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The most abundant viral transcript in human papillomavirus (HPV) 11-infected xenograft tissue has been shown to encode
the E1∧E4 protein. The function of E1∧E4 protein has not been determined. Several potential phosphorylation sequence motifs
were identified in the HPV 11 E1∧E4 protein, including potential sites of phosphorylation by mitogen-activated protein kinase
(MAPK), cAMP-dependent protein kinase (PKA), casein kinase II, and protein kinase C. To test phosphorylation of the HPV
11 E1∧E4 protein, a soluble maltose binding protein (MBP) fusion was produced in Escherichia coli. Only MAPK and PKA
phosphorylated the E1∧E4 protein. Phosphoamino acid analysis showed that one or more threonine residues were phos-
phorylated by MAPK, and both serine and threonine residues were phosphorylated by PKA. MBP–E1∧E4 mutant proteins were
designed to delineate the E1∧E4 phosphoacceptor residues. MAPK was shown to phosphorylate E1∧E4 on threonine 53 within
a MAPK consensus phorphorylation sequence motif. PKA was shown to phosphorylate E1∧E4 at two residues: threonine 36
within a consensus motif and serine 44 within a variant of the PKA consensus phosphorylation sequence motif. HPV
11-infected human genital tissue grown as a xenograft in an athymic mouse was labeled with [32P]orthophosphate.
Phosphoamino acid analysis of E1∧E4 protein immunoprecipitated from 32P-labeled tissue revealed that both serine and
threonine residues were phosphorylated. Analysis by liquid chromatography–mass spectrophotometry was consistent with
phosphorylation of residues within the PKA and MAPK phosphorylation sequence motifs. Expression of E1∧E4 protein
containing phosphorylation substitution mutations showed that the PKA mutant did not differ from wild-type E1∧E4 protein in
intracellular distribution. In contrast, the MAPK mutant did not localize exclusively to the cytoplasm nor did it colocalize with

∧ ∧
wild-type E1 E4 protein. We conclude that HPV 11 E1 E4 protein is phosphorylated in vitro and in vivo. Our data are consistent
with phosphorylation of HPV 11 E1∧E4 protein by MAPK and PKA in infected tissue. © 2000 Academic Press
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INTRODUCTION

Human papillomaviruses (HPVs) are small DNA vi-
ruses that infect epithelial surfaces, causing a range of
disease states (Shah and Howley, 1996). Approximately
30 HPV types are regularly detected in genital tract
lesions. These lesions include condylomata acuminata
(genital warts), characterized by epithelial proliferation
and a low risk of dysplastic abnormalities. Genital warts
are most often caused by HPV types 6a and 11 (Brown et
al., 1993; Gissmann et al., 1983; Pfister, 1987). The most
abundant viral mRNA detected in HPV 11-infected genital
wart tissue potentially encodes a 10-kDa E1∧E4 spliced
gene product that joins a short segment of open reading
frame (ORF) E1 to ORF E4 (Chow et al., 1987; Nasseri et

l., 1987). The E1∧E4 protein is encoded by two tran-
cripts: the E1∧E4,E5 transcript and the E1∧E4∧L1 tran-
cript (Brown et al., 1996, 1998; Rotenberg et al., 1989).
he E1∧E4,E5 transcript contains the sequences of the

spliced E1∧E4 ORF and continues downstream through
the E5a and E5b ORFs. This transcript is detected early
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in HPV 11 infection, throughout the epithelial layers
(Stoler and Broker, 1986). The multiply spliced, polycis-
tronic E1∧E4∧L1 transcript encodes both the E1∧E4 pro-
ein and the L1 major capsid protein (Brown et al., 1996;
how et al., 1987; Rotenberg et al., 1989). Despite the

wide distribution of E1∧E4-encoding transcripts, the HPV
1 E1∧E4 protein is detected only in the cytoplasm of
ifferentiated cells that are also expressing L1 protein

Brown et al., 1994, 1995). In immunoblots of HPV 11-
nfected tissue, the E1∧E4 protein is detected as a 10/11-

kDa doublet and higher molecular weight forms thought
to be oligomers (Brown et al., 1988).

The function of the E1∧E4 protein has not been deter-
ined. There is evidence that the E1∧E4 proteins of HPV

types 1, 16, and 31b interact with the intermediate fila-
ment network when expressed in cells grown in culture
(Doorbar, 1991; Doorbar et al., 1991; Pray and Laimins,
1995; Roberts et al., 1993). However, in an analysis of
HPV 1-infected tissue, Doorbar et al. (1996) showed that
greater than 95% of the E4 protein existed as complexes
that did not include keratins. The proposed complexes
were E4 multimers. Immunoblot analysis of HPV 11-
infected human genital tissue grown as a xenograft in an

athymic mouse revealed a 10/11-kDa doublet, believed to
be the monomeric form of E1∧E4, and additional immu-
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431HPV 11 E1∧E4 PHOSPHORYLATION
noreactive bands at 18 and 29 kDa (Brown et al., 1988).
HPV 11 E1∧E4 protein oligomerization has been demon-

trated with amino acid residues in the carboxyl-termi-
us shown to be required for self-association (Bryan et
l.l, 1998). Oligomerization as well as posttranslational
odifications may potentially influence E1∧E4 protein

function.
Protein phosphorylation is a controlling step in the

regulation of many biochemical pathways, influencing
cell signaling events, cell cycling, protein localization,
and gene expression. Demonstration of potential phos-
phorylation sequence motifs may provide clues to pro-
tein function. We identified several potential consensus
phosphorylation sequence motifs by computer analysis
of the HPV 11 E1∧E4 primary sequence. These included
consensus sites for kinases known to be involved in cell
signaling pathways. Based on these observations, we
have undertaken an investigation of the HPV 11 E1∧E4

rotein and its ability to be phosphorylated by specific
rotein kinases.

RESULTS

he HPV 11 E1∧E4 protein is phosphorylated in vitro
y cAMP-dependent protein kinase and mitogen-
ctivated protein kinase

The HPV 11 E1∧E4 protein sequence was examined
using ScanProsite to search for potential phosphoryla-
tion sites (Fig. 1). Sites were found within the protein
corresponding to motifs for four kinases: mitogen-acti-
vated protein kinase (MAPK), cAMP-dependent protein
kinase (PKA), casein kinase II (CKII), and protein kinase
C (PKC). The phosphorylation consensus sequence mo-
tifs of these four kinases are PKC (S/TXR/K, K/RXXS/T,
and K/RXS/T) (Russo et al., 1992), MAPK (PXXS/TP and
PXS/TP) (Davis, 1993), CKII (S/TXXD/E) (Russo et al.,
1992), and PKA (RXS/T and RR/KXS/T) (Pearson and
Kemp, 1991). The HPV 11 E1∧E4 protein was predicted to

FIG. 1. Amino acid sequence of HPV 11 E1∧E4 protein from the
ershey isolate (Kreider, 1987) in single-letter code. Numbers above

he sequence indicate amino acid position. Putative phosphorylation
ites are indicated as follows: one PKA phosphorylation recognition
otif is boxed with thin black lines; one MAPK phosphorylation recog-

ition motif is boxed with heavy black lines; four PKC phosphorylation
ecognition motifs are underlined with heavy black lines; one CKII
hosphorylation recognition motif is underlined with a thin black line. A
egenerate PKA site, experimentally determined, is contained within
rackets. The putative phosphoacceptor amino acid residues are indi-
ated in boldface type.
ontain seven putative phosphorylation sites: four PKC
ites, one MAPK site at amino acids 50–54, one CKII site

M
t

t amino acids 77–80, and one PKA site at amino acids
4–36. The CKII and the last PKC consensus patterns
verlap, sharing the same phosphoacceptor, as do the
KA and the first PKC consensus sequence.

Because the HPV 11 E1∧E4 protein is insoluble in
aqueous buffers (unpublished observation), a fusion of
the maltose binding protein (MBP) and the HPV 11 E1∧E4

rotein was produced in Escherichia coli. This fusion
as affinity-purified, found to be soluble in aqueous
uffers, and used for in vitro phosphorylation reactions.

In the in vitro experiments, both PKA and MAPK phos-
phorylated MBP–E1∧E4 but not MBP (Fig. 2). This was
demonstrated by the introduction and 32P into the MBP–
E1∧E4 fusion protein with detection by autoradiography
following SDS–PAGE. Upon MBP–E1∧E4 cleavage with

actor Xa, only the E1∧E4 peptide was detected as a
32P-labeled protein (Fig. 2, Lanes 3 and 6). CKII phos-
phorylated phosvitin, a positive control protein. However,
CKII failed to phosphorylate MBP or MBP–E1∧E4 (data

ot shown). Similarly, PKC failed to phosphorylate MBP
r MBP–E1∧E4, but did phosphorylate Type III-S histone,

a positive control protein (data not shown).
For the phosphoamino acid analysis, the MBP–E1∧E4

fusion was phosphorylated by either PKA or MAPK in the
presence of [g-32P]ATP (Fig. 3). The E1∧E4 peptide was
hen cleaved from MBP with Factor Xa and subjected to
cid hydrolysis and thin-layer electrophoresis (Fig. 3B,
anes 1 and 4). E1∧E4 was phosphorylated by PKA at

both serine and threonine residues; MAPK phosphory-
lated E1∧E4 only on a threonine residue(s). A short ex-
posure time of PKA E1∧E4 phosphorylation is presented
n Fig. 3B, Lane 1, to show the distinction between the
hosphoserine and the phosphothreonine residues.

Based on the consensus PKA recognition motifs (R-X-

FIG. 2. PKA and MAPK phosphorylate the MBP–E1∧E4 protein in vitro.
hown is an autoradiography of in vitro phosphorylated recombinant
BP and MBP–E1∧E4 proteins separated by electrophoresis on 15%

SDS–PAGE. Lanes 1, 2, and 3 contain phosphorylation reactions by
PKA. Lane 1, nonfused MBP protein; Lane 2, MBP–E1∧E4 protein; Lane
3, MBP–E1∧E4 protein cleaved with Factor Xa generating MBP and
E1∧E4 peptides. Proteins in Lanes 4, 5, and 6 contain phosphorylation
reactions by MAPK. Lane 4, nonfused MBP protein; Lane 5, MBP–E1∧E4
protein; Lane 6, MBP–E1∧E4 protein cleaved with Factor Xa generating

∧
BP and E1 E4 peptides. Molecular mass markers are indicated on
he left side of the figure in kilodaltons.
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432 BRYAN ET AL.
S/T, R-R/K-X-S/T), the HPV 11 E1∧E4 protein is predicted
to be phosphorylated only at the threonine residue at
position 36. However, the amino acid sequence “RRLES”
(amino acids 40–44) in the E1∧E4 protein is very similar to
the PKA consensus recognition motif “R-R/K-X-S/T,”
which could explain the serine (amino acid 44) phos-
phorylation by PKA in vitro. To test these predictions,
amino acids 36 and 44 were mutated to alanine residues
both separately and together and were expressed as
MBP fusions (Fig. 3A). Both MBP–E1∧E4 36T . A and

BP–E1∧E4 44S . A were phosphorylated by PKA (Fig.
C, Lanes 2 and 4). Mutating both sites (MBP–E1∧E4

36T . A/44S . A) resulted in no phosphorylation above
ackground (Fig. 3C, Lane 6). Phosphoamino acid anal-
sis of PKA phosphorylated E1∧E4 36T . A revealed only

a phosphoserine residue (Fig. 3B, Lane 2). Phos-
phoamino acid analysis of PKA phosphorylated E1∧E4
44S . A revealed only a phosphothreonine residues
(Fig. 3B, Lane 3). These data clearly demonstrate that
PKA phosphorylates E1∧E4 threonine 36 and serine 44 in
vitro.

The predicted phosphoacceptor residue for E1∧E4

FIG. 3. PKA and MAPK phosphorylate specific amino acids in the E
by the kinase and the amino acid residues shown to phosphorylated. (
Lane 1, native E1∧E4 phosphorylated by PKA; Lane 2, E1∧E4 36T . A p
4, native E1∧E4 phosphorylated by MAPK. Phosphoserine, phosphothre

raph of SDS–PAGE showing PKA-phosphorylated MBP fusions. Lane
BP–E1∧E4 44S . A; Lane 4, MBP–E1∧E4 36T . A; Lane 5, Factor Xa

, Factor Xa-cleaved MBP–E1∧E4 36T . A/44S . A. (D) Autoradiograph
BP; Lane 2, MBP–E1∧E4 1–60; Lane 3, Factor Xa-cleaved MBP–E1

MBP–E1∧E4 1–60 53T . A. Molecular mass markers in kilodaltons are
phosphorylation by MAPK is threonine 53. To facilitate
cloning and mutagenesis of this site, the E1∧E4 protein

[
f

as truncated to contain only the first 60 amino acids.
hreonine 53 was mutated to an alanine and expressed
s an MBP–E1∧E4 1–60 53T . A fusion protein (Fig. 3A).

MBP–E1∧E4 1–60 was shown to be phosphorylated by
MAPK (Fig. 3D, Lane 2). MAPK was not able to phos-
phorylate MBP–E1∧E4 1–60 53T . A in which threonine

3 was mutated to alanine (Fig. 3D, Lane 4). Although a
aint signal can be seen in Lane 4 below the predicted

olecular weight of MBP–E1∧E4 1–60 53T . A, no phos-
horylation of the E1∧E4 1–60 53T . A peptide was

detected following Factor Xa cleavage (Fig. 3D, Lane 5).
These data demonstrate that MAPK phosphorylates
E1∧E4 in vitro at threonine 53.

E1∧E4 protein is phosphorylated in HPV 11-infected
tissue

To determine whether the E1∧E4 protein is phos-
phorylated by kinases present in human epithelium,
HPV 11-infected tissue was grown as xenografts in
athymic mice for 3 months. To identify E1∧E4 protein in

PV 11-infected xenograft tissue labeled with
32

otein. (A) MBP–E1∧E4 mutant proteins (as described in text), followed
phoamino acid analysis of E1∧E4 peptides cleaved from MBP fusions.
rylated by PKA; Lane 3, E1∧E4 44S . A phosphorylated by PKA; Lane
and phosphotyrosine markers are indicated on the left. (C) Autoradio-
fused MBP; Lane 2, MBP–E1∧E4 44S . A; Lane 3, Factor Xa-cleaved
d MBP–E1∧E4 36T . A; Lane 6, MBP–E1∧E4 36T . A/44S . A; Lane

–PAGE showing MAPK-phosphorylated MBP fusions. Lane 1, nonfused
60; Lane 4, MBP–E1∧E4 1–60 53T . A; Lane 5, Factor Xa-cleaved
ted to the left of C and D.
1∧E4 pr
B) Phos
hospho
onine,
1, non

-cleave
of SDS
∧

P]orthophosphate, an immunoprecipitation was per-
ormed (Fig. 4). The immunoprecipitated proteins were
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433HPV 11 E1∧E4 PHOSPHORYLATION
separated on SDS–PAGE and transferred to nitrocel-
lulose. An immunoassay was performed to detect
E1∧E4 protein (Fig. 4A). Both the 10- and 11-kDa E1∧E4
proteins were specifically immunoprecipitated by anti-
E1∧E4 serum (Fig. 4A, Lanes 2 and 4) but not preim-
mune rabbit serum (Fig. 4, Lane 3). The immunoblot
was then subjected to autoradiography (Fig. 4B). A
large number of phosphorylated proteins in the HPV
11-infected xenograft tissue were present in the crude
extract (Fig. 4B, Lane 1). A phosphorylated protein was
detected at 11 kDa corresponding to E1∧E4 protein
Fig. 4B, Lane 4). Additional phosphoproteins at ap-
roximately 50 to 55 kDa were immunoprecipitated by
oth preimmune rabbit serum (Fig. 4B, Lane 3) and
nti-E1∧E4 serum (Fig. 4B, Lane 4). The significance of

these nonspecifically immunoprecipitated proteins is
not known. Phosphoamino acid analysis of the 11-kDa
immunoprecipitated E1∧E4 protein was performed, re-

ealing weak phosphoserine and phosphothreonine
ignals on autoradiography but no phosphotyrosine
ignal (Fig. 4C).

ambda phosphatase treatment of
mmunoprecipitated E1∧E4 protein

Lambda phosphatase (l-PPase) (New England Bio-
abs, Beverly, MA) removes phosphate groups from
hosphoserine and phosphothreonine residues. A

32P]orthophosphate-labeled extract of HPV 11-in-
ected xenograft tissue was immunoprecipitated with
reimmune or anti-E1∧E4 sera. A portion of immuno-

precipitated E1∧E4 protein was treated with l-PPase.
mmunoprecipitated proteins were separated by SDS–

FIG. 4. E1∧E4 protein is phosphorylated in tissue at serine and threo
f 32P-labeled HPV 11-infected xenograft tissue; Lane 2, immunoprecip

Lane 3, immunoprecipitation of 32P-labeled HPV 11-infected xenograft tis
1-infected xenograft tissue using anti-E1∧E4 serum. (B) Autoradiograp
re indicated on the left of A and B. (C) Phosphoamino acid analysis o
hosphotyrosine markers are indicated on the left.
AGE and transferred to nitrocellulose. Immunoblot
nalysis revealed immunoreactive bands correspond-
ng to the 10/11-kDa E1∧E4 doublet from the anti-E1∧E4
immunoprecipitation (Fig. 5A, Lane 2). Following treat-
ment of the immunoprecipitated E1∧E4 protein with
l-PPase, a slightly faster migrating band was detected

n the immunoblot (Fig. 5A, Lane 3). Autoradiography
f the immunoblot was then performed (Fig. 5B). The
hosphorylated immunoprecipitated E1∧E4 protein
as visualized at 11 kDa (Fig. 5B, Lane 2). Additional
igher molecular weight proteins of approximately 50

o 55 kDa were nonspecifically immunoprecipitated by
oth preimmune rabbit serum (Fig. 5B, Lane 1) and
nti-E1∧E4 serum (Fig. 5B, Lane 2). The significance of

these proteins is not known. Treatment of the immu-
noprecipitated E1∧E4 protein with l-PPase removed

ny detectable phosphorylation signal (Fig. 5B,
ane 3).

sidues. (A) Immunoblot using anti-E1∧E4 serum. Lane 1, crude extract
f unlabeled HPV 11-infected xenograft tissue using anti-E1∧E4 serum;

ing preimmune serum; Lane 4, immunoprecipitation of 32P-labeled HPV
e immunoblot presented in A. Molecular mass markers in kilodaltons
noprecipitated E1∧E4 protein. Phosphoserine, phosphothreonine, and

FIG. 5. Dephosphorylation of E1∧E4 protein by l-PPase. (A) Immu-
oblot of immunoprecipitated E1∧E4 protein from 32P-labeled HPV 11-

nfected xenograft tissue using anti-E1∧E4 serum. Lane 1, immunopre-
cipitation with preimmune rabbit serum; Lane 2, immunoprecipitation
with anti-E1∧E4 serum; Lane 3, immunoprecipitation with anti-E1∧E4

erum followed by l-PPase treatment. (B) An autoradiograph of the
nine re
itation o
sue us

hy of th
f immu
immunoblot in A. Molecular mass markers in kilodaltons are indicated
on the left of each panel.
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434 BRYAN ET AL.
Analysis of E1∧E4 protein using liquid
hromatography–mass spectrophotometry (LC–MS)

Eight fragments, including five peptides and three sin-
le amino acid residues, were generated by in-gel tryp-
in digestion of E1∧E4 protein (Fig. 6). LC–MS was per-

ormed, and peptides 3 and 6 were found to contain one
nd three phosphate groups, respectively. Phosphopep-

ide 3, corresponding to amino acids 35 through 39,
ontained a phosphothreonine at position 36, within the
redicted PKA motif. Both the second potential PKA site
t serine 44 and the MAPK site at threonine 53 found by
ur in vitro studies were contained in phosphopeptide 6

amino acids 42 through 79). This peptide contains a total
f 15 serine and threonine residues. It was identified by
ass, 4467.1 Da, corresponding to a 14 charge state
ith three phosphate groups. Collision-induced dissoci-
tion of this large peptide resulted in too many fragments

o assign ionized masses with confidence. The other
1∧E4 peptides generated were shown to contain no

phosphoamino acid residues. These included peptides
containing a serine at position 5 (amino acids 1 through
10), a threonine at position 19 (amino acids 11 through
34), or three threonine residues at positions 81, 82, and
84 (amino acids 79 through 89).

Analysis of E1∧E4 mutants expressed in human
eratinocytes

To determine whether phosphorylation affects the in-
racellular location of the E1∧E4 protein, wild-type and

utant proteins were expressed as fusions with either
reen fluorescent protein (GFP) or blue fluorescent pro-

eins (BFP). Primary human keratinocytes (PHKs) were
∧

FIG. 6. Trypsin digestion of the HPV 11 E1∧E4 protein. The amino acid
equence of the E1∧E4 protein is shown using single-letter code.

Individual trypsin fragments are indicated by alternating uppercase
(black) and lowercase (gray) letters. Numbers on each side of the
sequence represent the amino acid number. Shown below the E1∧E4

equence are the masses of the trypsin digestion fragments (deter-
ined using Protein Prospector), including the phosphate groups found

o be present in peptides 3 and 6. The underlined amino acids in
eptide fragments 3 and 6 were phosphorylated in the in vitro studies.
ransfected and expressed GFP–E1 E4 containing wild-
type sequences, GFP–E1∧E4 PKA (mutant protein con-
taining alanine substitutions for threonine 36 and serine
44), or GFP–E1∧E4 MAPK (mutant protein containing an

naline substitution for threonine 53). GFP–E1∧E4 was
detected exclusively in the cytoplasm, circling the nu-
cleus and extending to the cell periphery in long filamen-
tous strands (Fig. 7A). GFP–E1∧E4-PKA was indistin-

uishable from GFP–E1∧E4 (Fig. 7B). In contrast, GFP–
1∧E4-MAPK was detected as diffuse fluorescence

throughout the cell, with a minor degree of filamentous
distribution (Fig. 7C).

The HPV 11 E1∧E4 protein has been shown to oli-
omerize (Bryan et al., 1998). As an indication of the
otential to oligomerize, PHKs were cotransfected with

he pEGFP–E1∧E4 plasmid and the pEBFP–E1∧E4 plas-
mid for expression of blue fluorescent protein fused to
E1∧E4 (BFP–E1∧E4). As expected, the GFP–E1∧E4 pattern
of green fluorescence (Fig. 8A) was nearly identical to
the BFP–E1∧E4 blue fluorescence pattern (Fig. 8B), indi-

ating colocalization. Together, double-image photogra-
hy confirmed colocalization (Fig. 8C). GFP–E1∧E4-PKA
lso colocalized with BFP–E1∧E4 (data not shown). In
ontrast, GFP–E1∧E4-MAPK did not colocalize with BFP–
1∧E4. GFP–E1∧E4-MAPK and BFP–E1∧E4 were detected
ith two distinct expression patterns. GFP–E1∧E4 MAPK
as detected as diffuse green fluorescence throughout

he cell (Fig. 8D). In contrast, BFP–E1∧E4 was detected as
blue fluorescence circling the nucleus and extending
toward the cell periphery (Fig. 8E). Double-image pho-
tography was consistent with an absence of colocaliza-
tion of the two fusions (Fig. 8F).

DISCUSSION

The studies reported here demonstrate that the HPV
11 E1∧E4 protein is phosphorylated in vivo and that PKA
and MAPK phosphorylate the protein in vitro. Determin-
ing the significance of posttranslational modifications
and the association with cellular components will pro-
vide important information in evaluating potential roles
for the E1∧E4 protein. Phosphorylation represents a post-
ranslational modification that may profoundly influence
rotein function by altering the conformational structure
nd charge of the target protein. The E1∧E4 protein is

expressed only in differentiated keratinocytes, suggest-
ing that its function is linked to events occurring specif-
ically in these cells.

Immunoblot analysis of HPV 11-infected xenograft tis-
sue shows an E1∧E4 doublet of 10/11 kDa, as well as
higher molecular weight proteins (Brown et al., 1988). We
have observed a variability in the relative abundance of
the 10- and 11-kDa species in human biopsy samples of
HPV 11-infected condylomata acuminata and in HPV
11-infected athymic mouse implants (Brown et al., 1991,
1992). In HPV 11-infected xenograft tissue there may be

∧
several forms of the E1 E4 protein: phosphorylated forms
at one or more amino acid residues and a nonphosphor-
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435HPV 11 E1∧E4 PHOSPHORYLATION
ylated form. Only one of these forms may be functional,
or the various forms may have different functions.

Certain sequences within the E1∧E4 protein appear to
be highly conserved between genital HPV types of dif-
fering oncogenic potential, including several predicted

∧

FIG. 7. Expression of GFP–E1∧E4 phosphorylation substitution mutan
FP); (B) PHK expressing GFP–E1∧E4 PKA; (C) PHK expressing GFP-E
FIG. 8. Coexpression of wild-type E1∧E4 protein fused to BFP (B

coexpressing GFP–E1∧E4 and BFP–E1∧E4 was examined using a FITC f
protein (B), or both filters to detect colocalization of the fusions (C). A P

xamined using a FITC filter to detect GFP–E1∧E4 MAPK (D), a DAP
ntracellular location of the fusions (F). In this case, the two fusions d
phosphorylation sites. The HPV 11 E1 E4 sites shown to
be phosphorylated by PKA are nearly identical to the

t
t

sequences around serines 31 and 42 of the HPV 16
E1∧E4 protein (Seedorf et al., 1985). In addition, each of
the HPV types 6 and 83 E1∧E4 proteins contains one of
he two PKA sites (Brown et al., 1999; Schwarz et al.,
983). Two overlapping MAPK consensus sequence mo-

HKs. (A) PHK expressing GFP–E1∧E4 (wild-type E1∧E4 protein fused to
APK. Arrows indicate the periphery of the nucleus.
∧E4) and GFP–E1∧E4 phosphorylation substitution mutants. A PHK
detect the GFP–E1∧E4 protein (A), a DAPI filter to detect the BFP–E1∧E4
xpressing GFP–E1∧E4 MAPK substitution mutant and BFP–E1∧E4 was

to detect the BFP–E1∧E4 protein (E), or both filters to determine the
olocalize. Arrows indicate the periphery of the nucleus.
ts in P
1∧E4 M
FP–E1

ilter to
HK coe
ifs are present around threonine residues 51 and 54 in
he HPV 16 E1∧E4 protein. The latter threonine corre-
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436 BRYAN ET AL.
sponds to the HPV 11 E1∧E4 threonine 53, which we have
emonstrated is a MAPK phosphoacceptor. MAPK can
lso phosphorylate the HPV 16 E1∧E4 protein in vitro (our

unpublished data). MAPK motifs are also present in the
E1∧E4 sequences of HPV 6 (two overlapping motifs
around serine 50 and threonine 54) and HPV 83 (around
serine 61).

Our studies show that PKA is likely to be a kinase
involved in HPV 11 E1∧E4 phosphorylation. Phos-

hoamino acid analysis of E1∧E4 protein purified from
PV 11-infected human tissue demonstrated serine and

hreonine phosphorylation, consistent with our observa-
ion that PKA phosphorylated E1∧E4 in vitro. This result

as further supported by studies using LC–MS. LC–MS
ollowed by fractionation demonstrated a phosphopep-
ide corresponding to amino acids 35 through 39, con-
aining a phosphothreonine at position 36, the location of

consensus PKA phosphorylation sequence motif.
hree additional peptides were identified and shown to
ontain no phosphoamino acid residues. The second
otential PKA phosphorylation sequence motif at serine
4 and the MAPK phosphorylation sequence motif at

hreonine 53 shown by our in vitro studies to be phos-
horylated were both contained in a large trypsin diges-

ion peptide (amino acids 42 through 79). This large
eptide contained three phosphates, consistent with our

wo predicted sites plus one additional site that we could
ot identify.

PKA is activated by cyclic AMP and phosphorylates
umerous cellular proteins (Soderling, 1990). PKA binds

o A-kinase anchoring proteins (AKAPs) that help direct
he kinase to discrete intracellular locations, including
he cytoplasm (Colledge and Scott, 1999). Anchoring en-
ures that PKA is exposed to localized changes in cyclic
MP concentration and favors specific phosphorylation
vents by placing the kinase close to a particular subset
f substrates. In addition, PKA can activate and can be
ctivated by the MAPK signaling pathway (Colledge and
cott, 1999). HPV 11 E1∧E4 protein has been localized to

the cytoplasm, concentrated at the cell periphery of dif-
ferentiated cells (Brown et al., 1994). It is possible that
PKA-bound AKAPs are responsible for directing E1∧E4

hosphorylation.
In addition to PKA, the HPV 11 E1∧E4 protein was

phosphorylated by MAPK in vitro. The significance of this
observation is not known, and the exact role of phos-
phorylation on E1∧E4 function can be determined only
through further study. The GFP–E1∧E4 MAPK phosphor-

lation substitution mutant and BFP–E1∧E4 colocalization
studies demonstrated that the two fusion proteins did not
colocalize to the same region of the cell. This observa-
tion suggests either that MAPK phosphorylation is nec-
essary or that the threonine residue at position 53 is
required for E1∧E4 cytoplasmic localization and oli-

∧
gomerization. The E1 E4 may interact with components
of a signaling cascade either by becoming modified by
kinases such as PKA and MAPK or by interfering with
normal signaling pathways. Previous studies suggest an
interaction of E4 gene products with cytoskeletal pro-
teins (Doorbar et al., 1991; Roberts et al., 1993). E1∧E4
phosphorylation may have a role in such interactions, as
was supported by the altered expression pattern of the
GFP–E1∧E4-MAPK substitution mutant in PHKs.

In summary, the HPV 11 E1∧E4 protein was shown to
e phosphorylated in vitro by PKA and MAPK. In HPV
1-infected human genital epithelium, E1∧E4 protein was

shown to be phosphorylated at serine and threonine
residues, consistent with activity by these kinases. Fur-
ther studies are needed to determine how phosphoryla-
tion influences E1∧E4 protein function in terminally dif-
ferentiated keratinocytes.

MATERIALS AND METHODS

Identification of kinase phosphorylation sites

Potential protein kinase phosphorylation sites were
identified in the E1∧E4 sequence using the computer
program ScanProsite (http://www.expasy.ch/tools/
scnpsite.html). The program scans the primary structure
of a protein for the occurrence of patterns matching
known consensus pattern sequences including many
kinase phosphorylation sequence motifs.

Production of MBP–E1∧E4 and mutant fusion proteins

The pMAL–E1∧E4 construct was made by amplifying
the complete HPV 11 E1∧E4 sequence using reverse
transcriptase-PCR and ligating in-frame into pMAL-c2
(New England Biolabs). The resulting construct was
used to transform DH5-a cells (Life Technologies, Gibco
BRL, Gaithersburg, MD). Expression of the MBP–E1∧E4
fusion protein was induced by addition of IPTG. The
MBP–E1∧E4 fusion was purified using an amylose resin
column as directed by the manufacturer (New England
Biolabs).

PKA phosphorylation of E1∧E4 amino acids serine 44
and threonine 36 was examined by mutating these res-
idues to alanines. For the mutant with alanine substituted
for serine at position 44 (MBP–E1∧E4 44S . A), the sense

trand oligonucleotide primer 59 CGG CGC CGC CTA
GGA GCC GAG CAC 39 was used, which contained the

1∧E4 internal NarI site (underlined) and the substituted
ucleotides (nt) indicated in boldface type. This primer
as used to amplify E1∧E4 115–278 nt (44S . A). Diges-

tion at the NarI site allowed the substitution of the 115–
278 nt (44S . A) sequence for the wild-type 115–278 nt
sequence in the pMAL–E1∧E4 plasmid generating

MAL–E1∧E4 44S . A. For the mutant with alanine sub-
tituted for threonine at position 36 (MBP–E1∧E4 36T .

A), the sense strand oligonucleotide primer 59 CCA CAC

AGA CCA CCG CCC CTA CAG TGT CCG CCT GCA CCA
CGG AAG GCG GCG 39 was used to introduce the
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substitution, indicated in boldface type, by PCR. This
amplified product encodes amino acids 21–90 of E1∧E4

ith the alanine substitution of amino acid 36. A second
ense-strand oligonucleotide primer was then employed

o extend the sequence 59 to the E1∧E4 ATG by a second
CR. The amplified product was cloned to generate
MAL–E1∧E4 36T . A. The double-mutant was gener-

ated by using pMAL–E1∧E4 44S . A as the template for
the initial PCR with the oligonucleotide E1∧E4 36T . A.
This amplified product was cloned into pMAL-c2 and
expressed to generate an MBP fusion protein, MBP–
E1∧E4 36T . A/44S . A, with a 20-amino-acid truncation

t the amino-terminus and alanine substitutions of thre-
nine 36 and serine 44.

MAPK phosphorylation of E1∧E4 amino acid threonine
53 was examined in the context of the first 60 amino
acids of the E1∧E4 protein. MBP–E1∧E4(1–60) was gen-

rated by PCR using the antisense oligonucleotide
rimer 59 GTC GAC CTA TGA TGT TGG CCA CA 39, which

contains an in-frame stop codon (underlined) and a SalI
site extension. The amplified product was digested with
SalI and cloned into the pMAL-c2 vector. For MBP–
E1∧E4(1–60) 53T . A, the antisense oligonucleotide
primer 59 GTC GAC CTA TGA TGT TGG CCA CAC ACA
GGG CGC 39 which contains an in-frame stop codon
(underlined), the substituted nucleotide (in boldface
type), and a SalI site extension. The amplified product
was digested with SalI and cloned into the pMAL-c2
vector. Sequence analysis was performed on all pMAL–
E1∧E4 plasmids to confirm in-frame cloning and nucleo-
tide substitutions.

In vitro phosphorylation of the MBP–E1∧E4 and
mutant fusion proteins

MBP–E1∧E4 fusion protein or, as a control, nonfused
MBP was used for in vitro phosphorylation reactions with
MAPK, CKII, PKC, and PKA. For MAPK, CKII, or PKA (New
England Biolabs), MBP or MBP–E1∧E4 (5 mg each) was
combined with 1.7 mM ATP, 10 mCi [g-32P]ATP, and 50
units MAPK, CKII, or PKA in the appropriate reaction
buffer. Phosvitin (Sigma, St. Louis, MO) was used as a
control protein in CKII reactions. Reactions were con-
ducted at 30°C for 90 min. Factor Xa was added to a
portion of each reaction to cleave the E1∧E4 peptide from

BP. Proteins were separated on 15% SDS–PAGE, the
el was dried, and autoradiography was performed. To
onfirm that the phosphorylated peptide observed on the
utoradiography was E1∧E4 protein, immunoblot analy-
is was performed using an antiserum raised against a

rpE–E1∧E4 fusion protein (Brown et al., 1994). Autora-
iography of the immunoblot was then performed.

For PKC (Promega), MBP (5 mg), MBP–E1∧E4 (5 mg),
BP–E1∧E4 (5 mg) plus Type III-S histone at 1 mg/ml
(Sigma), or histone alone was used as substrate and
combined with 20 mM HEPES (pH 7.4), 1.0 mM DTT, 10
mM ATP, 10 mM MgCl2, 10 mCi [g-32P]ATP, and 12.5 ng
PKC in the presence or in the absence of 600 mg/ml
phosphatidyl serine and 1.7 mM CaCl2. The reaction was

onducted at 30°C for 90 min. MBP–E1∧E4 was digested
ith Factor Xa, the resulting peptides were separated by
DS–PAGE, the gel was dried, and autoradiography was
erformed.

In vitro phosphorylation reactions using MBP–E1∧E4
mutants were performed to determine the specific amino
acid residues phosphorylated by PKA and MAPK. Reac-
tions and analysis of phosphorylated proteins were con-
ducted as described above.

Phosphoamino acid analysis

Phosphoamino acid analysis was performed to deter-
mine the amino acid phosphoacceptors involved in
phosphorylation reactions of the E1∧E4 protein. MBP–
E1∧E4 protein was phosphorylated in vitro as described
above, and E1∧E4 sequences were separated from MBP
by Factor Xa digestion. Proteins were then separated by
SDS–PAGE and transferred to PVDF membrane (Bio-Rad,
Hercules, CA). To identify the E1∧E4 protein, immunoblot

nalysis was performed on a portion of the PVDF mem-
rane using the anti-E1∧E4 serum. A thin strip of PVDF
embrane containing the 32P-labeled E1∧E4 protein from

each experiment was hydrolyzed in HCl (5.7 N) at 110°C
and lyophilized. Residues were suspended in water and
applied to thin-layer cellulose plates (Eastman Kodak
Co., Rochester, NY). After separation by thin-layer elec-
trophoresis, plates were air-dried and standards (serine,
threonine, and tyrosine) were visualized by ninhydrin
(0.2% in acetone) application. 32P-labeled phosphoamino
acids were detected by autoradiography and compared
to standards.

Phosphorylation of E1∧E4 protein expressed in HPV
1-infected human epithelium

HPV 11-infected xenograft tissue was incubated with
32P]orthophosphate in DMEM without phosphate (Life
echnologies, Gibco BRL) for 18 h in 5% CO2 at 37°C. The

abeled tissue was washed with PBS and ground in a
terile disposable tissue grinder. Some material was
eserved for analysis, and the remainder was extracted
n immunoprecipitation (IP) buffer (50 mM Tris–HCl, pH
.0; 150 mM NaCl; 1% Nonidet-P40; 0.5% deoxycholic
cid; 0.1% SDS; 4 M urea).

The HPV 11 E1∧E4 protein was immunoprecipitated
from the infected tissue extract as follows. Twenty mi-
croliters of Protein A–Sepharose CL-4B (Pharmacia Bio-
tech, Uppsala, Sweden) beads was added to 500 ml of IP
buffer. Ten microliters of anti-E1∧E4 serum was added
and incubated at 4°C for 16 h with agitation. As a control,
preimmune rabbit serum was incubated with Protein

A–Sepharose CL-4B beads in an identical manner.
Sepharose beads were washed three times with 5 vol of
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cold IP buffer. A 100-mg fragment of an HPV 11-infected
human foreskin implant grown in an athymic mouse
(Kreider et al., 1987) was ground in 5 ml of IP buffer,
heated to 100°C for 15 min, and clarified by centrifuga-
tion at 10,000g for 10 min. Five hundred microliters of
clarified supernatant was added to the washed Sepha-
rose beads bound to either preimmune antibodies or
anti-E-E1∧E4 antibodies. After incubation at 4°C for 16 h
with agitation, the Sepharose beads were washed five
times with IP buffer. The Sepharose beads were then
suspended in Laemmli (1970) buffer and heated to 100°C
and proteins were separated on 15% SDS–PAGE. To
identify the E1∧E4 protein, immunoblot analysis was per-
ormed using anti-E1∧E4 serum.

Phosphoamino acid analysis was performed to deter-
ine the amino acid phosphoacceptor residues involved

n phosphorylation of E1∧E4 protein expressed in HPV
1-infected xenograft tissue. Immunoprecipitation of in
ivo labeled tissue was performed as described above.
DS–PAGE and immunoblot analyses were performed as
escribed for the in vitro phosphoamino acid reactions.
he strip of PVDF membrane containing the 32P-labeled

E1∧E4 protein was acid hydrolyzed and applied to thin-
layer cellulose plates. After separation by thin-layer elec-
trophoresis, 32P-labeled phosphoamino acids were de-
ected by autoradiography and compared to standards.

hosphatase treatment of immunoprecipitated E1∧E4
rotein

To further verify E1∧E4 phosphorylation in HPV 11-
infected human genital epithelium, 32P-labeled E1∧E4 im-
munoprecipitated protein was treated with lambda phos-
phatase. l-PPase is a Mn21-dependent protein phospha-
tase that dephosphorylates serine, threonine, and
tyrosine residues. The Protein A–Sepharose CL-4B
beads with bound E1∧E4 were resuspended in 100 ml of
l-PPase reaction buffer (50 mM Tris–HCl, pH 7.8; 5 mM
dithiothreitol; 2 mM MnCl2; and 100 mg of bovine serum
albumin per milliliter) with 2 ml of l-PPase (400,000 U/ml)
and incubated for 1 h at 37°C. The Sepharose beads
were washed five times with cold IP buffer and resus-
pended in Laemmli buffer. After being heated to 100°C,
samples were centrifuged and supernates analyzed by
15% SDS–PAGE. Immunoblot analysis was performed
using anti-E1∧E4 serum. Autoradiography of the immuno-

lot was then performed.

iquid chromatography–mass spectrophotometry

To verify results of the in vitro phosphorylation studies,
1∧E4 protein was derived from two sources and ana-

lyzed by LC–MS and collision-induced dissociation (LC–
MS/MS) using a Finnigan LCQ Mass Spectrophotometer
(ThermoQuest, San Jose, CA). First, as a relatively pure

∧
source, E1 E4 protein was immunoprecipitated from HPV
11-infected xenograft tissue. Second, to obtain a large
sample of E1∧E4 protein, a crude extract of a large
ondyloma acuminata lesion (containing HPV 11) was
repared. The E4 ORF was sequenced and shown to be

dentical to that from the HPV 11-infected xenograft tis-
ue isolate. The E1∧E4 protein was isolated from each
reparation by 20% SDS–PAGE followed by identification
sing anti-E1∧E4 serum in an immunoblot of a side por-

tion of the gel. The E1∧E4 protein was excised from the
gel, and in-gel trypsin digestion was performed. Peptides
were analyzed using LC–MS/MS and ionized fragments
were identified using Protein Prospector (MS-Product)
(http://prospector.ucsf.edu/ucsfhtml3.2/msprod.htm).

Analysis of E1∧E4 mutants expressed in human
eratinocytes

Three GFP fusions were constructed to analyze the
haracteristics of E1∧E4 phosphorylation substitution
utants. These included full-length E1∧E4 wild-type se-

quences, a mutant containing alanine substitutions for
threonine 36 and serine 44 (PKA phosphoacceptors), and
a mutant containing an alanine substitution for threonine
53 (MAPK phosphoacceptor). To produce these fusions,
wild-type or mutant E1∧E4 sequences were amplified by
PCR and subcloned in-frame into pEGFP-C1 (Clontech,
Palo Alto, CA). Sequencing was performed to confirm
introduction of mutations and in-frame cloning. The GFP–
E1∧E4 fusion proteins were expressed in PHKs (Clonet-
ics, San Diego, CA) by transient transfection with Effect-
ene as directed by the manufacturer (Qiagen). PHKs
were grown to 60% confluence on glass coverslips in
keratinocyte growth medium (KGM, Clonetics) with 0.10
mM calcium. The transfection solution was applied for
16 h and replaced with fresh medium. Twenty-four hours
after transfection, the cells were washed three times in
PBS and mounted with GEL-MOUNT (Biomeda Corp.,
Foster City, CA) onto glass slides. Fluorescence micros-
copy using a FITC filter was performed to examine the
intracellular localization of the GFP–E1∧E4 PKA and

APK phosphorylation substitution mutants compared
o the wild-type E1∧E4 protein.

PHKs were cotransfected with the pEGFP–E1∧E4 plas-
mids and either pEBFP–C1 (Clontech) to express blue
fluorescent protein or pEBFP–E1∧E4 to express a BFP–

1∧E4 fusion protein. Fluorescence microscopy using
DAPI and FITC filters was performed to determine
whether wild-type E1∧E4 protein would colocalize with
the phosphorylation substitution mutants.
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