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Abstract

Arithmetical complexity of infinite sequences is the number of all words of a given length whose
symbols occur in the sequence at positions which constitute arithmetical progressions. We show that
uniformly recurrent sequences whose arithmetical complexity grows linearly are precisely Toeplitz
words of a specific form.
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1. Introduction

Subword complexityfw(n) of an infinite wordw is a classical function defined in 1975
[7] as the number of factors ofw of lengthn. Later, several modifications of this notion
have been introduced. Most of them are functions counting factors of the infinite wordand
some other words of a given length reflecting structure of the word, i.e., functions which
are not less than subword complexity. These ared-complexityintroduced in 1987 by Iványi
[11], pattern complexityintroduced in 2002 by Restivo and Salemi [14],maximal pattern
complexityby Kamae and Zamboni [12] which is also dated 2002.Arithmetical complexity,
defined by Avgustinovich, Fon-Der-Flaass and the author in 2000 [3], also belongs to this
family. It counts words from thearithmetical closureof an infinite wordw, i.e., words built
by symbols whose numbers inw constitute arithmetical progressions.
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The research of arithmetical closure was inspired by the famousVan derWaerden theorem
which states that the arithmetical closure of an infinite word always contains a wordan for an
arbitrary powernand some symbola. In [3], it was shown that if subword complexity grows
linearly, then arithmetical complexity can grow both linearly and exponentially. Standard
questions to be answered arise: what is arithmetical complexity of known classes of infinite
words?What is the lowest possible complexity?What are possible growth rates of arithmeti-
cal complexity? Which words have linear arithmetical complexity? Partial results on the
first of these questions were obtained in [3,9]. The second question was investigated in [2]
for the case of uniformly recurrent words. A family of words with various sub-polynomial
growths of arithmetical complexity was constructed in [10], making a contribution to the
third problem. This paper is devoted to the answer to the fourth question for the important
case of uniformly recurrent words: we characterize uniformly recurrent words whose arith-
metical complexity grows linearly. Up to the set of factors, they are exactly Toeplitz words
[5,13] of a special form.

Note that sequences of linear subword complexity are not yet classified, and their charac-
terization is an important unsolved problem [8]. The existing but never clearly statedS-adic
conjectureoffers to somehow describe such sequences as generated by a finite number of
substitution-like mappings. Our characterization of sequences of linear arithmetical com-
plexity is of the same kind since it involves a finite number of Toeplitz transforms which
generate each of such sequences.

Sequences of linear pattern or maximal pattern complexity also are not yet classified. It
seems that the question about arithmetical complexity is easiest in the family, although the
case of non-recurrent words is still open.

The paper is organized as follows. Main notions and statement (Theorem 1) are given
in Section 2 and discussed in Section 4 where the notion of Toeplitz words is defined.
Lemma 5 in Section 4 demonstrates several equivalent conditions each of those could be
used for the statement of Theorem 1. The “if” part of the proof of Theorem 1 is con-
tained in Section 6 which is relatively independent from others. The technique of spe-
cial infinite words used for the “only if” proof is introduced in Section 7; in the end
of that section, a short sketch of the “only if” proof is given. Main part of the “only
if” proof is given in Sections 9 and 10. All other sections contain auxiliary notions and
statements.

2. Main definitions and theorem

In what follows we consider right infinite words on a finite alphabet�; the set of such
words is, as usual, denoted by��. The terms “infinite word” and “sequence” are used below
as synonyms.

The set of factors of a wordw is denoted byF(w). Letwi denote theith symbol of an
infinite wordw:w = w1w2 · · ·wn · · ·.An infinite wordwkd = wkwk+dwk+2d · · ·wk+nd · · ·,
whered, k > 0, is called anarithmetical subsequenceof w, andd is called itsdifference.
In this paper we consider only arithmetical subsequences and sometimes omit the word
“arithmetical” before “subsequences”.
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A factor of an arithmetical subsequence ofw is called anarithmetical factorof w, and
the set of arithmetical factors ofw is itsarithmetical closure, denoted byA(w):

A(w) = ⋃
d,k>0

F(wkd).

The number of words of lengthn in the arithmetical closure ofw, denoted byaw(n), is called
arithmetical complexityofw. Clearly, the arithmetical complexity of a word is greater than
or equal to itssubword complexityfw(n), which is the number of factors ofw of lengthn.

An infinite word of the formuu · · · u · · · = u� is called|u|-periodic; the wordu is called
aprefix periodof u�.

Theorbit O(w) of an infinite wordw is the set of infinite words whose set of factors
is included inF(w). A word w is calleduniformly recurrentif each of its factors occurs
in it infinitely many times with bounded gaps, or, equivalently, ifO(w) coincides with
the set of words having the same set of factors thatw. Since arithmetical complexity is
a function of set of factors, it is the same for all words from the orbit of a uniformly
recurrent word.

Let us say that a sequenceu is canonically p-regular if for all k > 0, i ∈ {1, . . . , pk−1},
the sequenceui

pk
is periodic.

Example 1. Let us define the functionu(i) as the largest exponent of 2 dividingi, modulo
2. Theperiod doubling wordupd = u(1)u(2) · · · u(n) · · · = 01000101010001000100· · ·
[6] is canonically 2-regular since for eachk > 0 andi ∈ {1, . . . ,2k −1} we have(upd)

i
2k

=
(u(i))�.

Theorem 1. A non-periodic uniformly recurrent infinite word has linearly growing arith-
metical complexity if and only if it belongs to the orbit of some canonically p-regular word

w, where p is prime andwp
a

pa = w
pb

pb
for somea 
= b.

Example 2. For the period doubling wordu = upd, we haveu = u1
1 = u4

4. So, arithmetical
complexity of any word from its orbit is linear (and does not depend on the choice of the
word); in fact, it lies between 3n+ 2 and 10n/3 + 2 for all n�4 [2].

The condition thatp is prime is crucial: in Section 7 we shall give an example of a word
with non-linear arithmetical complexity which fits all conditions of the theorem except that
p = 6.

Our technique of the proof of Theorem 1 cannot be generalized to words which are
not uniformly recurrent. On the other hand, we do not know a non-trivial example of a
non-uniformly recurrent word of linear arithmetical complexity. (There is a family of trivial
examples of the formvw, wherew is a uniformly recurrent infinite word andv is an arbitrary
finite prefix.) This allows us to state the following

Conjecture 1. If an infinite word is not uniformly recurrent but has linear arithmeti-
cal complexity, then it is obtained from a uniformly recurrent word by adding a finite
prefix.
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3. Properties of arithmetical subsequences

In this section, we give some more technical notations concerning arithmetical subse-
quences and state several easy, folklore, or classical results which will be useful below.

Recall thatwkd denotes the arithmetical subsequence ofw having differencedand starting
from the symbol ofw numberedk. We shall often use the following equality which holds
for all a, b, c, andd:

(wab)
c
d = w

a+(c−1)b
bd .

In particular, this gives

(waa)
c
d = wacad .

The shuffleof sequencesa, b, . . . , x ∈ ��, denoted by , is the sequence consisting of
alternated symbols ofa, b, . . . , x, i.e.,

a b · · · x = a1b1 · · · x1 a2b2 · · · x2 a3b3 · · · x3 · · · .
In particular, we by definitions have for alld that

w = w1
d w2

d · · · wdd .

The following lemmas are obvious and are stated here just to simplify reading of the text
below:

Lemma 1. Each arithmetical subsequence of a periodic sequence is periodic.

Lemma 2. The shuffle of several sequences is periodic if and only if all shuffled sequences
are periodic.

The next lemma is also easy.

Lemma 3. Let u be an arithmetical subsequence of an infinitewordv.Then eachv′ ∈ O(v)
contains an arithmetical subsequenceu′ of the same difference such thatu′ ∈ O(u).

Proof. Let us suppose thatu = vkd and color all symbols ofv on positionsk+ id, i�0, red.
Then each finite word consisting of successive red symbols is a factor ofu. For alln > 0,
let us consider the prefixv′(n) of v′ of lengthn. Sincev′ ∈ O(v), v′(n) occurs somewhere
in v, and ifn�K = max(k, d), then this occurrence contains red symbols which constitute
an arithmetic progression of differenced starting from a symbol numberedkn and going
to the end ofv′(n); the word constituted by symbols of this progression will be denoted by
u′(n). Clearly,u′(n) ∈ F(u) for all n, and the length ofu′(n) tend to infinity withn → ∞.
Herekn can be chosen to be not greater thanK. Thus, some numberk′ will occur in the
sequence{kn}∞n=K an infinite number of times: suppose thatkni = k′ for all i = 1,2, . . . .
Then for alli, u′(ni) is a prefix ofu′(ni+1) and they both are factors ofu. Thus, the required
wordu′ is u′ = (v′)k′

d = lim i→∞ u′(ni). �

The next result is folklore, but for the sake of completeness, its proof is contained in [3].
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Lemma 4. An arithmetical subsequence of a uniformly recurrent word is uniformly
recurrent.

The remaining two results are classical theorems of number theory.

Theorem 2(Van der Waerden, 1927). The arithmetical closure of each word on a finite
alphabet� contains arbitrarily large powers of symbols of the forman, where n is an
arbitrary positive integer anda ∈ �.

Theorem 3(Dirichlet, 1837). Let gcd(l, k) = 1; then the arithmetical progressionl, l +
k, . . . , l + nk, . . . contains an infinite number of primes.

4. Discussion of the main result in terms of Toeplitz words

Uniformly recurrent words of linear arithmetical complexity, characterized by
Theorem 1, admit several other characterizations in terms of Toeplitz transforms. In this
section, we discuss and prove them.

Let ? be a new symbol calledgap, not belonging to�. A finite word on� ∪ {?} is
called apattern. In what follows patterns on� ∪ {?}, unlike words on�, are denoted by
capitals.

LetP be a pattern andw ∈ (� ∪ {?})� be an infinite word. In what follows we denote by
P ·w the result of substituting the gaps inP� by successive symbols ofw, starting from the
first symbol. Ifw = P · w for somew ∈ ��, thenw is called theToeplitz wordgenerated
by P and denoted byT (P ). Clearly, if the first symbol ofP is not a gap, then the equation
w = P · w has a unique solution.

More generally, letP1, P2, . . . , Pn, . . . be a sequence of patterns. Consider the sequence
{Ui}∞i=0 of infinite words defined byU0 =?�,Ui = P1 ·P2 · . . . ·Pi ·?� for all i > 0. Clearly,
each of the wordsUi is periodic, which allows us to define the product of patternsP1 · P2
as the minimal prefix period ofU2. So,(·) is a non-commutative associative operation on
the set of patterns.

If infinitely many of patternsPi start with a symbol of�, then the sequence{Ui}∞i=0
converges to an infinite word on� naturally denoted byP1 · P2 · . . . · Pn · . . . · = ∏∞

i=1Pi .
It is called theToeplitz wordgenerated by the sequence{Pi}∞i=1; if all Pi are equal to the
same patternP, this word is equal toT (P ).

A pattern is called (d-)regular if it belongs to(�d−1?)q for someq. The set of all regular
(d-regular) patterns is denoted byP (respectively,Pd ). The family of regular patterns from
Pd containingl gaps is denoted byP l

d , i.e.,P l
d = (�d−1?)l .

Clearly, the product of ap-regular and aq-regular patterns ispq-regular.

Example 3. The patternPpf = 0?1? is 2-regular. We havePpf ·?� = (0?1?)�, Ppf ·
Ppf ·?� = (001?011?)�, and thusPpf · Ppf = 001?011?, which is 4-regular, etc.
As a limit, we obtain the famouspaperfolding wordupf = ∏∞

i=1Ppf = T (Ppf) =
0010011000110110· · · . It can be checked that it is canonically 2-regular.
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Example 4. The period doubling wordupd can be obtained asT (010?), i.e., is a Toeplitz
word generated by a 4-regular pattern 010?= 0?· 1?.

These examples hint that the classes of canonicallyp-regular words and Toeplitz words
generated by regular patterns are close to each other. This is indeed the case, and the explicit
relations are given by the following:

Lemma 5. Let p be a prime number andw be an infinite word. The following conditions
are equivalent:

(1) w is canonically p-regular andwp
a

pa = w
pb

pb
for somea 
= b;

(2) w = R1 · R2 · . . . · Rn · . . . ·, where all patternsRi are p-regular and the sequence
{Ri}∞i=1 is ultimately periodic;

(3) w ∈ Ppm · T (Ppk ) for some k and m;
(4) w ∈ P · T (Ppk ) for some k.

Proof. (1)⇒ (2). Ifw is canonicallyp-regular, then the sequencew′ = w1 · · ·wp−1?wp+1

· · ·w2p−1?w2p+1 · · · is pL-periodic, whereL is the lcm of periods ofw1
p, . . . , w

p−1
p . So, if

we defineR1 as the prefix of lengthpL of w′, thenR1 is ap-regular pattern, and we have
w = R1 ·wpp . The sequencewpp and all ofwp

a

pa can be treated analogously, and thus we see

thatw = R1 ·R2 · . . . ·Rn · . . . · . In its turn,wp
a

pa = w
pb

pb
impliesRa = Rb andRa+t = Rb+t

for all t, so, the sequence of patterns{Ri}∞i=a is (b− a)-periodic, and{Ri}∞i=1 is ultimately
periodic.

(2) ⇒ (3). Using notations of the previous paragraph, we can defineP = R1 · . . . ·Ra−1
andQ = Ra · . . . · Rb−1 to havew = P · T (Q). So,m can be defined asa − 1 andk as
b − a.

(3) ⇒ (4). This implication is obvious.
(4) ⇒ (1). Let w = R · u, whereR = w1 · · ·wq−1?wq+1 · · ·w2q−1?w(L−1)q+1 · · ·

wLq−1? ∈ PL
q is aq-regular pattern for someqandu ∈ T (Ppk ). Thenu is clearlyp-regular.

Let us prove that so isw. Suppose first thatq = lp for somel, then for alli ∈ {1, . . . , p−1}
we havewip = wiq w

i+p
q · · · w

i+(l−1)p
q . Each of the shuffled sequences is periodic,

and thuswip is periodic. It remains to prove thatwpp is canonicallyp-regular, but it is
obtained fromu by applying anl-regular patternR′ = wp · · ·w(l−1)p?· · ·?w(k−1)q+p · · ·
w(k−1)q+(l−1)p?. If p|l, we can continue the process and thus see that the main case is that
of p not dividingq (sincep is prime, this implies thatp andq are coprime).

In this case, for alli ∈ {1, . . . , p} we havewip = wipq w
i+p
pq · · · w

i+(q−1)p
pq . Posi-

tions i, i + p, . . . , i + (q − 1)p of starting symbols of the shuffled subsequences take all
possible values moduloq one time each. So, all of them except one are not equivalent to 0
moduloq; their respective subsequences are periodic. The position equal to 0 moduloq, let
us denote it byql, gives the subsequencewqlpq = (w

q
q )
l
p = ulp.

If l < p, then this subsequence is also periodic sinceu is canonicallyp-regular. Thus,
due to Lemma 2, so iswip.

If l = p, then the subsequencewlqpq is equal toupp which is canonicallyp-regular since
u is canonicallyp-regular. Butl = p means thati + jp = qp for somei ∈ {1, . . . , p − 1}
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andj ∈ {0, . . . , q − 1}, which is possible only wheni = p andj = q − 1. Thus, the
subsequencesw1

p, w2
p, . . . , w

p−1
p are periodic, whereas

w
p
p = w

p
pq w

2p
pq · · · w

p(q−1)
pq u

p
p.

Here the firstq − 1 sequences in this shuffle areL-periodic, so, the equality means that
w
p
p = R′ · upp, whereR′ ∈ PL

q andupp is canonicallyp-regular. We see thatwpp falls into

the same class thanw and can be treated analogously: we can show that(w
p
p)
i
p = w

ip

p2 are

periodic for alli ∈ {1, . . . , p − 1}, and(wpp)p = w
p2

p2 = R′′ · up2

p2. Continuing the process

by induction we see that all subsequenceswi
pk

, wherei ∈ {1, . . . , pk − 1}, are periodic,
and thusw is canonicallyp-regular.

It remains to prove thatwp
a

pa = w
pb

pb
for somea 
= b. Indeed, at each step when we pass

from w = R · u to wpp = R′ · upp, the new regular patternR′ is completely defined by
R, and its lengthqL is the same that the length ofR. So, the sequence of such patterns is
ultimately periodic with some periodr. On the other hand, sinceu ∈ T (Ppk ), the sequence

of sequencesup
a

pa is k-periodic. So, the sequence of sequencesw
pa

pa is ultimately lcm(k, r)-
periodic, which proves the implication and thus the lemma.�

So, we could state Theorem 1 using any of the equivalent conditions of Lemma 5.

Example 5. Let us consider the wordw = 230230231230230231· · · = (23?) ·T (0?1?). It
is canonically 2-regular withw = w1

1 = w4
4 and is equal toT (R1·R2) = R1·R2·R1·R2·. . . ·,

whereR1 = 2?0?3?2?1?3? andR2 = 3?0?2?3?1?2?.

5. Properties of regular words

Let us say that an infinite wordw isd-regularfor some positive integerd if for eachk > 0
there existsik ∈ {1, . . . , dk} such that all subsequenceswi

dk
with i ∈ {1, . . . , dk}\{ik} are

periodic.1 Symbols occurring inw at positions congruent toik modulodk are calledkth
ordersymbols ofw. In particular, all symbols ofw are of order 0. Themaximal orderof a
symbol is defined naturally and can be finite or infinite.

By definitions, a word is canonicallyd-regular if and only if it isd-regular withik = dk

for all k. Symbols ofkth order in a canonicallyd-regular wordw = ∏∞
i=1Pi , wherePi

ared-regular patterns, are exactly the symbols substituted from gaps not earlier than in
Wk = P1 · . . . · Pk·?�.

In this section, we state some results ond-regular words which will be needed later. The
first several lemmas are easy.

Lemma 6. Each sequence from the orbit of a d-regular infinite word is d-regular.

1 This definition does not coincide with that ofk-regular sequences by Allouche and Shallit [1].
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Lemma 7. The word obtained from a(canonically) d-regular word by applying a symbol-
to-symbol morphism is(canonically) d-regular.

Lemma 8. The maximal order of all symbols except perhaps one in a non-periodic
d-regular word is finite.

Lemma 9. Letw be an infinite word. If the subsequencewkk is canonically p-regular for
some k and a prime p, then so are(wmm)

k
k for all m.

The next lemma is also easy.

Lemma 10. Considerw = T (R), whereR ∈ Pq

pk
, and somed ≡ 1(modqpk). Then

wdd = w.

Proof. Let us denote byn ∈ {0, . . . , qpk − 1} the residue of a numbern moduloqpk;
thend = 1. Note also that for allmwe havewmpk = wm, and ifm 
≡ 0 (modpk), then
wm = wm. Now let us fix an arbitrary integeri > 0 and definel as the maximal integer
such thati = i′plk for somei′. Then

(wdd )i = wdi = wdi′plk = wdi′ = w
di′ = w

d i′ = w
i′ = wi′ = wi′plk = wi.

So, for alli the ith symbols ofwdd and ofw are equal. �

The next lemma gives us not all information on an arithmetical subsequence of a Toeplitz
word: we could prove more, but this is what we shall need in the end of proof of the main
theorem.

Lemma 11. If a wordw ∈ O(T (Pq

pk
)) is non-periodic, then any its arithmetical subse-

quencewbd with gcd(d, pq) = 1 is also non-periodic andpk-regular. The maximal order
of each of its symbols inwbd is equal to its maximal order inw.

Proof. Let us choose somew′ ∈ T (Pq

pk
) such thatw ∈ O(w′). Clearly, suchw′ exists and

is not periodic. Sincew andw′ arepk-regular, for allnwe can uniquely find inw andw′ non-
periodic subsequences of differencepkn starting not later than at the positionpkn; moreover,

in w′ this is (w′)p
kn

pkn
. Let us substitute these non-periodic subsequences of symbols ofnth

order by gaps. The obtained infinite wordsW(n) andW ′(n) areqpkn-periodic, and their
sets of factors coincide. So, there exists somejn such that all shifts ofW(n) by jn + lqpnk

symbols,l�0, are equal toW ′(n), i.e., (W(n))jn+lqp
kn+1

1 = W ′(n). Let us choose some
ln so thatwjn+lnqpkn is a symbol ofwbd : this is possible since gcd(d, qpnk) = 1. Note that
wjn+lnqpkn is of nth order inw, i.e.,W(n)jn+lnqpkn is a gap. Let us denotejn + lnqp

kn =
Bn = b + (mn + 1)d.

Let us fix anm 
≡ mn (modpkn) and show that(wbd)
m
pkn

is periodic. Indeed,(wbd)
m
pkn

=
w
b+(m−1)d
dpkn

= (w
b+(m−1)d
pkn

)1d , the wordwb+(m−1)d
pkn

is periodic sinceb + (m − 1)d 
≡
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Bn (modpkn), and thus(wbd)
m
pkn

is periodic due to Lemma 1. Sincenandm 
≡ mn (modpkn)

were chosen arbitrarily, we have proved thatwbd is pk-regular and its symbols of maximal
order less thann are of order less thann in w. Since this is true for alln, we see that the
maximal order of a symbol inwbd is equal to its maximal order inw.

Moreover, for allc ∈ {1, . . . , pkn−1} we have(wbd)mn+c = wb+(mn+c−1)d = wBn+cd =
(W(n))Bn+cd = (W ′(n))cd = (w′)cd . Thus,(wbd)mn+1 (w

b
d)mn+2 · · · (wbd)mn+pkn−1 coin-

cides with the prefix of(w′)dd of lengthpkn − 1. Since the choice ofw′ does not depend on
d andb, andwbd and(w′)dd are uniformly recurrent due to Lemma 4, this impliesF(wbd) =
F((w′)dd) for all b andd: we see that the language of factors ofwbd does not depend onb.

It remains to prove thatwbd is not periodic. Suppose the opposite: letwbd is periodic.
Since gcd(d, pq) = 1, there existsc such thatdc ≡ 1(modqpk). Consider a subsequence
of wbd of differencec. It also must be periodic due to Lemma 1. On the other hand, it is
a subsequence ofw of differencedc; as it has been shown above, its language of factors
is equal toF((w′)dcdc). But (w′)dcdc = w′ due to Lemma 10. We must conclude thatw′ is
periodic. A contradiction. �

Lemmas from this section will be used only in the proof of the “only if” part of
Theorem 1, but the proof of the “if” part will resemble the proof of Lemma 11.

6. The “if” proof

In this section, we show that if a wordw is canonicallyp-regular for some primep

andwp
a

pa = w
pb

pb
for somea 
= b, then its arithmetical complexity grows linearly. Due to

Lemma 5, we can considerw as defined byw = P · T (R1 · . . . ·Rk), where all patternsRi
arep-regular andP is regular.

We shall divide the proof into two statements: first we shall show that arithmetical com-
plexity ofT (R), whereR = R1 · . . . ·Rk, grows linearly (Lemma 12), and then that applying
a regular pattern to an infinite word does not increase order of growth of arithmetical com-
plexity (Lemma 13). Clearly, these statements imply what we need.

Lemma 12. Let R ∈ Pq

pk
be apk-regular pattern, where p is prime andq, k > 0 are

arbitrary. ThenaT (R)(n) = O(n).

Note that fork = 1, this statement was proved in [3] as a particular case of Theorem 3.
The proof below is structured like that from [3], with just one additional argument needed
for k > 1.

Proof of Lemma 12. Note that it is sufficient to prove the lemma for the case when all
symbols of the patternRare distinct and equal to their positions in it, i.e., for

R =R
q

pk

= 12· · · (pk − 1)?(pk + 1) · · · (2pk − 1)?· · ·?((q − 1)pk + 1) · · · (qpk − 1)?.
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Indeed, any other patternR′ ∈ Pq

pk
can be obtained fromRq

pk
by identifying symbols,

that is, by somecoding c. If R′ = c(R
q

pk
), then clearlyT (R′) = c(T (R

q

pk
)). Thus, any

arithmetical factor ofT (R′) can be obtained by identifying symbols from an arithmetical
factor ofT (Rq

pk
), andaT (R′)(n)�aT (Rq

pk
)(n).

In what follows, we considerR = R
q

pk
. Note that as well as any pattern fromPq

pk
, it

can be naturally decomposed as a product ofk p-regular patterns:Rq
pk

= R1 · . . . · Rk. In

this particular case, symbols ofRi not equal to ? are successive numbers from 1 toqpk

which are divided bypi−1 but not divided bypi . For example,R3
4 = 123?567?9 10 11 ?=

(1?3?5?7?9?11?) · (2?6?10?).
To show that arithmetical complexity ofu = T (R

q

pk
) grows linearly, let us consider an

arbitrary arithmetical subsequenceuid of uand show that it belongs to the orbit of a Toeplitz
word from a finite set and has linear subword complexity. Note that if gcd(d, qpk) = 1,
then a part of the statement we need has been already proved in Lemma 11. But now we
need to consider the general case of arbitraryd.

Consider a subsequencev = uid and suppose first that gcd(d, p) = 1. Then exactly 1 of
eachpk successive symbols ofv is of order 1 inu, exactly 1 of eachp2k successive symbols
(and one ofpk symbols of order 1) is of order 2, and so on. Let us say that a factors ∈ F(v)
isn-canonicalif its length is at leastpkn, and there exists itscanonicaloccurrence tov such
that the symbol ofsnumberedpkn is of ordern in u, i.e., lies inu at a position numbered
mpkn for somem. Clearly,n-canonical words exist for anyn. Moreover, eachn-canonical
words is (n−1)-canonical. Indeed, symbols ofsnumberedpk(n−1) andpkn in its canonical
occurrence tov lie in u at the distancedpk(n−1)(pk − 1), i.e.,pk(n−1)th symbol ofs lie in
u at the position numberedmpkn − dpk(n−1)(pk − 1) = (mpk − dpk + d)pk(n−1), which
is of (n− 1)th order.

Thus, there exists a sequence ofn-canonical words,n → ∞, tending to an infinite word
t ∈ O(v). Sincev is uniformly recurrent due to Lemma 4,F(v) = F(t). For alln, the prefix
of t of lengthpkn is n-canonical. Let us fixn andm and consider symbols oft numbered
mpkn and(m+ qpk)pkn. In each occurrence of the prefix of length(m+ qpk)pkn of t to v,
these symbols lie at the distancedqpk(n+1) in u. So, ifpk/|m, these symbols are equal. This
means thatt is canonicallypk-regular, moreover,t = S1 ·S2 · . . . ·Sn · . . . ·, whereSn ∈ Pq

pk

for all n. Since in the initial patternRq
pk

all symbols are distinct, each ofSi is uniquely

determined by its first symbolsi and the residued ′ of dmoduloqpk: if m+ 1 = ipk, then
the(m+ 1)th symbol ofSi is ?, and otherwise it issi + dm ≡ si + d ′m(modqpk). So,t is
uniquely determined byd ′ and the sequence{si}∞i=1.

Now let us show that the sequence{si}∞i=1 is periodic and completely determined by the
symbols1.To do it, consider a canonical occurrence inv of the prefix oftof lengthpkn (recall
that it isn-canonical). By definition, its last symbol issn, and thepk(n−1)th one issn−1. Inu,
these symbols lie at the distancedpk(n−1)(pk−1). Heresn−1 lies at the position of the form
pk(n−1)(mqpk + sn−1) for somem, andsn lies at the position of the formpkn(m′qpk + sn).
We see thatpk(n−1)(mqpk + sn−1) = pkn(m′qpk + sn)− dpk(n−1)(pk − 1); after dividing
bypk(n−1), this meanspk(mq + d)+ sn−1 − d = pk(m′qpk + sn). Moduloqpk, this gives
sn−1 ≡ pk(sn−d ′)+d ′. So,sn−1 is uniquely determined bysn. Since the sequence{sn}∞n=1
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is infinite, we see that it is periodic, and all symbols in its minimal period are distinct. So,
it is completely determined bys1 andd ′, and the same is true fort = S1 · . . . · Sn · . . . · as a
whole: we can writet = t (d ′, s1).

Now let us consider the case ofv = uid with p|d: more precisely, suppose thatd =
pmd ′, where gcd(d ′, p) = 1. Two cases are possible. First, ifpm/|i, thenv is qpk−1-
periodic. Second, ifpm|i, thenv = (u

pm

pm)
i′
d ′ is an arithmetical subsequence ofup

m

pm =
T (Rm+1 · . . . · Rm+k), where indices are taken modulok. The difference ofv as a sub-
sequence ofup

m

pm is coprime withp, so, it can be considered analogously to the previous
case, andF(v) = F(t), wheret = t (d ′, s1,m′) is a regular Toeplitz word which depends
only ond ′ = d modqpk,m′ = m modk, and the initial symbols1. In particular, ifm = 0,
thent (d ′, s1,0) is t (d ′, s1) defined in the previous paragraph.

Summarizing these arguments for allv = uid , d, i > 0, we see that

A(u) =
[
k−1⋃
m=0

qpk−1⋃
d=1

qpk−1⋃
s=1

F(t (d, s,m))

] ⋃
Per,

where the unions fordandsexclude the cases when these parameters are divided bypk. Here
all t (d, s,m) arepk-regular Toeplitz words, and their subword complexity grows linearly
[5,13], andPer is the union of sets of factors ofqpk−1-periodic wordsuid corresponding
to p|(d/i). Subword complexity ofPer is ultimately constant, and thus the arithmetical
complexity ofu grows linearly. Lemma 12 is proved.�

Example 6. Considerw = T (R3
2) = T (1?3?5?). If, for instance,d ≡ 3(mod 6), then

F(wid) is equal either toF(T (1?· 5?)), like for w1
3, or toF(T (5?· 1?)), like for w2

3, or to
F(3�), like for w3

3.

Lemma 13. LetP ∈ Pq
d be a regular pattern, u be an infinite word, andw be defined as

P · u. Then

aw(n) � q2 ∑
k|d,k>1

�(k)
(
kau

(⌊n
k

⌋
+ 1

)
+ d − k

)
+ q2(d − 1)+ au(n)

� au(n) · O(q2d3).

Proof. Let us fix residuesi, j ∈ {0, . . . , qd − 1} and consider for allm�0 arithmetical
factors ofw which are prefixes of lengthn of subsequenceswimqd+j . If gcd(d, j) dividesi,
then such a prefix contains�(n/d)gcd(d, j)� or �(n/d)gcd(d, j)�+ 1 successive symbols
of ukmqd+j/gcd(d,j) for somek, situated inwimqd+j at the distanced/gcd(j, d). There are

qd/gcd(j, d) such values ofi. For remainingqd(1−1/gcd(d, j)) cases, sequenceswimqd+j
are periodic and do not contain symbols ofuat all. They do not depend onm. Summarizing
these arguments for allj, we obtain that

aw(n)�
∑

j∈{1,...,qd}

[
qd

gcd(j, d)
au

(⌊n
d

gcd(j, d)
⌋

+ 1
)

+ qd

(
1 − 1

gcd(j, d)

)]
.
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For eachj, let us definek = d/gcd(j, d). Then the formula above can be rewritten as

aw(n)�q
∑
k|d

(
kau

(⌊n
k

⌋
+ 1

)
+ d − k

)
Nk,

whereNk is the number of values ofj ∈ {1, . . . , qd} such thatd/gcd(j, d) = k. It can be
easily seen thatNk = q�(k), where� is the Euler function. Note also that fork = 1 and
d|i, the arithmetical factors ofw we count are already arithmetical factors ofu, and we do
not need to count themq2 times instead of one. So, the resulting formula is

aP ·u(n)�q2 ∑
k|d,k>1

�(k)
(
kau

(⌊n
k

⌋
+ 1

)
+ d − k

)
+ q2(d − 1)+ au(n).

For all k�2, we can roughly estimate thatau(�n/k� + 1)�au(n) and
∑
k|d k�(k) =

O(d3). This gives the final estimate of

aP ·u(n) = O(q2d3)au(n).

The lemma and thus the “if” part of Theorem 1 are proved.�

The remaining part of the paper is devoted to the “only if” part. We start with two sections
of auxiliary statements and notions. At the end of the next section, we give a sketch of the
“only if” proof.

7. Special words

Recall that a language is calledfactorial if it is closed under taking factors. Clearly,
languagesF(w) andA(w) are factorial for any wordw. If w is uniformly recurrent, then
they are alsoprolongable, which means that each element of either of them can be prolonged
to another element of the same language by adding symbols both to the left and to the right.

One of the main techniques for computing subword complexity of a word or a factorial
language is counting its special factors. A finite wordu is calledspecial in a factorial
languageF if au ∈ F andbu ∈ F for some distinct symbolsa andb.

Let us denote the subword complexity (that is, the number of elements of lengthn)
of a factorial languageF by fF (n); the subword complexity of a wordw is fF(w)(n) =
fw(n). If is well known that for each prolongable factorial languageF, the subword com-
plexity satisfies the inequalityfF (n + 1)�fF (n) + sF (n), wheresF (n) is the number
of special words of lengthn in F. For precise formulas involving special words see, e.g.
Cassaigne [4].

Note that a prefix of a special word is also special, so, special words of a languageF
constitute a prefixial tree. Each of its infinite branches corresponds to a unique infinite word
having the respective series of prefixes. We call this infinite word an infinitespecialword
of F and denote the set of such words byS(F ). An infinite word which is special in its
language of factors is called simplyspecial.

Recall that the arithmetical complexity of a wordw is the subword complexity of its
arithmetical closure, so, the previous formula applied for it givesaw(n + 1)�aw(n) +



80 A.E. Frid / Theoretical Computer Science 339 (2005) 68–87

sA(w)(n). Suppose that the arithmetical closure of a wordw has an infinite number of
special infinite words. Then the functionsA(w)(n) tends to infinity, and thusaw(n) grows
faster than linearly. We have obtained the following:

Lemma 14. If aw(n) = O(n), then the setS(A(w)) is finite.

Now let us consider a special wordu = u1 · · · umk ∈ A(w). Suppose thatauandbuare
in A(w), wherea, b ∈ �. Then so areaukk = auku2k · · · umk andbukk = buku2k · · · umk.
Passing tom → ∞, we obtain

Lemma 15. If u ∈ S(A(w)), thenukk ∈ S(A(w)) for all k.

Hence we shall say that subsequences of the formukk arespecialsubsequences ofu.
These statements are sufficient to show by an example that ifw = T (R), whereR is a

d-regular pattern andd is not prime, then the arithmetical complexity ofw is not in general
linear.

Example 7. Let us consider a canonically 6-regular patternR = 00100? and the Toeplitz
wordw = T (R) = 001000001000001001. . . . Let us show that it is special. Indeed, since
it is not periodic andR contains only one gap, each prefixw(k) of w of length 6k − 1,
followed by a gap, is the minimal prefix period ofWk = R · . . . · R︸ ︷︷ ︸

k

·?. So, each gap inTk

is followed byw(k), and gaps inTk can be substituted inTk+1 both by 0’s and 1’s. This
means thatw(k) is special for allk, and so isw.

Due to Lemma 15, all sequencesw2k

2k
belong toS(A(w)). The first 1 inw is its 3rd symbol.

Then,w2
2 = 00?·w, and thus the first 1 inw2

2 is its 9th symbol.Analogously,w4
4 = 00?·w2

2,

and the first 1 in it is its 27th symbol, etc. Thus, allw2k

2k
are distinct,S(A(w)) is infinite,

andaw(n) grows faster than O(n) due to Lemma 14.

The following lemma is easy:

Lemma 16. If a p-regular sequence is special then it is canonically p-regular.

Note that the converse in not true: a canonicallyp-regular word may be non-special.

Example 8. The canonically 2-regular wordw = T (1?3?5?) = 113153113553· · · is not
special sincew3

3 = 3� and thusw could be prolonged to the left only by 3. But due to
Lemmas 6 and 16, all special infinite words from the orbit ofw are also canonically 2-
regular; in fact, they areT (3?5?1?· 5?1?3?) = 35531135· · · andT (5?1?3?· 3?5?1?) =
53153553· · · .

Lemma 17. If a special canonically p-regular wordv has linear arithmetical complexity,
then it belongs toPpk · T (Ppr ) for some k and r.

Proof. It is sufficient to note that the set{vpapa }a�0 ⊆ S(A(W)) is finite due to Lemma 15
and to use Lemma 5.�
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Note that each infinite special word ofF(w) is also an infinite special word ofA(w).
Such special word exists for each non-periodicw and has the same set of factors asw since
w is uniformly recurrent. So, it has the same arithmetical complexity. If we prove that for
somew with linear arithmetical complexity one of these special words, denoted byw′, is
canonicallyp-regular for somep, this will prove the theorem due to Lemma 17. So, without
loss of generality we can considerw = w′, i.e., assume that our uniformly recurrent infinite
word of linear arithmetical complexity is special.

In the next technical section, we prove Lemma 20 stating that a word of linear arithmetical
complexity cannot simultaneously contain non-periodicp-regular andp′-regular arithmetic
subsequences for primep 
= p′. Then we shall pass to the main part of the proof: given
a special uniformly recurrent wordw of linear arithmetical complexity, we first prove in
Section 9 the principal Lemma 21 asserting thatw contains a special canonicallyp-regular
subsequencewmm for somem and primep. To do it, we have to split symbols ofw and to
pass to a sequencev on the alphabetS(A(w)), then to find in it a special subsequencevmm
with a needed symmetric structure, and then find invmm an infinite periodic subsequence
with a prime difference, denoted byp. After that we prove thatvmm is canonicallyp-regular,
and thus so iswmm.

After that in Section 10 we use Lemma 21 together with Lemmas 11 and 20 to show
that w itself is canonicallyp-regular. Due to Lemmas 5 and 17 this will prove the
theorem.

8. Some more technical lemmas

The following two lemmas will be used for the proof of Lemma 20:

Lemma 18. For all n and D, each non ultimately periodic infinite wordw contains at
least (n + 1)/D distinct words of length n occurring in it starting with positions equal
to 1modulo D.

Proof. Let us dividew to blocks of lengthD starting from the first symbol and consider
these blocks as symbols of a new alphabet. The obtained word is non ultimately periodic
and thus for allmcontains at leastm+ 1 distinct words of lengthm. So, the wordw has at
leastm+1 words mentioned in the statement of the lemma of lengthsmD to (m+1)D−1,
and the lemma is proved.�

Lemma 19. Let a wordv occur as a factor in a wordw ∈ O(T (Pq
d )) starting with position

numbered k, and the order inw of symbols ofv is bounded bym− 1 = m(v, k)− 1.Then
v occurs inw as a factor starting with all positions congruent to k moduloqdm.

Proof. Letw ∈ O(T (R)), whereR ∈ Pq
d . Let us consider the wordW(m) obtained from

w by substituting all symbols of order at leastmby gaps. By the definition of the order, it is
periodic; on the other hand, it belongs to the orbit ofR · R · . . . · R︸ ︷︷ ︸

m

·?�, and thus its minimal
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period|R · R · . . . · R︸ ︷︷ ︸
m

| dividesqdm. The occurrence ofv starting with position numbered

koccurs already inW(m) and thus in all positions ofW(m) (andw) congruent tokmodulo
qdm. �

Lemma 20. If an infinite wordw contains non-periodic p- and p′-regular arithmetical
subsequences for primep 
= p′, then its arithmetical complexity grows faster than linearly.

Proof. Suppose by contrary thataw(n) = O(n). First let us show thatw contains non-
periodic subsequences fromO(T (Ppk )) andO(T (P

p′k′ )) for somek, k′ > 0. Indeed, let
us consider thep-regular non-periodic subsequencev of w and pass to a special word
v′ ∈ O(v). Due to Lemmas 6 and 16, it is canonicallyp-regular. Its arithmetical complexity
av′(n)�aw(n) = O(n), and due to Lemma 15, the set{(v′)p

a

pa |a > 0} is finite. Thus, due to
Lemma 5,v′ ∈ P · T (Ppk ) for somek andv′ has a special non-periodic subsequenceu′ ∈
T (Pq

pk
) for someq. Thenv ∈ O(v′) containsu ∈ O(u′) ⊂ O(T (Pq

pk
)) due to Lemma 3.

We have proved thatw contains a subsequence fromO(T (Pq

pk
)) (let us denote it bywba);

analogously, it contains a subsequencewdc ∈ O(T (Pq ′
p′k′ )). Without loss of generality, we

assume thatb�d. In what follows we shall prove that even the subword complexity ofw

grows at least quadratically, contradicting to our assertion.
Sincep andp′ are coprime, gcd(aqph, cq ′p′h′

) is stabilized for all sufficiently large
h, h′. Let us denote this limh,h′→∞ gcd(aqph, cq ′p′h′

) byD. Let us fix ann and consider
an arbitrary worduof lengthnc+1 occurring inwba on a position equal to 1 moduloD (say,
at positionhD + 1); such words are at least(nc + 2)/D due to Lemma 18. Analogously
let us consider a wordu′ of lengthna + 1 occurring inwdc at a position congruent to 1
moduloD (say, at positionh′D + 1); such words are at least(na + 2)/D. We shall prove
that if neitheru noru′ contain a symbol of infinite order inw, then there exists a subword
v ∈ F(w) of lengthnac+d−b+1 such thatv1

a = u andvd−b+1
c = u′. Sinceuandu′ were

chosen arbitrarily, and there is at most one symbol of infinite order inw, it will mean that
fw(nac + d − b + 1)�((na + 2)/D − 1)((nc + 2)/D − 1) = O(n2), which is sufficient
for the lemma to be proved.

To find the desired wordv, we note that due to Lemma 19, the wordu occurs inwba
at all positions equal tohD + 1 moduloqpkm(u,hD+1); in w, these are positions equal
to ahD + b moduloaqpkm(u,hD+1). Analogously,u′ starts inwdc with all positions equal
to h′D + 1 moduloq ′p′k′m(u′,h′D+1); in w, they are positions equal toch′D + d modulo
cq ′p′k′m(u′,h′D+1). Thus, the needed wordv is any subword ofw starting with a positionx,
where

x ≡ ahD + b (modaqpkm(u,hD+1)),

x + d − b≡ ch′D + d (modcq ′p′k′m(u′,h′D+1)).

This system always has a solution because gcd(aqpkm(u,hD+1), cq ′p′k′m(u′,h′D+1)) divides
ahD − ch′D by the definition ofD. So, the needed wordv exists, and the lemma is
proved. �
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9. The principal lemma

The main difficulty in the proof of the “only if” part of Theorem 1 is hidden in the
following:

Lemma 21. Letw = w1 · · ·wn · · · be a uniformly recurrent special infinite word on an
alphabet� having linear arithmetical complexity. Then there exist some m and a prime p
such thatwmm is canonically p-regular.

Proof. Due to Lemmas 14 and 15, the sequenceswkk take only a finite number of values
for all k > 0: their setS is a subset ofS(A(w)). Let us considerS as a new alphabet and
define the sequencev = v1 · · · vn · · · ∈ S� by vk = wkk for all k.

Note thatvk = vl implieswk = wl for all k, l > 0. So,w is obtained fromv by applying
a symbol-to-symbol morphismc : S → �, i.e.,w = c(v). Furthermore, note thatwkk = wll
impliesvkk = vll : indeed, ifwkk = wll , then for alln we have(wkk)

n
n = wknkn = vkn = vln =

wlnln = (wll )
n
n.

The same argument shows that the symbolvkn for all kandn is determined byvk andvn.
So, we can define a commutative operation×0 : S → S such that for allk, n > 0 the equal-
ity holdsvk×0vn = vkn. The initial symbolv1 works as the unit element with respect to×0.
The operation×0 is not obliged to be a group one: the symbolv1 can be absent in somevk1

k1
,

and thus it may happen thatvk1 ×0 a 
= v1 for all a ∈ S. However, in this case we can pass
from v to its special subsequencev′ = v

k1
k1

which has a strictly less number of different spe-
cial subsequences (and thus symbols which occur in it), and define a respective operation×1.

Since this procedure strictly decreases the number of symbols occurring in the considered
word, we can continue the process until some operation×l = × defined according to the
subsequencev(l) = (v(l−1))

kl
kl

= vmm is a group one. We denotevmm by z. The respective
subalphabet ofS is an abelian group with respect to×. In particular, this means that for all
symbolsa, b, c from it the equalitya × b = a × c impliesb = c. So,znk = znl for any
k, l, andn implieszl = zk and thuszll = zkk .

Note that the least possible number of distinct symbols inz is 2 because a constant infinite
word cannot be special.

Let us say that the sequencesz′ andz′′ areclonesif they are obtained from each other
by a permutation involving all symbols:(z′)l = (z′)k if and only if (z′′)l = (z′′)k, and
(z′)k = (z′′)k if and only if z′ = z′′. We see that any two special subsequences ofz are
clones, and each of special subsequences ofz can be reconstructed from any its symbol.
Moreover, sinceznlnk = (znn)

l
k, andzandznn are clones, we see that so areznlnk andzlk for all

k, l, n. In what follows we callznlnk then-cloneof zlk.
Let us denote the subsequencewmm by y: so,y = c(z). The relations amongw, v, zandy

are depicted below.

v
()mm−−−−→ z

c

� c

�
w

()mm−−−−→ y
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Due to Lemma 7, to prove thaty is canonicallyp-regular (and thus the claim holds), it is
sufficient to show thatz is canonicallyp-regular. First let us prove the following:

Claim 1. The sequence z contains a periodic arithmetical subsequencezrd .

Proof. Let us return toy. It is uniformly recurrent due to Lemma 4 and has linear arithmetical
complexityay(n)�aw(n). Let us consider the set of all its non-periodic subsequences. Each
of them is uniformly recurrent due to Lemma 4, so, it is not ultimately periodic, and the
maximal power of a symbol occurring in it is finite. The language of factors of each of these
subsequences has a special infinite word which has the same set of factors and belongs to
S(A(w)). Since the latter set is finite, there exists a maximal powerM of a symbol occurring
in all non-periodic subsequences ofy.

Now let us pass again toz. It is obtained fromy by splitting symbols, hence ifyrd is non-
periodic, then so iszrd , and the maximal power of a symbol occurring in it is also bounded
by M. At the same time,M + 1 successive equal symbols occur in some arithmetical
subsequencezrd of zby the Van der Waerden theorem. Thus, the respective subsequenceyrd
of y is periodic. Let us consider all sequencesynrnd , wheren > 0. They take a finite number
of values because they are similar subsequences of special sequencesynn , and each of them
after splitting symbols gives then-cloneznrnd of zrd . If some ofynrnd is non-periodic, then it
contains at mostM successive equal symbols. Consequently, so doznrnd and its clonezrd ,
a contradiction. Thus, allynrnd are ultimately periodic and take a finite number of values.
Moreover, they are periodic since uniformly recurrent.

Thekth symbol ofzrd for everyk is determined by the sequence ofkth symbols of{ynrnd}∞n=1.
So, the sequencezrd is periodic. �

Note that we could always chooser < d. Indeed, letr > d, then allyn(r−d)nd are uniformly
recurrent and thus periodic and fit to our conditions. So, we can subtractd from the number
of the first symbol of the subsequence until we haved�r. Here we cannot haved = r

because the sequenceydd is special which implies thataydd andbydd belong to orbits of some
arithmetical subsequences ofy for somea, b ∈ �, a 
= b. If ydd were periodic, then at
least one of these prolonged sequences would not be uniformly recurrent, contradicting to
Lemma 4.

Let us choose the differenced of a periodic subsequence ofz to be minimal, andr
be minimal for the givend (as we have shown, in this case we haver < d). Note that
gcd(d, r) = 1 becausezrd is the gcd(d, r)-clone ofzr/gcd(d,r)

d/gcd(d,r) which is thus also periodic,
and gcd(d, r) > 1 would contradict to the minimality ofd.

Claim 2. For each s, the fact thatgcd(d, s) = 1 implies thatzsd is periodic.

Proof. Let us consider an arbitrarys ∈ {1, . . . , d−1} coprime withd. Let t ∈ {0, . . . , t−1}
be the number satisfying the congruencest ≡ r (modd), i.e.,st = cd + r for somec; such
t always exists. Then for everyn > 0 thetth symbol ofzs+nds+nd is zts+tnd = zr+d(tn+c). These

symbols constitute the arithmetical subsequenceztstd = zr+dctd = (zrd)
c+1
t of zrd , which is

periodic by Lemma 1. Butztstd is thet-clone ofzsd , which is thus also periodic.�
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As a corollary of Claim 2, we see thatz1
d is always periodic.

Claim 3. The minimal difference d is prime.

Proof. Suppose by contrary that it is composite:d = p�q, wherep is prime,� > 0,pdoes
not divideq, and either� > 1 or q > 1. Let us fix somek ∈ {0, . . . , p − 1} and consider

the subsequence(zpd )
k+1
p = z

p+kd
dp . It is thep-clone ofz1+kp�−1q

d and thus has the same
properties.
Case1: Suppose that� > 1. Then for allk we have gcd(1 + kp�−1q, d) = 1. So,

z
1+kp�−1q
d = z

1+kd/p
d is periodic for allk due to Claim 2. But then the sequencez1

d/p =
z1
d z

1+d/p
d · · · z

1+(p−1)d/p
d is also periodic by Lemma 2, contradicting to the minimal-

ity of d. So, this case is impossible.
Case2: Suppose that� = 1. In this case,d/p = q is coprime withp, and we have

gcd(1 + k1p
�−1q, d) = gcd(1 + k1q, d) > 1 for some uniquek1 ∈ {0, . . . , p − 1}

becausek1q ≡ −1(modp). For thisk1 we have gcd(1 + k1q, d) = p. For allk ∈ {0, . . . ,
p− 1}\{k1}, the sequenceszp+kd

pd are periodicp-clones ofz1+kd/p
d , which are periodic due

to Claim 2. Let us consider the sequencez
p+k1d
pd . Positions inz of all its elements are divided

by p2; we see thatp2 divides its difference andp3 does not. So, exactly one of each its
p elements occurs at a position whose number is divided byp3; these elements constitute
the subsequencezp+k1d+k2pd

p2d
, wherek2 ∈ {0, . . . , p − 1}. At the same time, any other

subsequence of the formzp+k1d+kpd
p2d

, wherek ∈ {0, . . . , p− 1}\{k2}, is periodic since it is

thep2-clone of one of sequenceszld , where gcd(d, l) = 1. Continuing the process, we see

that for alln, only one of subsequenceszp+(k1+k2p+···+knpn−1)d
pnd = (z

p
d )

[kn···k1]p+1
pn , where

k1, . . . , kn ∈ {0, . . . , p − 1}, can be non-periodic. So,zpd is by definitionp-regular with
in = [kn · · · k1]p + 1. It is thep-clone ofz1

d/p, which is non-periodic due to minimality of
d, so, it is non-periodic too.

Now let us prove that some of subsequencesy
np
nd ,n = 1,2, . . . , is non-periodicp-regular.

These subsequences take a finite number of values becausey
np
nd = (ynn)

p
d , p andd are fixed,

andynn , n = 1,2, . . . , take a finite number of values due to Lemma 14. Suppose that all
sequencesynpnd are periodic; since thekth symbol ofzpd for all kdepends only on the sequence
of thekth symbols ofynpnd , in this casezpd also would be periodic. A contradiction. So, for
somen the sequenceynpnd is non-periodic. Since it is obtained from then-cloneznpnd of zpd
by applying a letter-to-letter morphism, it isp-regular due to Lemma 7. We have found a
non-periodicp-regular subsequence ofy.

But by our assumption,d is composite and another primep′ divides it. At the same
time, (p′)2 does not divided since Case 1 is impossible. So, analogously we can prove
that y contains a non-periodicp′-regular subsequence. But then by Lemma 20 we have
ay(n)�O(n2). Sinceaw(n)�ay(n), this contradicts to the assumption thataw(n) grows
linearly. Thus, Case 2 is also impossible, the minimal differenced cannot be composite,
and the Claim is proved.�
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We have proved thatd is a prime number,d = p. Then Claim 2 means thatall subse-
quenceszsp, wheres < p, are periodic. As forzpp, it is thep-clone ofz and thus has the

same property, as well aszp
2

p2, etc. Since subsequences of periodiczsp are also periodic, this

means thatz is canonicallyp-regular. By Lemma 7, so isy = wmm, and the statement of the
lemma follows. �

10. The remaining part of the proof

Let w be a special uniformly recurrent infinite word of linear arithmetical complexity.
Due to Lemma 21, some its special subsequencewmm is canonicallyp-regular for some prime
p. To prove the theorem, we must show thatw itself is canonicallyp-regular. First, let us
note that it is sufficient to verify that all subsequencesw1

p, w2
p, . . . , wp−1

p are periodic.
Indeed, the subsequence(wpp)mm = (wmm)

p
p is canonicallyp-regular due to Lemma 9. So,wpp

fits to the same conditions thatw, and if we prove that allwip, for 1� i < p, are periodic,

then we can prove the same for respective subsequences ofw
p
p , (wpp)

p
p = w

p2

p2 , etc. The fact
thatw is canonicallyp-regular will follow by induction on the power ofp.

Thus, let us consider somewip for 1� i < p and prove that it is periodic. Suppose by
contrary that it is not. Since it is uniformly recurrent due to Lemma 4, we can pass to a
special wordv from its orbit without changing the set of factors and apply Lemma 21 tov:
it has a canonicallyp′-regular non-periodic special subsequence for some primep′. Due
to Lemma 17, this subsequence has a subsequence fromT (Pq

p′r ). Returning towip, we use
Lemmas 3 and 6 and see that it also has ap′-regular non-periodic subsequence which in its
turn has a subsequence fromO(T (Pq

p′r )). If p′ 
= p, thenaw(n) grows faster than linearly

due to Lemma 20. So,p′ = p, and there is a non-periodic subsequence fromO(T (Pq
pr ))

for somer andq in wip. Let us denote it by(wip)
c+1
b = w

i+cp
bp .

Let us defineD = gcd(i + cp, bp) and considerwDD . Due to Lemma 9, its special

subsequence(wDD)
m
m is canonicallyp-regular, andwi+cpbp is its subsequence(wDD)

(i+cp)/D
bp/D

whose difference and position of the first symbol are coprime. So, we can considerw
i+cp
bp

as a subsequence ofwDD instead ofw to find a contradiction to the fact thatwi+cpbp is not

periodic. SincewDD has the same properties thatw, for the sake of simplicity we can assume
thatD = 1, or, equivalently, that gcd(i + cp, bp) = 1.

Let the kth order symbols be situated inwi+cpbp at positions equal toik moduloprk.

Then they constitute the arithmetical subsequencew
i+cp+(ik−1)bp
bprk+1 of w. Note that gcd(i +

cp, bp) = 1 implies gcd(i + cp + (ik − 1)bp, bprk+1) = 1. So, by the Dirichlet theorem,
each of arithmetical progressions of positions inw of symbols occurring inwi+cp+(ik−1)bp

bprk+1

contains an infinite number of primes. Due to Lemma 8, we can always choose a prime
numberlk from this progression, coprime withq (and, by the construction, withb andp)
such that the maximal order ofwlk in w is finite.
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Let us consider the sequencewlklk and its intersectionv(k) with thep-regular sequence

w
i+cp
bp : note that due to the choice oflk, it starts with the first symbol ofwlklk . On one hand,

since gcd(lk, bp) = 1, the sequencev(k) is a subsequence ofwi+cpbp of prime differencelk.
Since gcd(lk, pq) = 1 and due to Lemma 11,v(k) is non-periodic,pr -regular, and its first
symbol (coinciding withwlk ) is of the same maximal order that inwi+cpbp , greater than or

equal tok. So, the set{v(k)}∞k=1 is infinite. On the other hand,v(k) = (w
lk
lk
)1bp, i.e.,v(k) is

the subsequence of a special subsequence ofw of fixed differencebpand initial position 1.
Since there is a finite number of special sequences ofw due to Lemmas 14 and 15, the set
{v(k)}∞k=1 must also be finite. A contradiction. So,wip is periodic for all 1� i < p, and by
induction,w is canonicallyp-regular. The reference to Lemma 17 completes the proof of
Theorem 1. �
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