sg2 or void if they do
not intersect.

interCb:=proc(C1,C2)
local a,b,a1,b1,A,B,aadv,badv,aHB,bHA,
inside,lst,orient,pt;

a,b:= 1,1;
inside:=”unknown”;
aadv,badv:=1,1:
lst:=NULL;
while (aadv <= nops(C1) or badv <= nops(C2)) do
a1:=(a+nops(C1)-2 mod nops(C1))+1;
b1:=(b+nops(C2)-2 mod nops(C2))+1;
A,B:=C1[a]-C1[a1],C2[b]-C2[b1];
orient:=A[1]*B[2]-A[2]*B[1];
bHA:=left(C2[b],[C1[a1],C1[a]]);
aHB:=left(C1[a],[C2[b1],C2[b]]);
pt:=interSegt([C1[a1],C1[a]],[C2[b1],C2[b]]);
if pt <> NULL then

if not type(op(2,pt),string) then
lst:=lst,pt;
if inside=”unknown” then aadv,badv:=1,1 end if;
if aHB then inside:=”C1in” else inside:=”C2in” end if;

else
lst:=lst,op(1,pt); inside:=op(2,pt);

end if
end if;
if is(orient >= 0) then

if bHA then
if inside=”C1in” then lst:=lst,C1[a] end if;
a,aadv:=(a mod nops(C1))+1,aadv+1;

else
if inside=”C2in” then lst:=lst,C2[b] end if;
b,badv:=(b mod nops(C2))+1,badv+1;

end if;
else

if aHB then
if inside=”C2in” then lst:=lst,C2[b] end if;
b,badv:=(b mod nops(C2))+1,badv+1;

else
if inside=”C1in” then lst:=lst,C1[a] end if;
a,aadv:=(a mod nops(C1))+1,aadv+1;

end if;
end if;

305

Reveillès

end do:
#answer is prepared

if lst <> NULL then
[lst]; # C1 and C2 intersect non trivially

else
if (not left(C1[1],[C2[1],C2[2]])) and (not left(C2[1],[C1[1],C1[2]])) then
[lst]; # C1 and C2 are disjoint

elif left(C1[1],[C2[1],C2[2]]) then
C1; #C1 is inside C2

else
C2; # C2 is inside C1

end if;
end if;

end proc:

This algorithm is clearly linear; procedure InterCb being the longest among
those of our program, (written in Maple language), it gives an idea of the very
reasonable size of the whole code for the intersection of two cubes after our
approach. Picture 11, showing an example of cubes intersection, illustrates its
use.

Fig. 11. Intersection of two voxels.

16 3D intersection scheme and generalized continued
fractions

Plane sections introduced in §5 showed a first use of voxels tilings underlying
lattices. This use of lattices (as subgroups of Z

3) is still limited until nothing
is said about the intersection scheme of two voxels tilings and its relationship
with higher dimensional continued fractions. This last subject being rather

306

Reveillès

difficult and long to explain, we just mention which of its features are obviously
related to the 3D digital coordinates change problem.

As seen in §2, optimizing intersections of voxels of two tilings leads consid-
ering the intersection scheme of small voxels (supposed to be usual unit cubes)
with the boundary of an orthogonal cone induced by three adjacent faces of
a large voxel (i.e. 3D analogue of fig. 1). A 3D extension of prop. 2.1 is
obviously true when Klein’s funnel is replaced with the convex hull of integer
points (small voxels) contained in this cone. That is all kinds of intersections
of couples of small and large voxels can be found among intersections of the
small voxels belonging to a set of rational digital planes with the orthogonal
cone.

It occurs that Arnold (cf. [1]), for much different motivations, showed that
convex hulls of integer points contained in 3D cones, (his theory has even
sense for any dimension), are the natural generalization of ordinary continued
fractions. Such hulls are now called Arnold-Klein sails. Thus intersection
schemes of two voxels spaces and Arnold-Klein sails are in fact the same thing.

17 Conclusion

Implementation of intersection of two digital views of a same object having
neighboring resolutions needs to compute intersections of overlapping voxels.
A formal approach of this question using as much as possible particular struc-
ture of cubes, and specially their symmetries, shows that their plane sections
can be described by exact formulas which are still valuable for degenerate
cases. This avoids the complicated coding generally met in such situations.

New directions for optimization of intersection of large numbers of over-
lapping voxels using multidimensional continued fractions are indicated. In-
terference of this theory into 3D Imaging should deserve much attention in
the future.

Though first application of our work concerns the fusion of distinct modal-
ities quantities in 3D Medical Imaging, it should be useful in many domains
where digital coordinates changes are present.

References

[1] Arnold, V. I., Higher dimensional continued fractions, Regular and Chaotic
Dynamics (1998).

[2] Barra, V., “Fusion d’images 3D du cerveau: études de modèles et applications,”
Ph.D. thesis, ERIM, Université d’Auvergne (1993).

[3] Blankinship, W. A., A new version of the euclidean algorithm, Amer. Math.
Monthly (1963).

[4] Davenport, H. and J. H. Davenport, “The Higher Arithmetic: An Introduction
to the Theory of Numbers, Seventh Edition,” Cambridge University Press, 1999.

307

Reveillès

[5] Dobrindt, K., K. Mehlhorn and M. Yvinec, A complete and efficient algorithm
for the intersection of a general and a convex polyhedron, Rapport de recherche
INRIA (1993).

[6] Foley, van Dam, Feiner and Hughes, “Computer Graphics, Principles and
Practice,” Addison-Wesley, 1990.

[7] Grötschel, M., L. Lovász and A. Schrijver, “Geometric Algorithms and
Combinatorial Optimization, Second Corrected Edition,” Springer-Verlag,
1994.

[8] Hardy, G. H. and E. M. Wright, “An Introduction to the Theory of Numbers,
Fifth Edition,” Oxford Press, 1980.

[9] Martin, A. K., “A Simple Primal Algorithm for Intersecting 3-Polyhedra in
Linear Time,” Ph.D. thesis, Department of Computer Science, University of
British Columbia, 2366 Main Mall, Vancouver, B.C. CANADA V6T IZ4 (1993).

[10] O’Rourke, J., “Computational Geometry in C,” Cambridge Press, 1990.

[11] Overmars, M. H., Designing the computational geometry algorithms librairy
cgal, in: Proceedings Workshop on Applied Computational Geometry, 1996.

308

