Note

The Football Pool Problem for 7 and 8 Matches

Hiram Fernandes and Edgar Rechtschaffen
Institute of Mathematics, Universidade Federal Fluminense, Rio de Janeiro, Brazil
Communicated by the Managing Editors

Received May 28, 1981

Abstract

A method to bet on a football lottery with N games in such a way as to guarantee second prize, with the least number of forecasts (bets) is described. It is shown that for $N=7$, second prize is guaranteed with 225 bets; for $N=8$, second prize is achieved with 567 bets.

1. Introduction

We intend to forecast the outcome (win, lose, or draw) of N football matches in such a way that no matter what the outcome of the matches, one of the forecasts will have no less than $N-1$ correct results. In various countries such a lottery exists, with $N=12,13$, or 14 (most commonly, $N=13$).

The least number $A(N)$ of forecast to guarantee second prize is unkown, for the most values of N. The existing results are, $A(3)=5, A(4)=9$, $A(5)=27, A(13)=3^{10}$, as indicated in [1]. For $N=9$, a "good" upper bound is known, $A(9) \leqslant 2 \times 3^{6}$, as shown in [1]. The proof that $A(5)=27$ takes 10 pages, as presented in [2].

In this note, we shall construct upper bounds for $A(7)$ and $A(8)$. From what is known thus far, the trivial upper bounds are $A(7) \leqslant A(5) \times 3^{2}$ and $A(8) \leqslant A(5) \times 3^{3}$. The results to be presented in this paper have been announced by the authors in [3]. A sharper bound for $A(7)$ will be obtained, however.

2. Notation and Definitions

Denote by R_{3}^{N} the set of vectors with N components chosen from the ring of integers mod 3. The Hamming distance $d(x, y)$ of two vectors of R_{3}^{N} is the number of places in which the components of \mathbf{x} and \mathbf{y} differ.

For any element $b \in R_{3}^{N}$, we define $N(b)$ as the set formed by all $x \in R_{3}^{N}$ such that $d(b, x)=1$. The elements of $N(b)$ are the "neighbors" of b. We say that a set $Q \subset R_{3}^{N}$ is covered by a set $S \subset R_{3}^{N}$, if for any $z \in Q$, there is a (bet) $b \in S$ such that $d(b, z) \leqslant 1$. In this case, we also say that S is a covering of Q. The aim of this note is to find a covering set of R_{3}^{N}, for $N=7$ and 8 , with the least number of elements. We recall that any $b \in R_{3}^{N}$ has $2 N$ neighbors and, therefore, $A(N) \geqslant 3^{N} /(2 N+1)$. Rounding off, we have that $A(7) \geqslant 146$ and $A(8) \geqslant 386$. For $M=N-4, R_{3}^{N}$ can be partitioned into 3^{M} subsets $S_{k_{1}, k_{2}, \ldots, k_{M}}$ with $k_{i} \in\{0,1,2\}$. The components of this partition are of the form, $S_{k_{1} \ldots . k_{M}}=x \in\left\{R_{3}^{N}: x=\left[k_{1}, k_{2}, \ldots, k_{M}, x_{1}, x_{2}, x_{3}, x_{4}\right]\right\}$. Each set $S_{k_{1}, \ldots, k_{M}}$ contains 81 elements of R_{3}^{N}. Thus, for example,

$$
S_{101}=\left\{x \in R_{3}^{7}: x=\left[1,0,1, x_{1}, x_{2}, x_{3}, x_{4}\right]\right\}
$$

and

$$
S_{1121}=\left\{x \in R_{3}^{8}: x=\left[1,1,2,1, x_{1}, x_{2}, x_{3}, x_{4}\right]\right\} .
$$

The "neighbor sets" of $S_{k_{1}, \ldots, k_{M}}$, denoted by $N\left(S_{k_{1}, \ldots, k_{M}}\right)$, are all sets $S_{P_{, \ldots, P_{M}}}$ such that the ordered M tuples (k_{1}, \ldots, k_{M}) and (p_{1}, \ldots, p_{M}) differ, precisely, in one position. For example, $N\left(S_{111}\right)=\left\{S_{101}, S_{110}, S_{011}, S_{112}\right.$, $\left.S_{121}, S_{211}\right\}$. Analogously, we define $N\left(N\left(S_{k_{1}, \ldots, k_{M}}\right)\right.$) as the set formed by all neighbor sets of the sets belonging to $N\left(S_{k_{1}, \ldots, k_{M}}\right)$.

TABLE I

3. The Perfect Group R_{3}^{4}

Here R_{3}^{4} is a group of order 81 and, by Lagrange's theorem, has a subgroup of order 9 . For example, the nine elements of the set B^{1},

$$
B^{1}=\{0000,0111,0222,1012,1120,1201,2021,2102,2210\}
$$

displayed in Table I, form such a subgroup.
In this note, we shall use a partition of R_{3}^{4}, consisting of the following 9 disjoint subsets:

$$
\begin{aligned}
& B^{1}=\{0000,0111,0222,1012,1120,1201,2021,2102,2210\} \\
& B^{2}=\{0001,0112,0220,1010,1121,1202,2022,2100,2211\} \\
& B^{3}=\{0002,0110,0221,1011,1122,1200,2020,2101,2212\} \\
& B^{4}=\{0010,0121,0202,1022,1100,1211,2001,2112,2220\} \\
& B^{5}=\{0011,0122,0200,1020,1101,1212,2002,2110,2221\} \\
& B^{6}=\{0012,0120,0201,1021,1102,1210,2000,2111,2222\} \\
& B^{7}=\{0020,0101,0212,1002,1110,1221,2011,2122,2200\} \\
& B^{8}=\{0021,0102,0210,1000,1111,1222,2012,2120,2201\} \\
& B^{9}=\{0022,0100,0211,1001,1112,1220,2010,2121,2202\} .
\end{aligned}
$$

It is easily verified that, for $N=4$ football matches, second prize is guaranteed if we choose any B^{i} as in our forecasts. In other words, any set B^{i} is a covering for R_{3}^{4}. Furthermore, this is an optimal solution since $A(4) \geqslant 9$.

4. Choice of Bets

We shall place our bets in some (but not all) of the sets $S_{k_{1}, \ldots, k_{M}}$ of the partition of R_{3}^{N}.

All bets will be of the form, $\left(k_{1}, \ldots, k_{M}, x_{1}, x_{2}, x_{3}, x_{4}\right)$, where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ runs through a set B^{j}, for some j.

For example, in R_{3}^{7}, the insertion of B^{1} in S_{101} yields the following nine bets:

$$
\begin{array}{llllll}
101 & 0000 & 101 & 1012 & 101 & 2021 \\
101 & 0111 & 101 & 1120 & 101 & 2102 \\
101 & 0222 & 101 & 1201 & 101 & 2210 .
\end{array}
$$

We notice that, because of this choice, the total number of bets will be a multiple of nine.

4.1. The Strategy for Choosing the Bets

The strategy adopted is to maximize the number of partition components of R_{3}^{N} in which no bets are placed and to obtain their "coverage" by the least number of bets placed in neighbor sets.

For $N=7$, it is possible to choose 6 partition components of R_{3}^{7} in which no bets are placed; 20 partition components will then have 9 bets each. Coverage (solution) is obtained by placing $5 \times 9=45$ bets in the remaining partition component.

For $N=8$, we shall be able to choose 24 partition components of R_{3}^{8} in which no bets are placed; 54 partition components will then have 9 bets each. Coverage is obtained by placing 27 bets in each of the 3 remaining partition components.

Two sufficient conditions for coverage are given by Lemmas 1 and 2.

Lemma 1. For any j, the nine bets $\left(k_{1}, \ldots, k_{M}, x_{1}, x_{2}, x_{3}, x_{4}\right)$, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in B^{j}$, yield a covering of $S_{k_{1} \ldots . k_{1}}$.

Proof. This is so because B^{j} covers R_{3}^{4}.

Lemma 2. Here $S_{k_{1}, \ldots, k_{M}}$ is covered if, for each $i=1, \ldots, 9$ there is a neighbor set in which B^{i} is inserted.

Proof. Let $\left(k_{1}, \ldots, k_{M}, x_{1}, x_{2}, x_{3}, x_{4}\right) \in S_{k_{1}, \ldots k_{1}}$. By construction B^{1}, \ldots, B^{9} form a partition of R_{3}^{4}; hence for some $i,\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in B^{i}$, and by assumption B^{i} is inserted in some neighbor set $S_{p_{1} \ldots \ldots p_{17}}$ of $S_{k_{1} \ldots \ldots k_{11}}$. Therefore, there is a bet $\left(p_{1}, \ldots, p_{M}, x_{1}, x_{2}, x_{3}, x_{4} \in S_{p_{1}, \ldots, p_{M}}\right.$ such that

$$
d\left[\left(k_{1}, \ldots, k_{M}, x_{1}, x_{2}, x_{3}, x_{4}\right),\left(p_{1}, \ldots, p_{M}, x_{1}, x_{2}, x_{3}, x_{4}\right)\right]=1 .
$$

5. The Football Pool with 7 Matches

In this section, we construct a covering of R_{3}^{7}, as follows:
(1) Insert $B^{5}, B^{6}, B^{7}, B^{8}$, and B^{9} in S_{111}.
(2) The sets belonging to $N\left(S_{111}\right)$ remain without bets.
(3) Insert B^{1} in S_{001}, S_{122}, and S_{210}.

Insert B^{2} in S_{010}, S_{221}, and S_{102} (indices as given but shifted cyclicly).
(4) Insert B^{3} in S_{100}, S_{212}, and S_{021} (another cyclic shift). Insert B^{4} in S_{012}, S_{120}, and S_{201} (indices form a cyclic set).
(5) Insert an arbitrary B^{k} in each of the sets $S_{x y z}$, where all indices are 0 or 2 .

Now we shall prove that the bets constructed form a covering of R_{3}^{7}.

Theorem 1. In a football pool with 7 games it is possible to guarantee second prize with 225 bets.

Proof. By Lemma 1, all partition sets with one or more insertions B^{i} are covered.

Since our insertions were made using cyclic shifts it is sufficient to show that S_{011} and S_{211} are covered. Then
S_{001} is a neighbor set of S_{011} and contains B^{1}, S_{010} is a neighbor set of S_{011} and contains B^{2}, S_{021} is a neighbor set of S_{011} and contains B^{3}, S_{012} is a neighbor set of S_{011} and contains B^{4}, S_{111} is a neighbor set of S_{011} and contains $B^{5}, B^{6}, B^{7}, B^{8}$ and B^{9}.

Thus, S_{011} is covered. The proof for S_{211} is similar.
We conclude that al 27 partition sets of R_{3}^{7} are covered. There are 20 partition sets with one B^{i} and S_{111} has five insertions of type B^{i}. Thus, the total number of bets is $9 \times(20+5)=225$.

6. The Football Pool with 8 Matches

We construct a covering of R_{3}^{8}, as follows:
(a) The sets belonging to $N\left(S_{x x x x}\right)$, where $x=0,1$, or 2 remain without bets.
(b) The sets $S_{x x x x}(x=0,1,2)$ have B^{7}, B^{8} and B^{9} inserted.
(c) Let x, y, z denote different elements from $\{0,1,2\}$:
(i) Insert B^{1} in $S_{x y x y}$ (6 choices).
(ii) Insert B^{2} in $S_{x y x z}$ and $S_{z x x x}$ (12 choices).
(iii) Insert B^{3} in $S_{x y y x}$ (6 choices).
(iv) Insert B^{4} in $S_{y x x z}$ and $S_{x y z x}$ (12 choices).
(v). Insert B^{5} in $S_{x x y y}$ (6 choices).
(vi) Insert B^{6} in $S_{x x y z}$ and $S_{y z x x}$ (12 choices).

Theorem 2. In a football pool with 8 matches it is possible to guarantee second prize with 567 bets.

Proof. Because of the symmetry of the construction it is sufficient to show that S_{0001} is covered. For $N\left(S_{0001}\right)$ we have
S_{0101} has B^{1}, S_{0201} has B^{2}, S_{1001} has B^{3}, S_{2001} has B^{4},
S_{0011} has B^{5}, S_{0021} has B^{6}, S_{0000} has B^{7}, B^{8}, B^{9}.

Thus, the sets (bets) inserted above form a covering of R_{3}^{8} with $9 \times(3 \times 3+54)=567$ bets.

References

1. H. J. L. Kamps and J. H. van Lint, A covering problem in "Matematica Societatis János Bolyai," pp. 679-685, Balatonfured, Hungary, 1969.
2. H. J. L. Kamps and J. H. van Lint, The football pool problem for 5 matches, J. Combin. Theory, Ser. A 3 (1967), 315-325.
3. H. Fernandes and E. Rechtschaffen, "The Football Pool problem," Abstracts of the American Mathematical Society, Vol. 2, No. 2, Providence, R. I., 1981.
