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Abstract

We construct axially symmetric solutions &f(1) gauged Skyrme model. Possessing a nonvanishing magnetic moment, these solitons hav
also a nonzero angular momentum proportional to the electric charge.
0 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction a topological charge, and (b) the electrically charged dipole
monopole—antimonopole pdif] of the YMH system with van-
Many nonlinear classical field theories on flat spacetimeShing topological charge, which is not topologically stable
backgrounds admit soliton solutions. These nonsingular solt8V€N in the limit of vanishing angular momentum. _
tions describe particle-like, localised configurations with finite 't IS 0ur purpose here to construct a soliton which has in-
energy. There has been some interest in recent years in the Fé'—n_s'g angular mqmentum‘anq presentiopologically stable
sue of globally regular spinning soliton solutions. However, to! Mit-~ Our definition for a "soliton presenting a topologically
the best of our knowledge, to date gationary andspinning ~ Stable limit’ is, a finite energy spinning lump which is topo-
solitons were found. (We describe single lumps with angulafP9ically stable in the limit of vanishing angular momentum.

momentum as spinning, and reserve rotating for more gen'[hls configuration corresponds to axially symmetric, electri-

eral (gravitating-)solutions, including multilumps.) Notably, it €ally charged solutions of thé(1) gauged Skyrme model.
is known that finite energy solutions of the Yang—Mills—Higgs _COncerning the question of the existence of any given topo-

(YMH) system with a nonvanishing magnetic charge have zerdogically stable solution, this is quite an intricate matter that
angular momentunil,2].} Moreover, as found if5], none deserves a brief description. To start with, there must be a valid

of the known gauge field solitons with gauge gro8ig(2) topological lower bound on the energy, which may or may

(e.g. dyons, sphalerons, vortices) admit spinning generalizd1°t Pe saturated, and for the skyrmion it is not. Then there is
tions within the stationary, axially symmetric, one-soliton sec-IN€ question whether any given field configuration (the solu-
tor. tion) does minimise the energy? For the Skyrme model, this

(s a difficult problem for two reasons: (a) because the sigma
the literature, (a)p-balls solitons in a complex scalar field the- model fields are constrained, and (b) because in addition to the
ory with a nonrenormalizable self-interactid], which are guadratic kinetic term there is also a quartic kinetic term. Thus

nontopological solitons so their stability is not guaranteed by/" the 1-skyrmion, the existence proof is given [8} and,
[10], while for axially symmetric case, to the best of our knowl-

To date two types of spinning solitons have been found i

* Corresponding author. -
E-mail address: radu@thphys.nuim.i¢E. Radu). 2 An axially symmetric, spinning soliton of the ungauged Skyrme model,
1 Also the axially symmetric spinning Einstein—Yang—Mills sphalerons, al- similarly presenting aopologically stable limit, has been recently constructed
though predicted perturbative[g], are unlikely to exis{1,4], but these are in  in [8]. However, this is aQ-ball type of solution featuring time-dependent
anycase not topologically stable. fields.
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edge, there is no rigorous existence proof. So axially symmetriDefining the gauge invariant topological charge density as
skyrmions and their magnetically gauged counterparts are sup-

ported only numerically. 0= —eijke®* Di¢p D¢’ Dygpp?

In addition, when a nonvanishing electric field is present, 4
as it is in the present work, the functional misnimised is not + _giijing%Bak(pA, (5)
the positive definite energy but the indefinite action. The proof 87
of existence of such s_olu_ti(_)ns, namely that for YMH dyons, is _— ;169,070 " 0 ¢ 9
given by[11], but again it is too hard to adapt this proof for an 3
the gauged (and ungagged) Skyrmg modeil. Thus the existence _ ek (AiEABaj¢A¢B) (6)
of the U (1) gauged axially symmetric solutions of the present 4
Letter, and those dB], are supported only numerically. the gauge invariance ofis manifest from(5), while it is easily

checked that the finite energy conditions lead to the vanishing

2. Themode of the surface integral term {6), as a result of which the topo-

logical is simple the volume integral of the first term, namely
The Skyrme model has been proposed a long time[88p  the winding number or, baryon charge.

as an effective theory for nucleons in the largdimit of QCD As was shown ifil 7] in detail, the energy density functional
at low energy{13—15] the baryon number being identified with (4) is bounded from below by

the topological charge. The classical as well as the quantum K

properties are in relatively good agreeement with the observed = —99~ (7)
features of small nuclei. Th& (1) gauged Skyrme model was v 1+ 5«

originally proposed by Callan and Witten to study the decay of

the nucleons in the vecinity of a monopgls]. Axially sym- 3. Theansatz

metric solutions of this model were constructed previously in

[17], but the emphasis there was on the static properties of nu- In a cylindrical coordinate system, we parametrise the axi-

cleons and not the calculation of its classical spin. ally symmetric Maxwell connection as
We define our model in terms of th@(4) sigma model field a(p, ) —n
¢ = (%, ¢M), @ = 1,2; A = 3,4, satisfying the constraint A; =b(p, ), Ag = ’Tsaﬁfﬂ, A, =0, (8)

|p%|%2 + |$4|2 = 1, the Lagrangean of the Maxwell gauged _ _ _
Skyrme model is (up to an overall factor which we set equak (e, z) andb(p, z) corresponding to the electric and magnetic

to one) potentials, withn a positive integer—the winding number, and
5 the polar parametrisation of the chiral field in terms of the two
1 1 2 K 2 functions and as
£=—§|Fuv|2+§|Du¢a| —§|D[u¢aDv]¢b| 1) f(p.2) andg(p, 2)

_ _ . * — sin £ singn?, 8 = sin f cosg, 4=cosf, (9
in terms of the Maxwell field strength,,, and the covariant ¢ Jsingn ¢ Jcosg ¢ . O)

derivatives defined by the gauging prescription wherep = /|x4|2, « = 1, 2, andz = x3. In the following we
B A will find it convenient instead to work with spherical coordi-
D, 9% =03,¢% + A,(eh)”, Dyu¢” =0,¢". (2)  nates(r,6), i.e.p =rsind andz = r cosd. After replacing this

The energy—momentum tensor which follows fréhis ansatz i1), one finds the reduced Lagrangean

2 1 1
1 _ 2 2, Lo\ (2, 1.2
1 1
2 2 2 2\ o
+ (DM¢“DV¢“ - Eg,me“DW) - [(f " r_zfﬁ) * <g” - ﬁgﬂ) Sirtf
2
2 + a? = r’b?si’ 6 sir? f sir? ]
p a-—rbosino
27 [(D[M“ D14") (Do D¢ty r2sin6 ¢
1 2
1 ZS-I’IZ — _
- Zg;w(D[r¢aDA]¢a)(D[T¢aDA]¢b)i| } (3) st f(r2 (f’rg’e fﬂgJ)
a? — r2p2sirfe

Here we note that the skyrmion gauged with the purely mag-  + o
netic U (1) field is a topologically stable soliton. This is stated r S'n219 1
in terms of topological lower bou_nd on the static energy density [(f% + _2f5> + (82r + —28,29> sin? f:| sin2g> }
functional of the purely magnetically gauged system, namely r r
the T;; component of3) with A, =0, (10)

The Euler-Lagrange equations arising from the variations of
) this Lagrangean have been integrated by imposing the follow-

2

K 2
Ty =& = |Fi; 12+ |Di¢"|* + =|Du¢ D 19" |*. . ”» . Y
" Iyl + [ Dig®|"+ 4‘ 9 Djy¢”| ing boundary conditions, which respect finite mass—energy and
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finite energy density conditions as well as regularity and sym4. Numerical solutions
metry requirements. We impose
Subject to the above boundary conditions, we solve numer-

flr=c0 =0, 8.rlr=00 =0, alr=c0 =1, ically the set of four Maxwell-Skyrme equations. The numeri-
blr=cc =V, (11)  cal calculations are performed by using the program CADSOL
[18], based on the iterative Newton—Raphson method. As initial
guess in the iteration procedure, we use the spherically sym-
flr=0=m, grlr=0=0, aly—o=n, metric regular solutions of the pure Skyrme model. The typical
b lo=0 (12) relative error is estimated to be lower tharﬂo

rlr=0=0, For a given baryon number, the solutions depend on two
at the origin. For solutions with parity reflection symmetry (the continuos parameters, the valuésof the electric potential at
case considered in this Letter), the boundary conditions alongpfinity and the Skyrme coupling constantHere we consider

at infinity, and

thez-axis are solutions in the one baryon sector only, although similar results
have been found for > 1. The solutions wittV = 0 haveb =0
felo=0=glo=0=0, aglo=0=b,plo=0=0, (13)  and correspond to static dipoles discussgd . A nonvanish-
and agree with the boundary conditions on haxis, except ing V leads to rotating regular configurations, with nontrivial
for g(r,0 =m/2) =n/2. functions f, g, a andb. Rotating solutions appear to exist for

It may appear from the boundary conditiofis)—(13)that ~ any value ofc. As we increase/ from zero while keeping
the natural conditior|g—o » = n is not imposed. This is not fixed, a branch of solutions forms. Along this branch, the to-
done since its imposition in addition {@1)-(13)would be an  tal energy and the angular momentum increase continuously
overdetermination. We have nonetheless checkedithai is ~ With V. The rationJ/E increases also, but remains always
satisfied on the-axis by the numerical solutions. smaller than one. At the same time, the numerical errors start

The constan¥ appearing i{11) corresponds to the magni- t0 increase and we obta_lin If_;\rge \_/alues_for battand J, and
tude of the electric potential at infinity and has a direct physicafor someVmax the numerical iterations fail to converge. An ac-
relevance. In the pure Maxwell theory, one can®et 0 (or  curate value oVmay is rather difficult to obtain, especially for
any other value) without any loss of generality. In thigl)  large values ok. Alternatively, we may keep fixed the magni-
gauged Skyrme model, however, such a gauge transformatidHde of_the electric potential at mﬁmty and vary_the parameter
would render the whole configuration time-dependent. In Fig. 1 we present the properties of typical branches of

Integration over all space of the energy densityields the ~ solutions. InFig. 1a, the angular momentum and the energy
total mass—energy; = [ T1/—¢ d3x. The total angular mo- are parametrised by for several fixed value ok, while in

mentum is given by = [ thx/—_8d3x= where Fig. 1b these quantities are parametrised witbr several fixed
values ofV, includingV = 0 corresponding to the nonspinning
Ty = Z(a b, + 0,9’;9) soliton. The energy bound in the purely magnetically gauged
v r case withV = 0 is not saturated, as is the case also for the
+absir? fsirt g ungauged skyrmion. We expect likewise that this numerically
r2 2 constructed solution is topologically stable, but cannot estimate
% <1+ Kz[(ﬁ + _29) + <g2r + g_z‘)) Sir? f]) the energy excess above the lower bound analytically.
: r ’ r (14) One can see frorRig. 1b that, for a given value af, the en-

) ) ) _ ergy of the spinning soliton is always smaller than the energy
However, by using the field equations, the volume integral off the ungauged skyrmion, but is larger than the energy of the

infinity in terms of Maxwell potentials is gauged only with the magnetic field and minimises the en-
b ergy functional, while the spinning system gauged with both the

J =47 lim /de sinorab, . (15) _m_agnetic and_ the elec_tric fields minim_is_:es the non_po_sitive def-
r—>0o0 inite Lagrangian density, and the additional electric field does

0 not feature in the topological lower bound. As a result, the spin-

The field equations imply the asymptotic behaviour of the elecning, electrically charged, solutions have higher energies than
tric potentialb ~ V — Q/(2r) + 0(1/r?), the paramete)  the static ones. The situation here is identical with that of the
corresponding to the electric charge of the solutions. Thereforgylia—zee dyon, in this respect.
the following relation holds In Fig. 2a we plot the energy densify= 7, and inFig. 2b
J = 4710 (16) the angular momentum density, of a typicaln = 1 solution

’ as a function of the coordinates z, for « =0.72,V = 0.067.
which resembles the case of a monopole—antimonopole confid¥e notice that the energy density= T;; does not exhibit any
uration in a YMH theony[7]. Note that the solutions discussed distinctly localised individual components, a surface of con-
here possess also a magnetic dipole monierit which can  stant energy density being topologically a sphere. However, this
be read from the asymptotics of tli&(1) magnetic potential, is a deformed sphere such that the profile§ ef T;,(r, 6) ver-
Ay ~ wsind/r2. susr for each value of are distinct and nonoverlapping. It
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Fig. 1. The energye and the angular momenturhof U (1) gauged skyrmion
are shown as a function on the paramétefa) and the parameter (b) for a
baryon numben = 1.
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