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Abstract

Arithmetical complexity of infinite sequences is the number of all words of a given length whose
symbols occur in the sequence at positions which constitute arithmetical progressions. We show that
uniformly recurrent sequences whose arithmetical complexity grows linearly are precisely Toeplitz
words of a specific form.
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1. Introduction

Subword complexity,, (rn) of an infinite wordw is a classical function defined in 1975
[7] as the number of factors af of lengthn. Later, several modifications of this notion
have been introduced. Most of them are functions counting factors of the infiniteandrd
some other words of a given length reflecting structure of the word, i.e., functions which
are not less than subword complexity. Thesedatemplexityintroduced in 1987 by Ivanyi
[11], pattern complexityntroduced in 2002 by Restivo and Salemi [1d{aximal pattern
complexitypy Kamae and Zamboni [12] which is also dated 200&hmetical complexity
defined by Avgustinovich, Fon-Der-Flaass and the author in 2000 [3], also belongs to this
family. It counts words from tharithmetical closureof an infinite wordw, i.e., words built
by symbols whose numbers in constitute arithmetical progressions.
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The research of arithmetical closure was inspired by the famous Van der Waerden theorem
which states that the arithmetical closure of an infinite word always contains avodan
arbitrary powen and some symbal. In [3], it was shown that if subword complexity grows
linearly, then arithmetical complexity can grow both linearly and exponentially. Standard
guestions to be answered arise: what is arithmetical complexity of known classes of infinite
words? What s the lowest possible complexity? What are possible growth rates of arithmeti-
cal complexity? Which words have linear arithmetical complexity? Partial results on the
first of these questions were obtained in [3,9]. The second question was investigated in [2]
for the case of uniformly recurrent words. A family of words with various sub-polynomial
growths of arithmetical complexity was constructed in [10], making a contribution to the
third problem. This paper is devoted to the answer to the fourth question for the important
case of uniformly recurrent words: we characterize uniformly recurrent words whose arith-
metical complexity grows linearly. Up to the set of factors, they are exactly Toeplitz words
[5,13] of a special form.

Note that sequences of linear subword complexity are not yet classified, and their charac-
terization is an important unsolved problem [8]. The existing but never clearly Satdid
conjectureoffers to somehow describe such sequences as generated by a finite number of
substitution-like mappings. Our characterization of sequences of linear arithmetical com-
plexity is of the same kind since it involves a finite number of Toeplitz transforms which
generate each of such sequences.

Sequences of linear pattern or maximal pattern complexity also are not yet classified. It
seems that the question about arithmetical complexity is easiest in the family, although the
case of non-recurrent words is still open.

The paper is organized as follows. Main notions and statement (Theorem 1) are given
in Section 2 and discussed in Section 4 where the notion of Toeplitz words is defined.
Lemma 5 in Section 4 demonstrates several equivalent conditions each of those could be
used for the statement of Theorem 1. The “if” part of the proof of Theorem 1 is con-
tained in Section 6 which is relatively independent from others. The technique of spe-
cial infinite words used for the “only if” proof is introduced in Section 7; in the end
of that section, a short sketch of the “only if” proof is given. Main part of the “only
if” proof is given in Sections 9 and 10. All other sections contain auxiliary notions and
statements.

2. Main definitions and theorem

In what follows we consider right infinite words on a finite alphabethe set of such
words is, as usual, denoted BY . The terms “infinite word” and “sequence” are used below
as synonyms.

The set of factors of a word is denoted by (w). Let w; denote theth symbol of an
infinite wordw: w = wiw> - - - w, - - -.Aninfinite WOI’de = Wi Wia-dWi42d * * * Wkdnd ** *»
whered, k > 0, is called ararithmetical subsequena# w, andd is called itsdifference
In this paper we consider only arithmetical subsequences and sometimes omit the word
“arithmetical” before “subsequences”.
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A factor of an arithmetical subsequencewfis called anarithmetical factorof w, and
the set of arithmetical factors af is its arithmetical closuredenoted byA (w):

Aw)= U Fwh).
d,k>0

The number of words of lengthin the arithmetical closure af, denoted by, (), is called
arithmetical complexitpf w. Clearly, the arithmetical complexity of a word is greater than
or equal to itssubword complexity, (n), which is the number of factors af of lengthn.

An infinite word of the formuu - - - u - - - = u® is called|u|-periodic the wordu is called
aprefix periodof u®.

The orbit O(w) of an infinite wordw is the set of infinite words whose set of factors
is included inF(w). A word w is calleduniformly recurrentif each of its factors occurs
in it infinitely many times with bounded gaps, or, equivalentlyOifw) coincides with
the set of words having the same set of factors thaSince arithmetical complexity is
a function of set of factors, it is the same for all words from the orbit of a uniformly
recurrent word.

Let us say that a sequenaés canonically pregularifforall k > 0,i € {1, ..., p¥—1},
the sequenceipk is periodic.

Example 1. Let us define the functiom(i) as the largest exponent of 2 dividingnodulo

2. Theperiod doubling wordipg = u(Du(2) - - - u(n) - - - = 01000101010001000100-
[6] is canonically 2-regular since for eakh- O andi € {1, ...,2¢ -1} we have(upd)"zk =
(u(@)®.

Theorem 1. A non-periodic uniformly recurrent infinite word has linearly growing arith-
metical complexity if and only if it belongs to the orbit of some canonicatgolar word

w, where p is prime anobﬁ;' = wﬁ,}: for somea # b.

Example 2. For the period doubling word = upq, we have: = ul = u4. So, arithmetical
complexity of any word from its orbit is linear (and does not depend on the choice of the
word); in fact, it lies between8+ 2 and 1@ /3 + 2 for alln >4 [2].

The condition thap is prime is crucial: in Section 7 we shall give an example of a word
with non-linear arithmetical complexity which fits all conditions of the theorem except that
p =6.

Our technique of the proof of Theorem 1 cannot be generalized to words which are
not uniformly recurrent. On the other hand, we do not know a non-trivial example of a
non-uniformly recurrent word of linear arithmetical complexity. (There is a family of trivial
examples of the formw, wherew is a uniformly recurrent infinite word ands an arbitrary
finite prefix.) This allows us to state the following

Conjecture 1. If an infinite word is not uniformly recurrent but has linear arithmeti-
cal complexity then it is obtained from a uniformly recurrent word by adding a finite
prefix
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3. Properties of arithmetical subsequences

In this section, we give some more technical notations concerning arithmetical subse-
guences and state several easy, folklore, or classical results which will be useful below.
Recall thalw’;l denotes the arithmetical subsequence bhving differencel and starting
from the symbol ofw numberedk. We shall often use the following equality which holds
forall a, b, ¢, andd:

a+(c—1)b

(Wh)g = Wy :

In particular, this gives
(Wi = wi.

The shuffleof sequences, b, ..., x € 2, denoted by., is the sequence consisting of
alternated symbols of, b, ..., x, i.e.,

awbw - - wx =ai1b1---x1asby---xpazbz---x3---.

In particular, we by definitions have for allthat

w = wcjiLUU)(%LU' . ~Luw3.
The following lemmas are obvious and are stated here just to simplify reading of the text
below:

Lemma 1. Each arithmetical subsequence of a periodic sequence is periodic

Lemma 2. The shuffle of several sequences is periodic if and only if all shuffled sequences
are periodic.

The next lemma is also easy.

Lemma 3. Letu be an arithmetical subsequence of an infinite woithen each’ € O(v)
contains an arithmetical subsequenceof the same difference such théte O(u).

Proof. Letus suppose that= v[’} and color all symbols of on positionsk+id, i >0, red.
Then each finite word consisting of successive red symbols is a factoiFof alln > 0,

let us consider the prefix (rn) of v’ of lengthn. Sincev’ € O(v), v/(n) occurs somewhere
inv, and ifn > K = max(k, d), then this occurrence contains red symbols which constitute
an arithmetic progression of differendestarting from a symbol numberdg and going

to the end o’ (n); the word constituted by symbols of this progression will be denoted by
u'(n). Clearly,u’(n) € F(u) for all n, and the length of’(n) tend to infinity withn — oo.
Herek, can be chosen to be not greater thkanThus, some numbeét will occur in the
sequencgk, }°°  an infinite number of times: suppose that = k' foralli = 1,2,....
Thenfor alli, u’(n;) is a prefix ofu’(n;11) and they both are factors of Thus, the required
wordu' isu’ = (V)X = lim; oot/ (n). O

The next result is folklore, but for the sake of completeness, its proof is contained in [3].
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Lemma 4. An arithmetical subsequence of a uniformly recurrent word is uniformly
recurrent

The remaining two results are classical theorems of number theory.

Theorem 2(Van der Waerden, 1927 The arithmetical closure of each word on a finite
alphabetX contains arbitrarily large powers of symbols of the fouh, where n is an
arbitrary positive integer and € X.

Theorem 3(Dirichlet, 1837. Letgcd(, k) = 1; then the arithmetical progressidn/ +
k,...,l +nk,...contains an infinite number of primes

4. Discussion of the main result in terms of Toeplitz words

Uniformly recurrent words of linear arithmetical complexity, characterized by
Theorem 1, admit several other characterizations in terms of Toeplitz transforms. In this
section, we discuss and prove them.

Let ? be a new symbol callegap not belonging toX. A finite word onX U {?} is
called apattern In what follows patterns o U {?}, unlike words onX, are denoted by
capitals.

Let P be a pattern and € (2 U {?})® be an infinite word. In what follows we denote by
P - w the result of substituting the gaps#¥’ by successive symbols af, starting from the
first symbol. Ifw = P - w for somew € 2, thenw is called theToeplitz wordgenerated
by P and denoted b{ (P). Clearly, if the first symbol oP is not a gap, then the equation
w = P - w has a unique solution.

More generally, letP1, Po, ..., P,, ... be a sequence of patterns. Consider the sequence
{Ui}72,, of infinite words defined by/o =77, U; = P1- Pz-...- P;-?’foralli > 0. Clearly,
each of the word#/; is periodic, which allows us to define the product of pattefps P
as the minimal prefix period df,. So, () is a non-commutative associative operation on
the set of patterns.

If infinitely many of patternsp; start with a symbol of, then the sequencd/;}:°,
converges to an infinite word axinaturally denoted by, - P> -...- P, - ... - = ]'[?il P;.

It is called theToeplitz wordgenerated by the sequen@®}?°,; if all P; are equal to the
same patterR, this word is equal t@ (P).

A pattern is calledd-)regular if it belongs tqX?~1?)¢ for someg. The set of all regular
(d-regular) patterns is denoted ®y(respectivelyP,). The family of regular patterns from
P, containingl gaps is denoted b}, i.e., P, = (X471

Clearly, the product of @-regular and &-regular patterns ipgrregular.

Example 3. The patternPys = 0?17 is 2-regular. We havBy -2 = (0?7193, Pyt -
Pps-?” = (001?011Y”, and thusPy - Ppr = 0017?0117, which is 4-regular, etc.
As a limit, we obtain the famoupaperfolding wordups = ]_[?il Pot = T(Ppf) =
0010011000110110- . It can be checked that it is canonically 2-regular.
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Example 4. The period doubling wordpg can be obtained &B8(0109, i.e., is a Toeplitz
word generated by a 4-regular pattern 0£007?- 1?.

These examples hint that the classes of canonipatBgular words and Toeplitz words
generated by regular patterns are close to each other. This is indeed the case, and the explicit
relations are given by the following:

Lemma 5. Let p be a prime number and be an infinite word. The following conditions

are equivalent

(1) w is canonically pregular andwiz = w;’: for somea # b;

(2) w=R1-R2-...- R, -...-, where all patternsk; are pregular and the sequence
{Ri}72, is ultimately periodi¢

(3) w € Ppm - T(Px) for some k and m

(4) w e P-T(Py) for some k

Proof. (1)= (2). If w is canonicallyp-regular, then the sequeneé = w1 - - - wp_1?wp41

-+ W2p—1?W2p41 - - - IS pL-periodic, wherd. is the lcm of periods ofvl, ..., w,’i_l. So, if

we defineR; as the prefix of lengtpL of w’, thenR; is ap-regular pattern, and we have
w = R1-w). The sequence), and all ofwgz can be treated analogously, and thus we see

a b
thatw = Ry-Rz-...-Ry-...-.Initsturn,w’, = wlfj,, impliesR, = R, andR,; = Ry,

for all t, so, the sequence of patte® }7°  is (b — a)-periodic, andR;}7°, is ultimately
periodic.

(2) = (3). Using notations of the previous paragraph, we can défiaeRy-...- R,_1
andQ = R, -...- Rp_1tohavew = P - T(Q). So,mcan be defined as — 1 andk as
b—a.

(3) = (4). This implication is obvious.

(4)= (1). Letw = R -u, whereR = wyg--- wy—1?Wg41- - Wg—12W(L—-1)g+1"
wrg-1? € PqL is ag-regular pattern for somgandu € 7'(P,«). Thenuis clearlyp-regular.

Let us prove that so i®. Suppose first that = /p for somd, thenforalli € {1, ..., p—1}

we havew!, = w} wwy™ w - wwy Y7, Each of the shuffled sequences is periodic,
and thUSw; is periodic. It remains to prove thadz,’; is canonicallyp-regular, but it is
obtained fromu by applying an-regular patterR’ = w, - - wg—1),?- - - PWxr-1)g4p - - -
Wk—-1g+d-1)p7?- If p|l, we can continue the process and thus see that the main case is that
of p not dividingq (sincep is prime, this implies thgb andq are coprime).

In this case, for all € {1,..., p} we havew!, = wi_wwyh’w --- Luw’,fg("_l)”. Posi-
tionsi,i + p,...,i + (¢ — 1) p of starting symbols of the shuffled subsequences take all
possible values modulpone time each. So, all of them except one are not equivalent to 0
moduloq; their respective subsequences are periodic. The position equal to 0 ngptéilo
us denote it byyl, gives the subsequenady, = (wl), = ul,.

If I < p, then this subsequence is also periodic simég canonicallyp-regular. Thus,
due to Lemma 2, S0 ig,.

If | = p, then the subsequencé,qq is equal tmg which is canonicallyp-regular since
u is canonicallyp-regular. Bu? = p means that + jp = gp forsomei € {1, ..., p — 1}
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andj € {0,...,q — 1}, which is possible only wheh = p andj = ¢ — 1. Thus, the
subsequences?, w?, ..., wh ™! are periodic, whereas

wg = wi,’q LUU)IZ,I(; L - Luwg,(]qil) LUI/tg.
Here the firsty — 1 sequences in this shuffle dreperiodic, so, the equality means that
wp = R’ - up, whereR' € PL andu} is canonicallyp-regular. We see that;, falls into

the same class than and can be treated analogously: we can show(thgy’, = w;”z are

2 2
periodic for alli € {1,..., p — 1}, and(wh), = wﬁ,’z =R". ugz. Continuing the process
by induction we see that all subsequenaés, wherei € {1, ..., p* — 1}, are periodic,
. . p
and thusw is canonicallyp-regular.

a b
It remains to prove thatzﬁ,, = wf;,, for somea # b. Indeed, at each step when we pass

fromw = R-uto wf,’ =R uf;, the new regular patterR’ is completely defined by
R, and its lengthyL is the same that the length Bf So, the sequence of such patterns is
ultimately periodic with some periad On the other hand, sineee T (P ), the sequence

of sequencesﬁz is k-periodic. So, the sequence of sequencﬁfsis ultimately lcm(k, r)-
periodic, which proves the implication and thus the lemmial.

So, we could state Theorem 1 using any of the equivalent conditions of Lemma 5.

Example 5. Let us consider the word = 230230231230230231- = (237 -7 (0?17. 1t
is canonically 2-regular withh = w} = wj andisequalt@ (R1-R2) = R1-R2-R1-Ro-. . . -,
whereR; = 2?0?3?2?1?3? aitp = 3?7072?3?1727.

5. Properties of regular words

Let us say that an infinite wond is d-regularfor some positive integetif for eachk > 0
there exists; € {1, ..., d"} such that all subsequence§, with i € {1, ..., d*}\{i} are
periodic. Symbols occurring inv at positions congruent tia modulod* are calleckth
order symbols ofw. In particular, all symbols ofv are of order 0. Thenaximal orderof a
symbol is defined naturally and can be finite or infinite.

By definitions, a word is canonically-regular if and only if it isd-regular withi; = d*
for all k. Symbols ofkth order in a canonicallg-regular wordw = []2, P;, whereP;
ared-regular patterns, are exactly the symbols substituted from gaps not earlier than in
Wy=P1-... P .

In this section, we state some resultsdsregular words which will be needed later. The
first several lemmas are easy.

Lemma 6. Each sequence from the orbit of aehular infinite word is dregular.

1This definition does not coincide with that lofregular sequences by Allouche and Shallit [1].
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Lemma 7. The word obtained from ganonically d-regular word by applying a symbol-
to-symbol morphism i&anonically d-regular.

Lemma 8. The maximal order of all symbols except perhaps one in a non-periodic
d-regular word is finite

Lemma 9. Letw be an infinite wordIf the subsequence’,g is canonically pregular for
some k and a prime,phen so are(w,’;’)’,g for all m.

The next lemma is also easy.

Lemma 10. Considerw = T(R), whereR e sz, and somel = 1(modgpX). Then
wg = w.

Proof. Let us denote byi € {0, ..., ¢p* — 1} the residue of a number modulogp*;
thend = 1. Note also that for alin we havew,, « = w,,, and ifm # 0(modp), then
w,; = wi. Now let us fix an arbitrary integér > 0 and defind as the maximal integer
such thai = i’ p* for somei’. Then

d
(Wy)i = Wai = Wyjrpik = Wair = Wgr = W== = Wy = W' = Wy

i 77 i ke = Wj.

p

So, for alli theith symbols ofw;’ and ofw are equal. [J

The next lemma gives us not all information on an arithmetical subsequence of a Toeplitz
word: we could prove more, but this is what we shall need in the end of proof of the main
theorem.

Lemma 11. fawordw € (’)(T(sz)) is non-periodi¢ then any its arithmetical subse-

quencewz with ged(d, pg) = 1is also non-periodic angh*-regular. The maximal order
of each of its symbols iwf; is equal to its maximal order im.

Proof. Letus choose some’ e T(sz) such thatw € O(w’). Clearly, suchw’ exists and

is not periodic. Since andw’ arepX-regular, for alnwe can uniquely find i andw’ non-
periodic subsequences of differendé starting not later than at the positip’; moreover,

kn
in w’ this is(w/)’;,m. Let us substitute these non-periodic subsequences of symbuils of

order by gaps. The obtained infinite word&n) and W’'(n) areqp*"-periodic, and their
sets of factors coincide. So, there exists sgmsuch that all shifts of¥ (n) by j, + Igp"™*

: kn
symbols,/ >0, are equal taV’(n), i.e., (W (n)J" "% *1 = W'(n). Let us choose some
Iy sothatw; ., ... is asymbol owa: this is possible since g¢d, gp™*) = 1. Note that

W 1,qpt 1S Of Nth order inw, i.e., W (n) wm iS a gap. Let us denotg + [,qp"" =
Bn =b + (mn + 1)d
Let us fix anm # m, (modp ") and show tha(wg)’;’k,l is periodic. Indeed(w5)™", =

pkn
Z:k(nm—l)d ik+”(m—1>d f;fm—bd is periodic sinceb + (m — 1)d #

Jn+lngp

= (w )%, the wordw
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B, (mod p*™), and thus{wg)’;’kn is periodic due to Lemma 1. Sino@ndm # m,, (mod p*™)

were chosen arbitrarily, we have proved thétis pk-regular and its symbols of maximal
order less tham are of order less thanin w. Since this is true for alh, we see that the
maximal order of a symbol in)g is equal to its maximal order iw.

Moreover, foralk € {1, ..., p*" — 1} we have(w’)m, +c = Wotony+e—1)d = WBy+cd =
(W) B,+ea = (W )ea = (W)eq. TAUS, (Wi, 41 WD, 12+ -+ (W), 1 pin_1 COIN-
cides with the prefix o(u/)g of lengthp*" — 1. Since the choice af’ does not depend on
d andb, andw} and(w")% are uniformly recurrent due to Lemma 4, this impligw’) =
F((w/)fi) for all b andd: we see that the language of factora@ does not depend dm

It remains to prove thaﬂvf} is not periodic. Suppose the opposite: zl@it is periodic.
Since gedd, pq) = 1, there exists such that/c = 1 (modgp¥). Consider a subsequence
of wf} of differencec. It also must be periodic due to Lemma 1. On the other hand, it is
a subsequence af of differencedc; as it has been shown above, its language of factors
is equal toF (w")4°). But (w")4¢ = w’ due to Lemma 10. We must conclude thtis
periodic. A contradiction. [J

Lemmas from this section will be used only in the proof of the “only if” part of
Theorem 1, but the proof of the “if” part will resemble the proof of Lemma 11.

6. The “if” proof

In this section, we show that if a word is canonicallyp-regular for some prime
a b
andwl’,’a = wﬁ,, for somea # b, then its arithmetical complexity grows linearly. Due to

Lemma 5, we can considaras defined by = P - T(Ry1 - ... Ry), where all pattern®;
arep-regular andP is regular.

We shall divide the proof into two statements: first we shall show that arithmetical com-
plexity of T (R), whereR = R;-...- Ry, grows linearly (Lemma 12), and then that applying
a regular pattern to an infinite word does not increase order of growth of arithmetical com-
plexity (Lemma 13). Clearly, these statements imply what we need.

Lemma 12. LetR 73;’7,{ be a pk-regular pattern where p is prime and, k > 0 are
arbitrary. Thenar gy (n) = O(n).

Note that fork = 1, this statement was proved in [3] as a particular case of Theorem 3.
The proof below is structured like that from [3], with just one additional argument needed
fork > 1.

Proof of Lemma 12. Note that it is sufficient to prove the lemma for the case when all
symbols of the patterR are distinct and equal to their positions in it, i.e., for

R:RZk
=12 DAY + D @ - D2 A@ - D+ D - @ - D2
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Indeed, any other patterR’ ¢ sz can be obtained fronﬂzk by identifying symbols,
that is, by someoding c If R’ = c(RZk), then clearlyT (R") = C(T(RZO)- Thus, any

arithmetical factor off' (R") can be obtained by identifying symbols from an arithmetical
factor OfT(RZk), andar gy (n) <aT(RZk)(n)'

In what follows, we consideR = Rzk' Note that as well as any pattern froﬁf;k, it
can be naturally decomposed as a produdt pfregular patternsRZk =Ry ... Rt In

this particular case, symbols & not equal to ? are successive numbers from 416
which are divided by~ but not divided byp. For exampleR: = 123756779 10 112
(1?3?577?9?711?(276?10%.

To show that arithmetical complexity af = T(RZk) grows linearly, let us consider an

arbitrary arithmetical subsequendaeof uand show that it belongs to the orbit of a Toeplitz
word from a finite set and has linear subword complexity. Note that if@egp*) = 1,
then a part of the statement we need has been already proved in Lemma 11. But now we
need to consider the general case of arbittary

Consider a subsequence= ufj and suppose first that gétl p) = 1. Then exactly 1 of
eachp successive symbols ofis of order 1 inu, exactly 1 of eaclp? successive symbols
(and one ofp* symbols of order 1) is of order 2, and so on. Let us say that a factaF (v)
is n-canonicalif its length is at leasp*”, and there exists itsanonicaloccurrence ta such
that the symbol o numberedp*” is of ordernin u, i.e., lies inu at a position numbered
mp*" for somem. Clearly,n-canonical words exist for any. Moreover, eacm-canonical
wordsis (n — 1)-canonical. Indeed, symbols ®humbereg "= andp*” in its canonical
occurrence ta lie in u at the distancdp*—D (pk — 1), i.e., p*®*~Dth symbol ofslie in
u at the position numberedp*” — dp*®=D (pk — 1) = (mp* — dp* + d) p*™ =D, which
is of (n — 1)th order.

Thus, there exists a sequencenafanonical words; — oo, tending to an infinite word
t € O(v). Sincev is uniformly recurrent due to Lemma &(v) = F(¢). For alln, the prefix
of t of length p*" is n-canonical. Let us fixa andm and consider symbols ¢fnumbered
mpk™ and(m + ¢p*) p. In each occurrence of the prefix of length + ¢p*) p** of tto v,
these symbols lie at the distanégp* ™+ in u. So, if p* fm, these symbols are equal. This
means thatis canonicallyp*-regular, moreover,= S1-S>-...-S,-...-, wheresS, sz

for all n. Since in the initial pattermzk all symbols are distinct, each ¢f is uniquely

determined by its first symbe) and the residug’ of d modulogp*: if m + 1 = ipk, then
the (im + 1)th symbol ofS; is ?, and otherwise iti§ + dm = s; + d’'m (modgp*). So,tis
uniquely determined by’ and the sequende; }{°;.

Now let us show that the sequenisg}° , is periodic and completely determined by the
symbols;. To do it, consider a canonical occurrence of the prefix oft of lengthp*” (recalll
that itisn-canonical). By definition, its last symbolsg, and thep*®—Dth oneiss,_1. Inu,
these symbols lie at the distande "~ (p* — 1). Heres,,_1 lies at the position of the form
pK=D (mgp* +s,_1) for somem, ands, lies at the position of the form*” (m’qp* + s,).
We see thap*=D (mgp* +s,_1) = p"*(m'qp* +s,) — dp**=D (p* — 1); after dividing
by p¥*=D | this meang* (mg + d) + sp,—1 —d = p*(m’qp* +s,). Modulogp*, this gives
Sp—1 = p*(s, —d')+d'. So,s,_1 is uniquely determined by,. Since the sequende, } o 4
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is infinite, we see that it is periodic, and all symbols in its minimal period are distinct. So,
it is completely determined by andd’, and the same is true for= S1-...- S, -...-asa
whole: we can write = ¢(d’, s1).

Now let us consider the case of= uﬁ, with p|d: more precisely, suppose that=
p"d’', where gcdd’, p) = 1. Two cases are possible. First,if! i, thenv is gp*~1-
periodic. Second, ifp™|i, thenv = (MZ:)Z, is an arithmetical subsequence u)ﬂ =
T(Ry+1 - --- - Rutr), where indices are taken moduto The difference ofv as a sub-
sequence ottllj:: is coprime withp, so, it can be considered analogously to the previous
case, and”(v) = F(t), wheret = ¢(d’, s1, m’) is a regular Toeplitz word which depends
only ond’ = d modgp*, m" = m modk, and the initial symbat;. In particular, ifm = 0,
thens(d’, s1, 0) ist(d’, s1) defined in the previous paragraph.

Summarizing these arguments for ak= u;, d,i > 0, we see that

k=1 gp*F—1gp*-1
A) = |: U U u F(t(d,s,m)):| (U Per,

m=0 d=1 s=1

where the unions fatandsexclude the cases when these parameters are divigefd biere

all 1(d, s, m) are p*-regular Toeplitz words, and their subword complexity grows linearly
[5,13], andPer is the union of sets of factors gfp*~1-periodic Wordm; corresponding

to p|(d/i). Subword complexity oPer is ultimately constant, and thus the arithmetical
complexity ofu grows linearly. Lemma 12 is proved []

Example 6. Considerw = T(Rg’) = T (1?37?57 If, for instance,d = 3(mod 6, then
F(w') is equal either taF (T (1?- 59)), like for wi, or to F(T(5?- 1?)), like for w3, or to
F(3), like for w3.

Lemma 13. LetP ¢ PZ be a regular patternu be an infinite wordand w be defined as
P -u.Then

an) <q® 3 o) (ka (|3 | +1) +d k) +4%d - D +am

< au(n) - O(g2d>).

Proof. Let us fix residues, j € {0,...,9d — 1} and consider for altz >0 arithmetical
factors ofw which are prefixes of lengthof subsequence%qdﬂ. If gcd(d, j) dividesi,
then such a prefix containg:/d) gcd(d, j)] or [(n/d) gcd(d, j)] + 1 successive symbols

of uﬁzqd+j/gcd(d,j) for somek, situated inw,, ., ; at the distance/gcd(j, d). There are

gd/gcd(j, d) suchvalues af For remaining;d(1—1/ gcd(d, j)) cases, sequencequﬂ
are periodic and do not contain symbolsicft all. They do not depend ean. Summarizing
these arguments for gllwe obtain that

qd

n 1
w(n) < —ay || = j,d 1 dll1-————| 1.
o) je{l;,qd}l:g(:d(]ad)a (Ld gedJ )J * >+q ( QCd(J,d)>:|
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For each, let us definé = d/gcd(j, d). Then the formula above can be rewritten as

ay(n)<qY, (kau (LEJ + 1) +d— k) Ny,

kid k

whereN;, is the number of values gf € {1, ..., gd} such that//gcd(j, d) = k. It can be
easily seen tha¥, = gq(k), whereg is the Euler function. Note also that fér= 1 and
d|i, the arithmetical factors ab we count are already arithmetical factorsupind we do
not need to count theg? times instead of one. So, the resulting formula is

apa(n) <q2kld§>l¢(k) (kau (L%J + 1) td— k) +q2d - 1) + au(n).

For all k>2, we can roughly estimate thaf(|n/k| + 1) <a,(n) andzk‘d kok) =
O(d®). This gives the final estimate of

ap.u(n) = O(g*d®a, (n).

The lemma and thus the “if” part of Theorem 1 are proved!

The remaining part of the paper is devoted to the “only if” part. We start with two sections
of auxiliary statements and notions. At the end of the next section, we give a sketch of the
“only if” proof.

7. Special words

Recall that a language is callédctorial if it is closed under taking factors. Clearly,
languaged (w) and A(w) are factorial for any wordv. If w is uniformly recurrent, then
they are alsprolongable which means that each element of either of them can be prolonged
to another element of the same language by adding symbols both to the left and to the right.

One of the main techniques for computing subword complexity of a word or a factorial
language is counting its special factors. A finite wards called specialin a factorial
language- if au € F andbu € F for some distinct symbola andb.

Let us denote the subword complexity (that is, the number of elements of lehgth
of a factorial languag& by fr(n); the subword complexity of a word is frq,)(n) =
fw(n). If is well known that for each prolongable factorial langu&gehe subword com-
plexity satisfies the inequalityr(n + 1) > fr(n) + sg(n), wheresg(n) is the number
of special words of length in F. For precise formulas involving special words see, e.g.
Cassaigne [4].

Note that a prefix of a special word is also special, so, special words of a language
constitute a prefixial tree. Each of its infinite branches corresponds to a unique infinite word
having the respective series of prefixes. We call this infinite word an inSpiéeialword
of F and denote the set of such words &yF). An infinite word which is special in its
language of factors is called simppecial

Recall that the arithmetical complexity of a woudis the subword complexity of its
arithmetical closure, so, the previous formula applied for it gwgé + 1) >a,,(n) +



80 A.E. Frid / Theoretical Computer Science 339 (2005) 68-87

sam)(n). Suppose that the arithmetical closure of a wardhas an infinite number of
special infinite words. Then the functien ) (n) tends to infinity, and thus,, (n) grows
faster than linearly. We have obtained the following:

Lemma 14. If a,,(n) = O(n), then the seS(A(w)) is finite

Now let us consider a special wond= u1 - - - umx € A(w). Suppose thadu andbu are
in A(w), wherea, b € X. Then so arew} = auguzy - - - upmi andbuf = buguzy - - - upmk.
Passing tan — oo, we obtain

Lemma 15. If u € S(A(w)), thenu} € S(A(w)) for all k.

Hence we shall say that subsequences of the ujjarespecialsubsequences of

These statements are sufficient to show by an example thatifT (R), whereR is a
d-regular pattern andis not prime, then the arithmetical complexitywofis not in general
linear.

Example 7. Let us consider a canonically 6-regular patt&n= 00100? and the Toeplitz
wordw = T (R) = 001000001000001001. . Let us show that it is special. Indeed, since
it is not periodic andR contains only one gap, each prefixk) of w of length & — 1,
followed by a gap, is the minimal prefix period ¥y = R -...- R-?. So, each gap ifi,

k
is followed by w(k), and gaps irf; can be substituted ifi;;1 both by 0's and 1's. This
means thatv (k) is special for alk, and so isw.

DuetoLemma15, all sequenoe%ﬁ belong taS(A(w)). Thefirst 1inw is its 3rd symbol.
Then,w3 = 00?-w, and thus the first 1 iw3 is its 9th symbol. Analogouslyy; = 00?- w3,
and the first 1 in it is its 27th symbol, etc. Thus, a@f are distinct S(A(w)) is infinite,
anda,, (n) grows faster than @) due to Lemma 14.

The following lemma is easy:
Lemma 16. If a p-regular sequence is special then it is canonicaHgegular.
Note that the converse in not true: a canonicpiegular word may be non-special.

Example 8. The canonically 2-regular word = T (1?3?57 = 113153113553 - is not
special sinceug’ = 3“ and thusw could be prolonged to the left only by 3. But due to
Lemmas 6 and 16, all special infinite words from the orbituofre also canonically 2-
regular; in fact, they ar@& (3?5?12 5?1?39 = 35531135-- and 7 (5?1?32 3?5?17 =
53153553 - .

Lemma 17. If a special canonically gegular wordv has linear arithmetical complexity
then it belongs tP - T(Ppr) for some k and.r

Proof. It is sufficient to note that the Semf,’: Ja>0 € S(A(W)) is finite due to Lemma 15
and to use Lemma 5.0J
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Note that each infinite special word &f(w) is also an infinite special word of (w).
Such special word exists for each non-periadiand has the same set of factorsiasince
w is uniformly recurrent. So, it has the same arithmetical complexity. If we prove that for
somew with linear arithmetical complexity one of these special words, denoted big
canonicallyp-regular for some, this will prove the theorem due to Lemma 17. So, without
loss of generality we can consider= w’, i.e., assume that our uniformly recurrent infinite
word of linear arithmetical complexity is special.

In the next technical section, we prove Lemma 20 stating that a word of linear arithmetical
complexity cannot simultaneously contain non-perigdiegular angy’-regular arithmetic
subsequences for prime # p’. Then we shall pass to the main part of the proof: given
a special uniformly recurrent word of linear arithmetical complexity, we first prove in
Section 9 the principal Lemma 21 asserting thatontains a special canonicafiyregular
subsequence: for somem and primep. To do it, we have to split symbols af and to
pass to a sequeneeon the alphabe$(A(w)), then to find in it a special subsequengp
with a needed symmetric structure, and then find/inan infinite periodic subsequence
with a prime difference, denoted IpyAfter that we prove that) is canonicallyp-regular,
and thus so isv).

After that in Section 10 we use Lemma 21 together with Lemmas 11 and 20 to show
that w itself is canonicallyp-regular. Due to Lemmas 5 and 17 this will prove the
theorem.

8. Some more technical lemmas
The following two lemmas will be used for the proof of Lemma 20:

Lemma 18. For all n and D, each non ultimately periodic infinite word contains at
least (n + 1)/ D distinct words of length n occurring in it starting with positions equal
to 1 modulo D

Proof. Let us dividew to blocks of lengttD starting from the first symbol and consider
these blocks as symbols of a new alphabet. The obtained word is non ultimately periodic
and thus for alm contains at least: + 1 distinct words of lengtim. So, the wordv has at
leastm + 1 words mentioned in the statement of the lemma of lengib$o (m +1)D — 1,

and the lemma is proved.[]

Lemma 19. Let a wordv occur as a factorin awora € O(T(Pj)) starting with position
numbered kand the order inw of symbols ob is bounded by — 1 = m(v, k) — 1. Then
v occurs inw as a factor starting with all positions congruent to k modagif” .

Proof. Letw € O(T(R)), whereR € PJ. Let us consider the wor (m) obtained from

w by substituting all symbols of order at leasby gaps. By the definition of the order, itis

periodic; on the other hand, it belongs to the orbiRofR - ... - R -?®, and thus its minimal
—— e ———

m
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period| R - R -...- R|dividesqgd™. The occurrence aof starting with position numbered
N— e’

k occurs already iV (m) and thus in all positions d¥ (m) (andw) congruent t&k modulo
gd™. O

Lemma 20. If an infinite wordw contains non-periodic fpand p’-regular arithmetical
subsequences for prime#£ p’, then its arithmetical complexity grows faster than linearly

Proof. Suppose by contrary that,(n) = O(n). First let us show thatv contains non-
periodic subsequences fro@(T(Ppk)) and(’)(T(Pp,k/)) for somek, k¥’ > 0. Indeed, let
us consider the-regular non-periodic subsequenceof w and pass to a special word
v € O(v). Due to Lemmas 6 and 16, itis canonicaityegular. Its arithmetical complexity

ay (n) <ay(n) = On), and due to Lemma 15, the s{eb’)ﬁz |a > 0} is finite. Thus, due to
Lemma 5 € P - T(P,) for somek andv’ has a special non-periodic subsequerice
T(sz) for someq. Thenv € O(v') containsu € O(u') C O(T(sz)) due to Lemma 3.

We have proved that contains a subsequence frcﬁﬂ(T(PZk)) (let us denote it byu{;);

analogously, it contains a subsequemg’ee O(T(Pq,/k,)). Without loss of generality, we

assume thak <d. In what follows we shall prove that even the subword complexity of
grows at least quadratically, contradicting to our assertion.

Sincep and p’ are coprime, goigp”, cq’p’"') is stabilized for all sufficiently large
h, k. Let us denote this lify,_ o gcdagp”, cq’p™") by D. Let us fix ann and consider
an arbitrary wordi of lengthne + 1 occurring inw? on a position equal to 1 modu (say,
at positionz D + 1); such words are at leagic + 2)/D due to Lemma 18. Analogously
let us consider a word’ of lengthna + 1 occurring inwg’ at a position congruent to 1
moduloD (say, at positiork’ D + 1); such words are at leagta + 2)/D. We shall prove
that if neitheru nor«’ contain a symbol of infinite order im, then there exists a subword
v € F(w) oflengthnac+d — b+ 1 suchthav} = u andv?="*1 = u’. Sinceu andu’ were
chosen arbitrarily, and there is at most one symbol of infinite order, it will mean that
fw(mac+d —b+1)>((na+2)/D — 1)((nc + 2)/D — 1) = O(n?), which is sufficient
for the lemma to be proved.

To find the desired wora, we note that due to Lemma 19, the wardccurs inw?
at all positions equal té@ D + 1 modulogp®®"P+1D-in y, these are positions equal
to ah D + b moduloagp*™-"P+D  Analogouslyu’ starts inw¢ with all positions equal
to 4’ D + 1 modulog’ p* @ .h"D+D- in v, they are positions equal ' D + d modulo
cq' p'¥m@ .W'D+D) Thys, the needed worgis any subword ofy starting with a positiorx,
where

x=ahD+b (mOdaqpkm(”’hDJrl)),
x+d —b=ch'D+d (modeg' p*™ W'D+
This system always has a solution becausgggel” “ P+ ¢q’ p/k'm@’ W' D+1)y divides

ahD — ch’'D by the definition ofD. So, the needed word exists, and the lemma is
proved. I
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9. The principal lemma

The main difficulty in the proof of the “only if” part of Theorem 1 is hidden in the
following:

Lemma 21. Letw = w1 ---w, --- be a uniformly recurrent special infinite word on an
alphabet> having linear arithmetical complexity. Then there exist some m and a prime p
such thatw!" is canonically pregular.

Proof. Due to Lemmas 14 and 15, the sequerw@stake only a finite number of values
for all k > 0: their setS is a subset o6 (A (w)). Let us conside& as a new alphabet and
define the sequenae=vy---v,--- € S® by v, = w,’f for all k.

Note thatv, = v; impliesw; = w; forall k, I > 0. So,w is obtained fromv by applying

a symbol-to-symbol morphism: S — X, i.e.,w = c(v). Furthermore, note that{ = w!

impliesvf = v!: indeed, ifwf = w!, then for alin we have(w’)? = wk" = vy, = v, =
wiy = (W)}
The same argument shows that the symhipfor all k andn is determined by, andv,,.
So, we can define a commutative operatign: S — S such that for alk, » > 0 the equal-
ity holdsv; xgv, = v,. Theinitial symbob; works as the unit element with respect<g.
The operationkg is not obliged to be a group one: the symbptan be absent in somvéi,
and thus it may happen that, xoa # v1 foralla € S. However, in this case we can pass
fromv to its special subsequence= v,’fl which has a strictly less number of different spe-
cial subsequences (and thus symbols which occur init), and define a respective operation

Since this procedure strictly decreases the number of symbols occurring in the considered
word, we can continue the process until some operatipa: x defined according to the
subsequence’) = (v(’—l))z = v is a group one. We denoté! by z. The respective
subalphabet af is an abelian group with respect o In particular, this means that for all
symbolsa, b, ¢ from it the equalitya x b = a x ¢ impliesb = ¢. S0,z,, = z,; for any
k,1, andnimpliesz; = z; and thus) = z&.

Note that the least possible number of distinct symbaisisr2 because a constant infinite
word cannot be special.

Let us say that the sequencgsindz” areclonesif they are obtained from each other
by a permutation involving all symbolgz’); = (z') if and only if (z”); = (z")x, and
@ = (") ifand only if 77 = z”. We see that any two special subsequencesaré
clones, and each of special subsequencescah be reconstructed from any its symbol.
Moreover, since”; = (z)t, andzandz? are clones, we see that so af¢ andz/, for all
k,1,n. In what follows we calt™ then-cloneof z;.

Let us denote the subsequengf by y: so,y = c¢(z). The relations among, v, zandy
are depicted below.

Om

om
m
RN
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Due to Lemma 7, to prove thgis canonicallyp-regular (and thus the claim holds), itis
sufficient to show that is canonicallyp-regular. First let us prove the following:

Claim 1. The sequence z contains a periodic arithmetical subsequgnce

Proof. Letusreturntg. Itis uniformly recurrentdue to Lemma4 and has linear arithmetical
complexitya,, (n) <ay (n). Letus consider the set of all its non-periodic subsequences. Each
of them is uniformly recurrent due to Lemma 4, so, it is not ultimately periodic, and the
maximal power of a symbol occurring in it is finite. The language of factors of each of these
subsequences has a special infinite word which has the same set of factors and belongs to
S(A(w)). Since the latter set is finite, there exists a maximal pdwef a symbol occurring
in all non-periodic subsequencesyof

Now let us pass again @ It is obtained frony by splitting symbols, hence if; is non-
periodic, then so is);, and the maximal power of a symbol occurring in it is also bounded
by M. At the same timeM + 1 successive equal symbols occur in some arithmetical
subsequencg, of zby the Van der Waerden theorem. Thus, the respective subseqggence
of yis periodic. Let us consider all sequenggl$, wheren > 0. They take a finite number
of values because they are similar subsequences of special seqyﬁarumﬂ; each of them
after splitting symbols gives theclonez)’, of z/;. If some ofy)” is non-periodic, then it
contains at mosM successive equal symbols Consequently se)fjand its clonez;,
a contradiction. Thus, al;’, are ultimately periodic and take a finite number of values.
Moreover, they are periodic since uniformly recurrent.

Thekth symbol ofzj; for everykis determined by the sequencedfsymbols of y,4 172 ;.
So, the sequencg, is periodic. [

Note that we could always choosex d. Indeed, let > d, then ally”(r D are uniformly
recurrent and thus periodic and fit to our conditions. So, we can sutitimn the number
of the first symbol of the subsequence until we haver. Here we cannot havé = r
because the sequerg’%éls special which implies thaztyd andby belong to orbits of some
arithmetical subsequences ypfor somea,b € X, a # b. If yd were periodic, then at
least one of these prolonged sequences would not be uniformly recurrent, contradicting to
Lemma 4.

Let us choose the differenatof a periodic subsequence ofto be minimal, and
be minimal for the giverd (as we have shown, in this case we have: d). Note that
gedd, r) = 1 because’ is the gcdd, r)-clone ofz;//ggi‘é((fl?) which is thus also periodic,
and gcdd, r) > 1 would contradict to the minimality af.

Claim 2. For each sthe fact thaigcd(d, s) = 1implies thatz), is periodic

Proof. Letus consideran arbitrasye {1, ..., d—1} coprime withd. Letz € {0, ..., 7—1}
be the number satisfying the congruence= r (modd), i.e.,st = c¢d + r for somec; such

t always exists. Then for every> 0 thetth symbol ofzjizd IS Zts+tnd = Zr+d(tn+c)- 1ESE

symbols constitute the arithmetical subsequerife= z’*d‘ = (zd)chl of z/;, which is
periodic by Lemma 1. But'!, is thet-clone ofz},, which is thus also periodic. ]
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As a corollary of Claim 2, we see tha;j is always periodic.
Claim 3. The minimal difference d is prime

Proof. Suppose by contrary that it is composife= p*q, wherepis prime,« > 0, pdoes

not divideq, and eitherr > 1 org > 1. Let us fix som& < {0, ..., p — 1} and consider

a—1
the subsequende)5t = 2/ It is the p-clone ofz3™*" 7 and thus has the same

properties.

Casel: Suppose that > 1. Then for allk we have gcdl + kp*~1g,d) = 1. So,

a—1
TP = 2HRIP s periodic for allk due to Claim 2. But then the sequenge, =

AP TP YR s also periodic by Lemma 2, contradicting to the minimal-
ity of d. So, this case is impossible.

Case2: Suppose that = 1. In this cased/p = ¢ is coprime withp, and we have
gcd(l + k1p*1g,d) = gcd(l + kig,d) > 1 for some uniquey € {0,...,p — 1}
becaus&iq = —1(modp). For thisk; we have gcdl + k19, d) = p. Forallk € {0, ...,

p — 1\ {k1}, the sequence%{,”‘d are periodig-clones ofz;“‘d/”, which are periodic due

to Claim 2. Let us consider the sequemﬁ kd positions g of all its elements are divided

by p?; we see thap? divides its difference ang® does not. So, exactly one of each its
p elements occurs at a position whose number is dividegihyhese elements constitute

the subsequenc:e';jdkld“z”d, whereky € {0,..., p — 1}. At the same time, any other

subsequence of the forfﬁg;kld’%”d, wherek € {0, ..., p — 1}\{kz}, is periodic since it is

the p2-clone of one of sequence§, where gcdd, [) = 1. Continuing the process, we see
that for alin, only one of subsequence§, 2P+ e (& where
k1,...,k, € {0, ..., p — 1}, can be non-periodic. s@g is by definitionp-regular with

in = [ky - - - k1], + 1. Itis thep-clone ofz},/p, which is non-periodic due to minimality of
d, so, it is non-periodic too.

Now let us prove that some of subsequer}c}gsn =1,2,...,isnon-periodi@-regular.
These subsequences take a finite number of values beﬁguse(y,’j)g, p andd are fixed,
andy;,n = 1,2,..., take a finite number of values due to Lemma 14. Suppose that all
sequence;sr’fg are periodic; since thih symbol ofzg for allkdepends only on the sequence
of thekth symbols ofyzg, in this case:f,’ also would be periodic. A contradiction. So, for
somen the sequencgjfg is non-periodic. Since it is obtained from theclonezzg of zg
by applying a letter-to-letter morphism, it isregular due to Lemma 7. We have found a
non-periodigp-regular subsequence pf

But by our assumptiorg is composite and another prime divides it. At the same
time, (p’)? does not divided since Case 1 is impossible. So, analogously we can prove
thaty contains a non-periodip’-regular subsequence. But then by Lemma 20 we have
ay(n) >0(n?). Sinceay, (n) >ay(n), this contradicts to the assumption tlagft(n) grows
linearly. Thus, Case 2 is also impossible, the minimal differeshcannot be composite,
and the Claim is proved.
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We have proved that is a prime numberd = p. Then Claim 2 means thall subse-
quences®, wheres < p, are periodic. As forzﬁ, it is the p-clone ofz and thus has the

2
same property, as well a§2, etc. Since subsequences of periagjare also periodic, this

means that is canonicallyp-regular. By Lemma 7, so is = w/!, and the statement of the
lemma follows. [

10. The remaining part of the proof

Let w be a special uniformly recurrent infinite word of linear arithmetical complexity.
Due to Lemma 21, some its special subsequerftes canonicallyp-regular for some prime
p. To prove the theorem, we must show thattself is canonicallyp-regular. First, let us
note that it is sufficient to verify that all subsequen@e}, wlz,, w{,’_l are periodic.
Indeed, the subsequenge},)” = (w!!)}, is canonicallyp-regular due to Lemma 9. Sw;,
fits to the same conditions that, and if we prove that all! , for 1<i < p, are periodic,

then we can prove the same for respective subsequenegs 0}, = wl’jj, etc. The fact
thatw is canonicallyp-regular will follow by induction on the power qgf.

Thus, let us consider somé, for 1<i < p and prove that it is periodic. Suppose by
contrary that it is not. Since it is uniformly recurrent due to Lemma 4, we can pass to a
special wordv from its orbit without changing the set of factors and apply Lemma 21 to
it has a canonically’-regular non-periodic special subsequence for some ppimBue
to Lemma 17, this subsequence has a subsequencd"fmfp,). Returning tow’ , we use
Lemmas 3 and 6 and see that it also ha$-eegular non-periodic subsequence which in its
turn has a subsequence fr@r@T(PZ/,)). If p’ # p, thena, (n) grows faster than linearly

due to Lemma 20. S’ = p, and there is a non-periodic subsequence fC@(W(PZ,-))

i i ; iNe+l _ | itep
for somer andqin w),. Let us denote it byw?,), ™™ = w,,, ™.

Let us defineD = gcd(i + ¢p, bp) and considerwg. Due to Lemma 9, its special

Dm . i+ep i D (i+cp)/D
subsequencewp)y, is canonicallyp-regular, andwv,,™ is its subsequencevy,),,

whose difference and position of the first symbol are coprime. So, we can cowé'g(fér

as a subsequence of}) instead ofw to find a contradiction to the fact thaI;;c” is not

periodic. Sinceug has the same properties thatfor the sake of simplicity we can assume
thatD = 1, or, equivalently, that gadd + cp, bp) = 1.

Let thekth order symbols be situated 'm;',;“l’ at positions equal té; modulo p’*.

Then they constitute the arithmetical subsequenzgéﬂ(’k_l)b” of w. Note that gc¢i +

cp, bp) = 1implies gedi + cp + (ix — 1)bp, bp"*+1) = 1. So, by the Dirichlet theorem,
each of arithmetical progressions of positionsiinf symbols occurring im;;fk’ﬁ(lk_l)b »
contains an infinite number of primes. Due to Lemma 8, we can always choose a prime
numberl; from this progression, coprime withh(and, by the construction, with andp)

such that the maximal order af;, in w is finite.
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Let us consider the sequemzé{ and its intersectiomw (k) with the p-regular sequence
wZ;Cp: note that due to the choice &, it starts with the first symbol obff On one hand,
since gcdly, bp) = 1, the sequence(k) is a subsequence ojf,[fc” of prime differencé.
Since gcdly, pq) = 1 and due to Lemma 11(k) is non-periodicp”-regular, and its first

symbol (coinciding withw;,) is of the same maximal order that iot;c”, greater than or
equal tok. So, the setv(k)};2, is infinite. On the other hand(k) = (wfi’)},p, i.e.,v(k) is

the subsequence of a special subsequenaedffiixed differencebp and initial position 1.
Since there is a finite number of special sequences dfie to Lemmas 14 and 15, the set
{v(k)}72, must also be finite. A contradiction. Sm;, is periodic for all I<i < p, and by
induction,w is canonicallyp-regular. The reference to Lemma 17 completes the proof of

Theorem 1. O
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