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Abstract In this paper, some methods of similarity measures between objects are
presented with their properties reviewed. The study is conducted to propose a new
method based on genetic algorithm in order to reduce the time complexity of finding n
most similar objects among the huge number of objects. This method is tested on two
applications. The former aims at finding the most similar residents in a condominium,
and the latter deals with finding the most similar n-groups of text documents out of
a great dataset. The simulation results show that the proposed method can efficiently
improve the order of time complexity especially for the second application.
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1. Introduction

In literature, there are different definitions for similarity concept in various fields. For
example definition of similarity in geometry differs from that of chemistry or psychol-
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ogy. In general, similarity has been defined as the degree of resemblance between two
or more concepts or objects [1, 2]. Each object, usually can be represented by special
properties composing a property vector of that object. The similarity degree between
two objects can be obtained by comparing their property vectors. Similarity value is
usually expressed as a real number within the intervals [0, 1] or [-1, 1]. The values
0 or —1 specify that objects are completely different, whereas 1 value expresses that
objects are identical [2]. Different types of similarity measures have been proposed
by researchers, including feature contrast model [3], information content [4], mutual
information [5], Dice coefficient [6], cosine coefficient [6] and distance-based mea-
surements [7]. Some classic similarity and dissimilarity measures for clustering have
been discussed in [8]. Sixty seven similarity measures in information retrieval have
been compared in [9].

The comparison of similarity measures in fuzzy scope has been discussed in [10].
This type of measure, takes into account the intersection of two fuzzy sets, where their
values are measured based on the geometric distance model, set-theoretic approach
and matching function approaches.

Another similarity measure between two fuzzy sets can be found in [11, 12]. The
idea in these jobs is that if a weak intersection exists between two fuzzy sets, then their
distance will be greater. In [11] the relative sigma count between fuzzy sets is used
to define two other similarity measures between fuzzy sets. The form of similarity
discussed in [12] is very close to correlation-based approaches which precisely can
consider it as a dissimilarity measure. Cosine similarity measure and a weighted
cosine similarity measure between intuitionistic fuzzy sets (IFS) are proposed based
on the concept of the cosine similarity measure for fuzzy sets [13].

All these similarity measures have been defined between just two objects or sets.
In many cases and applications the pair-wise similarities between objects are known,
and it is needed to find group of n > 3 objects with the most similarity, which may be
useful in object clustering or classification methods.

For the first time, the concept of similarity is generalized among n objects by
Keshavarzi et al. [1, 2]. It could work with various known 2-similarity measures. But
despite theoretically proved background of the approach, it could not be applied to
great search spaces.

In this paper, by using genetic algorithm, we improve the n-similarity problem, to
compute the similarity among n objects for n > 3, or to find a group of n objects
which has the most similarity within a dataset. Also we will apply this method to
digital text documents to search the groups with the most similarity values.

With significant growing of digital documents, information management and search
become a crucial problem [14]. Searching and finding the similar documents has spe-
cial importance in text document management [15]. Different similarity measures
have been suggested in the text retrieval scope which is used for computing the sim-
ilarity degree between the two documents and have been applied to text clustering
or text classification. In [16] several similarity measures have been introduced and
compared in data mining. In [17, 18] the effect of different similarity measures such
as cosine similarity measure, Jaccard coefficient, Euclidean similarity and Pearson
correlation coefficient on text clustering is discussed. In addition, in [17] an asym-
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metry similarity measure named averaged Kullback-Leibler divergence is compared
with mentioned measures on several datasets. In [19], a semantic similarity measure
based on topic maps representation is proposed and compared with previous methods.
Topic maps which are trees representations of documents and the similarity between
a pair of documents, is computed as a correlation between the sub-trees.

The longest common subsequence method (LCS) has been proposed in [20] that
obtains the maximum-length common subsequence of two text strings. In this method,
a sequence Z = z,- - ,Zn is a subsequence of X = xy,- -, x; if a strictly increasing
sequence iy, -+ , iy in indices of X exist, such that for all j = 1,---,m, x;, = z;. By
considering this definition, two strings are more similar if the maximum-length of
their common subsequence be larger. In comparison with LCS, a formal recursive
definition of n-gram similarity in strings by an efficient algorithm has been described
in [21].

In [15] a novel similarity measure for fuzzy text clustering has been presented. Au-
thors in [22] have focused on finding out the most similar documents using shingling
technique in big data; also the Jaccard coefficient to judge the degree of similarity
between the text documents has been discussed.

As mentioned above, the problem with all these measures is used to compute the
value of similarity just between two objects. In this paper, we improve the proposed
n-similarity theory of Keshavarzi et al. [1, 2].

To solve the n-similarity problem by using Keshavarzi’s method [1, 2], computing
2,3,--+,(n — 1)-similarity values are needed, so this method is practically so time-
consuming, and there is the need to improving the performance of the algorithm. We
optimize this method by exploiting the genetic algorithm, so that it is independent of
computing 2,3, - -, (n — 1)-similarity values and just uses 2-similarity values. It will
be proved that to find out the most n similar objects among m objects, the complexity
of the algorithm decline from O(m") in Keshavarzi’s method [1, 2], to O(n?) in our
proposed method by using genetic algorithm. Therefore, the proposed method is able
to handle huge datasets in reasonable time.

We apply the improved n-similarity measure for resemblance text documents. We
examine this method on the text document dataset, in order to find the most similar n
documents among a large corpus. Our analysis and simulation results show that our
proposed approach by genetic algorithm can dramatically decline the complexity of n-
similarity problem, especially in great datasets in comparison with previous method.

The remainder of the paper is organized as follows. Section 2 gives some prelim-
inaries that are used in this paper. Section 3 describes our approach to improve the
n-similarity problem by genetic algorithm. Some genetic algorithm concepts that are
needed have been explained in this section. Finally, in Section 4 simulation results
have been shown and discussed and a formal comparison between two methods has
been presented.

2. Preliminaries
In this section, we use some notations that are needed through this study.

Definition 2.1 [1, 2] Triangular norm (T-norm) is a function T : [0,1] x [0,1] —
[0, 1] which for all x,y, w, z€[0, 1] satisfies the following conditions:
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i. Commutartivity: T(x,y) = T(y, x);

ii. Monotonicity: T(x,y) < T(w,2)ifx <w,andy < z;
iii. Associativity: T(x, T (y,w)) = T(T(x,y), w);
iv. Boundary: T(x,0) =0,T(x, 1) = x.

The minimum T-norm is one of the most important instances of T-norms which has
been used in [1, 2, 23] for generalization of similarity measures 7'y, (x, y) =min(x, y).

Definition 2.2 [1] A 2-similarity on a domain U is a function S : U X U — [0, 1]
such that the following conditions are satisfied:

i. Reflexivity: for any xeU, S (x,y) = 1;
ii. Symmetry: for any x,yeU, S (x,y) = S(y, X);

iii. Transitivity: for any x,y, zeU, S (x,2) > S(x,y) AS (y, z), where A is a minimum
operator.
If the implication S(x,y) = 1 = x =y is confirmed, then it can be said that S is
strict.
Definition 2.3 [1, 2] A 3-similarity on a domain U is a function S : UxUxU — [0, 1]
such that the following conditions be satisfied:

i. Reflexivity: for any xeU, S (x, x,x) = 1;

ii. Symmetry: for any xi, x2, x3€U, S (x1, X2, x3) = S(X;1, X2, Xi3) where (il,i2,i3)
is an arbitrary permutation of (1,2, 3);

iii. Transitivity property: for anyt, x, x2, x3€U, S (x1, X2, x3) > S (¢, X2, X3)AS (x1, 1,
x3) A S(x1, x2,1), where A is minimum T-norm.

If the implication S (x;, X2, Xx3) = 1 = X = x» = x3 is confirmed, then it is said that
S is strict. In [23] Minimum T-norm has been used for generalizing the 2-similarity
to 3-similarity as defined in (1). It has been proved that this equation satisfies in
Definition 2.3.

§3(x,¥,2) = min{S2(x, y), S 2(y, 2), S2(x, 2)}. (D

Using the definitions of 2-similarity and 3-similarity, the notion of n-similarity is
defined as follow:
Definition 2.4 [1,2] S : U X U X --- X U — [0, 1] is an n-similarity if the following
properties are satisfied:

i. Reflexivity: for any xeU, S (x,x,-- ,x) = 1;

ii. Symmetry: S(x1, X2, ,X,) = S(Xj1, X2, -+ , Xin) for all permutations (il,i2,
woenin) of (1,2,- -+ n);
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iii. Transitivity: forall x, xp,- -+ , Xy, 2€U, S (x1, X2, - -+, X,) = min{S (z, X2, -+ , X)),
s, S (X, X2, Xm 1, D)

In [1, 2] it has been proved that the n-similarity can be obtained from an (n — 1)-
similarity, while satisfies the mentioned properties.
If S, is an (n — 1)-similarity on U and x, x, - - - , x,€U, then

Sn(xls"' ’xn)
=min{S ,,_1 (X2, X3, , X)), S o1 (X1, X3, 5 X), o, S o1 (g, X2, X))

(@)

Definition 2.5 [1, 2] Let U be a setand S : U X U X ---x U — [0,1] be an
n-similarity on U. Then for any A€l0,1], the n-relation =5, in U is defined as
(X1, X2, , Xp)€ =g 4 if S(x1, X2, ,x,) 2 A Then set =g , is called cut of level A
of S or A-cut of S.

The pseudo codes of 3-similarity, 4-similarity and n-similarity have been shown in
Algorithms 1, 2 and 3, respectively, based on the paper by Keshavarzi et al. [1, 2].

Algorithm 1 Three-similarity algorithm

Input: 2-sim matrix, A

Output: 3-sim matrix and the most 3-similar cluster, A-cut set
For i = 1 to size of dataset

For j =i+ 1 to size of dataset

For k = j + 1 to size of dataset

3-sim(i, j, k)=min {2-sim(i, j), 2-sim(i, k), 2-sim(j, k) };

If 3-sim(i, j,k) > A

Insert 3-sim(i, j, k) in A-cut set

End for of i, j and k

Write maximum element of 3-sim as the most 3-similar cluster
End

Algorithm 2 Four-similarity algorithm

Input: 3-sim matrix, A

Output: 4-sim matrix and the most 4-similar cluster, A-cut set
For i = 1 to size of dataset

For j =i+ 1 to size of dataset

For k = j + 1 to size of dataset

For [ = k + 1 to size of dataset

4-sim(i, j, k, D=min{3-sim(i, j, k), 3-sim(i, j, 1), 3-sim(i, k, 1), 3-sim(j, k, 1) };
If 4-sim(i, j, k, 1) > A

Insert 4-sim(i, j, k,[) in A-cut set

End for of i, j,k and [

Write maximum element of 4-sim as the most 4-similar cluster
End
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Algorithm 3 n-similarity algorithm

Input: (n — 1)-sim matrix, A

Output: n-sim matrix and the most n-similar cluster, A-cut set
For i, = 1 to size of dataset

For i, = i} + 1 to size of dataset

For i, = i, to size of dataset

n-sim(iy, iz, - -+, ip)=min {(n— 1)-sim(iz, i3, - - - , in),(n—1)-sim(iy, i3, -+ ,in), -+ ,(n—
1)-Sil71(i] N iz, e, in—l)};

If n-sim((iy, iz, -+ , i) = A

Insert n-sim(iy, ip, - - - ,i,) in A-cut set

End for of i to i,

Write maximum element of n-sim as the most n-similar cluster

End

In fact, by this way, to find the most n-similar group, all possible 2, 3, - - - n-similarity
values among objects should be computed, then the n-group with maximum similarity
can be obtained.

Obviously, such deterministic method is highly time-consuming and its search
space rapidly grows when the n or the dataset size increases. This problem leads
to significant decrease in algorithm performance.

In order to overcome this problem, we utilize the genetic algorithm which signif-
icantly improves the complexity of the problem. It is proved in Lemma 1 that our
proposed method by genetic algorithm just uses 2-similarity values as input. Further-
more, the size of the dataset and n does not directly affect on its algorithm. This is
for the sake of genetic algorithms nature that just search in some candidate solutions
instead of searching all possible solutions [24].

3. Genetic Algorithm

Genetic algorithms (GAs) as a subclass of evolutionary algorithms are random search
methods and are often used to optimize problems. Its principle is inspired by natural
selection and biological genetic to survive the fittest [25, 26].

Biological genetic is simulated by an iterative process called genetic algorithm de-
scribed afterward. First, an initial population is generated randomly. Each individual
in the population is represented as a bit string. Each individual is called chromo-
some and each chromosome represents a possible solution to the problem. Then,
fitness evaluation is computed for each decoded solution. Crossover and mutation are
executed on the current generation and produce a new generation. This process is
repeated for a certain number of times or until stopping criterion be satisfied [27]. In
the following, genetic operators are explained in details.

3.1. Representation

The first step in GA is setting a link between the problem context and problem-solving
space. The binary method used in GAs is one of the earliest representations. In
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this approach, each solution is encoded as a bit-string. For a particular application,
the length of bit-string should be first determined, so all possible solutions can be
represented by bit-string, and all possible bit-strings produce valid solutions [27].

3.2. Evaluation

Evaluation function is a procedure that assigns a quality measure to each individ-
ual. The evaluation function is usually called fitness function in GAs. This function
depends on the type of optimization problem [27].

3.3. Selection

Selection is a process that determines which solutions influence on the next genera-
tion to find optimum solutions in a short time. Its goal is to select the best solutions in
the population and to drive them into mating pool with this hope that by combination
of them, higher fitness off-spring will be produced.

The roulette wheel is a popular selection method that is often used in GAs. In
this method, the individuals with a higher fitness value, have higher chance to select.
The selection probability of each individual is its fitness divided by sum of the fitness
of all individuals in the current population. By using these probabilities, cumulative
distribution function (CDF) is calculated for each individual in the population. A
random number r between 0 and 1 is chosen. The individual with the biggest CDF
value which is equal or greater than r, is selected and inserted in the mating pool as
a parent of the next generation. This process should be repeated N times, where N is
the size of the population [24].

3.4. Crossover

Crossover is the main distinguishing feature of GAs. Single-point is a simple type
of crossover that is often used. In this method, two individuals are randomly se-
lected from the mating pool. A random number (less than or equal to the chromo-
some length) is generated as the crossover position. The parents’ two parts after
the crossover position are exchanged to generate two new off-spring and then are
passed along to the next generation. The crossover operation is done by a pre-defined
probability that describes how often crossover should be performed [24]. Figure 1
illustrates the single point crossover.

Parentl | 00101 « 110 Offsprngl [ 00101 : 010

1 e 3 |
Parent? | 11010} 010 Offspring?

Fig. 1 Single point crossover

3.5. Mutation

The mutation operator is applied to each string after the crossover operation. This
unary genetic operator produces a child by changing randomly selected gene in bi-
nary representation. Although this operator does not guarantee discovering a global
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optimum solution, it often provides a sub-optimum but a nearly global optimal solu-
tion. In fact, mutation randomly walks through the vicinity of the candidate solutions
and manipulates some solutions to stop the algorithm from being trapped in the local
optimum. A simple mutation often used in binary representation is done by flipping
the value of some randomly selected bits with special mutation rate [24, 25, 27].

Crossover and mutation operators produce a set of new candidate solutions based
on their fitness. These solutions are moved to the next generation. All these men-
tioned operations are performed together in an iterative manner until a termination
condition is satisfied [27].

4. The Proposed Method

Consider all m objects in the dataset have been numbered from 1 to m. The purpose is
to find the most n-similar cluster among these m objects. We represent each solution
as a string of size n X [log(m)] bits, because each cluster should be consisted of n
variables, where each variable ranges between 1 to m. Such strings are the candidate
solutions named chromosomes [25].

Figure 2 illustrates an instance of the chromosomes where Li = [log(m)], and []
stands for ceiling bracket operation. An initial population is randomly generated in a
N X (n x [log(m)]) matrix of 0 and 1s, where N is the size of the population.

1 2 wu U = e ML
CEFIEIIEDEEEED
X X e

Fig. 2 Chromosome representation as bit string
Each variable can be decoded to real numbers by (3). It will be normalized by (4),

and then the relation (5) converts it to a number between [1,m]. Finally, the result
should be rounded to integer numbers in our problem.

Li-1

(o = . bir(k) x 2%, ©)
k=0
. _ (X0
X = oLi_ 7’ @
A= 14X X (m—1). ®

When a new population initialized or created, the fitness values should be computed
for each candidate solution [25]. The fitness value is calculated for each candidate
solution by finding the minimum similarity among similarity values of all pairwise
variables of each candidate solution. Hereby a 2-similarity matrix will be obtained
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by a special similarity measure among all pair objects. That method is equivalent to
Keshavarzi’s n-similarity definition as it is shown in the following lemma.

Lemmal LetS, : UXUX---xXU — [0, 1] be n-similarity on U, where UXUX- - - XU
is the n copies of Cartesian product of U. Also S -1, ,S4,S83 and S, are (n — 1)-
similarity, - - -, 4-similarity, 3-similarity and 2-similarity, respectively.

proof  According to (2), n-similarity is computed as follow:
Salxr, e+, X0)
=min{S ,,_1 (X2, %3, * , %), S o1 (X1, X3, 5 X)), -+ 5 S o1 (X1, X2, 000, Xpm))
In the same way,
Sp1(xt, 5 Xm1)
=min{S ,—2(x3, -+, X0)s Sp2 (X1, Xay o+, X)), o+ 5 S 2 (o1, %2, X-2)},

S 4(x1, X2, x3, X4) =min{S 3(x2, X3, X4), S 3(x1, X3, X4), S 3(x1, X2, x4), S 3(x1, X2, X3)},
and

S3(x1, X2, x3) =min{S2(x2, x3), S2(x1, x3), S 2(x1, %2)}-

Recursively, by replacing S3 in S4, S4in Ss,--- and S, in S, and removing
repetitive elements, S, will be obtained just in terms of S, and can be computed
regardless of the previous (n — 1) similarity matrices. So n-similarity of n objects
can be obtained by taking the minimum of 2-similarities of all possible pairwise of n
objects.

Algorithm 4 represents a fitness function process that computes the similarity value
of each candidate solution. It finds the maximum fitness and A-cut set during the
generations or iterations of the algorithm.

Algorithm 4 Fitness function of GA
Input: 2-sim matrix, A
Output: 3-sim matrix and the most 3-similar cluster, A-cut set
For i = 1 to N (size of population)
Forj=1ton
Fork=j+1ton
Func(i)= 2-sim(decoded — Value(i, j), decoded — Value(i, k));
End of for k
End of for j
fitness (i) = minimum (Func(i));
If fitness(i)> A
Insert decoded — Values(i) in A-cut set.
End of for i
Find the maximum fitness of this population.
End

After evaluating each solution, the next step in this process is selection. This step
selects better solutions in the population based on their fitness value, and places them
in mating pool for recombination purpose. In this study, we have used a well known
selection named as roulette wheel which has been explained in Section 3.3. The solu-
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tions selected and entered in the mating pool are combined in the crossover process.
We apply single-point crossover in this work. This method has been described in
Section 3.4. Finally, the mutation operator is applied to avoid the algorithm falling
into local optimum. As mentioned in Section 3.5, mutation is done by flipping the
value of some bits randomly with mutation probability p,,.

After these operations, the new generated population is replaced by the old one.
This algorithm is performed repeatedly until the termination condition is satisfied.
This algorithm returns the most optimum solution. A-cut set means the solutions
that their fitness value is equal or more than a pre-defined level A. So increasing the
number of algorithm iterations can guaranty obtaining more perfect A-cut set.

5. Experimental Results

In many cases, it is necessary to find n groups of m objects that their similarity is
equal or more than a special value or we need to find the most n-similar group out of
a dataset.

In this section, we test our approach on two datasets. The first one is the dataset of
2-similarity between 20 families used in [1]. The problem is arrangement of residents
in a condominium such that the manager aims to choose some (two, three or more)
of most similar residents for some special purposes. We apply this dataset in order
to emphasis on correctness of our proposed approach. Further, we will apply more
realistic and huge dataset in text similarity application. In this case, previous methods
of [1] are unable to handle such datasets.

Application 1 (Finding similar groups of families)

The aim is to find the most 3-similar groups and A-cut set of 20 families that their
pairwise similarities have been shown in Figure 3. These residents similarities have
been obtained based on some criteria [1]. We applied both Algorithm 1 (Keshavarzi’s
method) and our proposed approach on this dataset. Parameters of our GA method
were: N = 100, P, = 0.9, P,, = 0.05,ITER = 100 and A = 0.6; where N represents
population size, P, is the crossover probability, P,, is the mutation probability, /T ER
is the number of generations or iteration of the algorithm and A is the similarity level.

Both methods are used to obtain maximum similarity 0.6 on the families F», F's,
F16 and of course A-cut set just contains this solution for A = 0.6 . The experiments
performed on GA, had been repeated for 25 times. Figure 3 shows the average fitness
function of all experiments during 100 generations. It is essential that the algorithm
ignore producing those solutions that have frequent objects such as (x, x, y), (x, x, x)
and etc. For this, since the 2-similarity matrix is symmetric and the values on its main
diameter are one, we assign the values below and on the main diameter of 2-similarity
matrix to zero.

Although for small size datasets, Keshavarzi’s method [1, 2] can find solutions
faster than GA, but for huge datasets it fails to respond in acceptable time or they
may not be able to find any solutions at all.
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Fig. 3 Average best so far and average mean fitness of 3-similarity of families during

generations in 25 running of the algorithm

Table 1: The similarity value of families [1].

Family Fy Fy F3 F4 Fs Fs F7 Fg Fo Fio F11 Fio F13 Fis Fis Fis F17 Fig Fio Fyo

Fy
F>
Fs
Fy
Fs
Fe
Fr
Fg

1.004040.10.10.10.00.20.20.4 0.4 04 0.0 04 04 0.4 0.0 0.0 0.0 0.0
041.0040.10.10.10.00.20.20.4 0.4 0.4 0.0 0.4 0.6 0.8 0.0 0.0 0.0 0.0
04041.00.10.10.10.00.20.20.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 0.0 0.0 0.0
0.10.10.11.00.20.80.00.10.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0
0.10.10.10.21.00.20.00.10.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0
0.10.10.10.80.21.00.00.10.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0
0.00.00.00.00.00.01.00.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.20.20.20.10.10.10.01.00.4 0.2 0.2 0.2 0.0 0.2 0.2 0.2 0.0 0.0 0.0 0.0
0202020.10.10.10.00.41.00.20.20.20.00.20.20.20.00.00.00.0
0404040.10.10.10.00.20.2 1.0 0.8 0.4 0.0 0.4 0.4 0.4 0.0 0.0 0.0 0.0
0404040.10.10.10.00.20.20.8 1.0 0.4 0.0 0.4 0.4 0.4 0.0 0.0 0.0 0.0
0404040.10.10.10.00.20.1 0.4 0.4 1.0 0.0 0.8 0.4 0.4 0.0 0.0 0.0 0.0
0.00.00.00.00.00.00.00.00.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.4 0.4 0.4 0.4
0404040.10.10.10.00.20.204 0.4 0.8 0.0 1.0 0.4 0.4 0.0 0.0 0.0 0.0
040.6040.10.10.10.00.20.20.4 0.4 0.4 0.0 0.4 1.0 0.6 0.0 0.0 0.0 0.0
040.80.40.10.10.10.00.20.20.4 0.4 0.4 0.0 0.4 0.6 1.0 0.0 0.0 0.0 0.0
0.00.00.00.00.00.00.00.00.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 1.0 0.4 0.6 0.4
0.00.00.00.00.00.00.00.00.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 1.0 0.4 0.8
0.00.00.00.00.00.00.00.00.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.6 0.4 1.0 0.4
0.00.00.00.00.00.00.00.00.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.8 0.4 1.0
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Application 2 (n-similarity between text documents)

In many studies, the various kinds of 2-similarity approaches have been compared and
used in the text document clustering. Here, we are going to use n-similarity concept
to find the most similar »n group of text documents in a corpus.

We applied Re0 [28] dataset that contains 1504 documents of newspaper articles
[17]. In text document, there are a lot of words that do not describe the topic of text
such as a, the, is, are, etc. These kinds of words are called stop-words that should be
removed from the text. We have used a pre-supplied list used in the Weka machine
learning workbench that contains 527 stop-words. Also in text documents, there are
words that are thematically similar but have a different morphological concept. These
words should be mapped into their stem to treat as a single word. For example, the
words computing, computation, have a similar concept. Although their morphology
is different, but these words are stemmed to compute [17]. We used Porters suffix-
stripping algorithm [29].

‘We modeled the documents as a bag of words and used word-by-word comparison.
IfT = {t;,t5,--- ,1,} is the set of all occurred terms in the corpus, each document can
be represented as a feature vector d; = {wy;.wy;, - -+, wy;}, Where wy; is the weight of
term #; in document d;. We used several weighting schemas. The first was Boolean
weighting which 1 is representative of occurrence and 0 non-occurrence of term in
document. Second schema was the term frequency of each term in each document.
The other weighting schema was TF-IDF weighting which is defined as:

|D|
df()

tfidf(d,t) = tf(d,t) x log( ), (6)

where #£(d, t) is the frequency of term # in document d, D is the number of documents
in the corpus and df(¢) is the number of documents that term ¢ occurs in. After
weighting step, the similarity between all pairs of documents should be computed in
a composed similarity matrix [16].

There are various similarity measures for TF-IDF representation that are explained
and compared in [17] on several datasets. The experiment on Re0 [28] shows that the
cosine similarity measure is more suitable for this dataset. It computes the similarity
between documents d;, d; as follows [16]:

n
Z] WEiWkj

~

O]

cosine — sim(d;, d;) =

After obtaining the similarity matrix, this matrix is entered as an input to explained
genetic algorithm in Section 3. The output of this algorithm is the most n-similar
group(s) of objects, and also the set of solutions with n-similarity values greater than
predefined A.

Experiments from the suggested method have been done on a system with 4GB
memory and CPU speed of 2.27 GH. Text document preprocessing step has been im-
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plemented by Java programming language and genetic algorithm step has been sim-
ulated in Matlab R2010a. The results have been reported through the 25 independent
running of the algorithm. The parameters of the algorithm have been set as: popula-
tion size = 500, ITER = 500, crossover population=0.9, mutation probability=0.005
and 4=0.7.

Table 2 illustrates a summary of n-similarity experiment results on Re0 dataset
[28], as n varies from 3 to 6. In the second and the third columns of this table, average
of the best and mean of the fitness values has been computed during 500 generations
respectively. In the fourth, fifth and sixth columns the average, median and maxi-
mum of the best fitness through 25 running of the algorithm has been reported. The
seventh column shows the document names of Re0 dataset with the most n-similarity
value. The next column has counted the number of solutions with n-similarity val-
ues more than A=0.7 and finally the two latest columns show the execution time of
our proposed algorithm and Keshavarzi’s method respectively. These two columns
show the superior preference of our suggested method by using genetic algorithm in
comparison with keshavarzi’s method in [1, 2] which is unable to find the solution in
large dataset.

Fig. 4 to Fig. 7 show the average of best and mean fitness value of 3 to 6-similarity
during the generations respectively.

Table 2: The n-similarity results on Re0 dataset.

The The

Average Average Average of Median of Average of B .
& g 28 . The best & execution execution

nm bestso mean ’ thesizeof :
similarity solution time of our time of [2]

A-cut set method (s) (s)

far fitness similarities  similarities

[0004208,
3 0.9841 0.7758 0.9861 0.9858 1 0005432, 3421179 2032.3 1700
0007652]

[0001744,
4 0.9841 0.7761 0.9774 0.9779 0.9825 0001531, 384991.6 2110.6 7600
) ) ) ) o 0007518, : :

0005346]

[0002792,
0000567,
5 0.9632 0.6983 0.9709 0.9712 0.9789 0006014, 360911.7 2212.7 Unable*
0003580,
0008069]

[0002899,
0003580,
0003876,
6 0.9535 0.6621 0.9667 0.9676 0.9748 0004847, 329938.6 2166.4 Unable
0006014,
0009046]

* The program has been running for about four days on a system with Core i5 CPU, 2.27 GHz and
4.00 GB RAM on MATLAB environment, no solution has been found in this period of time.
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Fig. 4 The 3-similarity result on Re0 dataset
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Fig. 5 The 4-similarity result on Re0 dataset
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Fig. 6 The 5-similarity result on Re0O dataset
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Fig. 7 The 6-similarity result on Re( dataset

6. Concluding Remarks

The complexity of the n-similarity problem solved by GA is of order ITERX N xn> =
O(n?), where ITER and N are the number of iterations and the size of the population
fixed and n is the size of desirable cluster. However the order of method in [23] for
finding maximum n-similar cluster of m objects is computed as m® + m* + +m" =
O(m™). This states that the order of used method in [23] strictly depends on the size
of dataset. It can be concluded that the method in [23] is more suitable for small size
datasets. But in the case of large dataset situations, our approach by GA will be more
efficient with less cost. The drawback of GA is that A-cut set may not contain all
possible solutions completely. This problem can relate to the random nature of GAs.
In order to improve the solution set more, increasing the iterations number or the size
of population are suggested in the algorithm. This issue is one of our directions for
future works.
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