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A Quasi-One-Dimensional Theory for Anisotropic Propagation of
Excitation in Cardiac Muscle
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ABSTRACT It has been shown that propagation of excitation in cardiac muscle is anisotropic. Compared to propagation at
right angles to the long axes of the fibers, propagation along the long axis is faster, the extracellular action potential (AP) is
larger in amplitude, and the intracellular AP has a lower maximum rate of depolarization, a larger time constant of the foot,
and a lower peak amplitude. These observations are contrary to the predictions of classical one-dimensional (1 -D) cable
theory and, thus far, no satisfactory theory for them has been reported. As an alternative description of propagation in cardiac
muscle, this study provides a quasi-1 -D theory that includes a simplified description of the effects of action currents in
extracellular space as well as resistive coupling between surface and deeper fibers in cardiac muscle. In terms of classical
1 -D theory, this quasi-1 -D theory reveals that the anisotropies in the wave form of the AP arise from modifications in the
effective membrane ionic current and capacitance. The theory also shows that it is propagation in the longitudinal, not in the
transverse direction that deviates from classical 1 -D cable theory.

NOMENCLATURE

a radius of the fiber (cm)
ri intracellular resistance per unit axial length

of the fiber in the axial (x) direction (kfl/
cm)

re extracellular axial resistance per unit axial
length of the fiber in the axial (x) direction
(kfl/cm)

rd depth resistance per unit axial length of the
fiber (kfl cm)

cm specific membrane capacitance per unit axial
length of the fiber (,uF/cm)

Rj specific intracellular resistivity of the fiber
(kfl cm)

Rz intercellular coupling resistivity along the z
axis (kfl cm)

Re extracellular axial resistivity of the fiber (kfl
cm)

Rd depth resistance per unit area of membrane
surface of the fiber (kfl cm2)

Cm specific membrane capacitance per unit area
of membrane surface of the fiber (4F/cm2)

y ratio of intracellular to extracellular
equivalent cross section areas

i (x, t) intracellular axial current (,A)
ii(x, t) intercellular exchange current per unit length

of fiber at z direction for a fiber on the
surface of muscle (AA/cm)

ie(X, t) extracellular axial current (,A)
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iz(x, t) extracellular exchange current per unit length
of fiber at z direction for a fiber on the
surface of muscle (,tA/cm)

Id(x, t) extracellular depth current per unit axial
length of fiber for a fiber on the surface of
muscle (,uA/cm)

Im(X, t) transmembrane current per unit axial length
of fiber (,A/cm)

ijon(X, t) transmembrane ionic current per unit axial
length of fiber (,A/cm)

IAon(X, t) transmembrane ionic current density on the
surface of fiber (4AIcm2)

IZ(x, t) intercellular exchange current density at z
direction for a fiber on the surface of muscle
(gA/cm2)

Iapp(X, t) apparent transmembrane ionic current
density on the surface of fiber (4AIcm2)

Vi(x, t) intracellular potential with reference
electrode in the depth of extracellular space
(mV)

Ve(X, t) extracellular potential at the surface of cell
membrane with reference electrode in the
depth of extracellular space (mV)

Vm(X, t) transmembrane potential (mV)
t time (ms)
x the axis representing the direction of surface

propagation, which may represent either the
transverse or longitudinal direction relative
to the long axis of the fiber, depending on
what direction of propagation is being
simulated (cm)

z the direction perpendicular to the surface
plane of the muscle (cm)

Ox velocity of the steady propagation of Vm(x, t)
along the x axis (cm/ms)
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Oz velocity of the steady propagation of Vm(x, t)
at the z direction (cm/ms)

A length constant, equal to Vrml(ri + re)
gNa membrane Na+ channel conductivity (mS/

cm2)
gNa maximum membrane Na+ conductivity (mS/

cm2)
gleak membrane leakage channel conductivity

(mS/cm2)
ENa equilibrium potential of membrane Na+

current (mV)
Elea equilibrium potential of membrane leakage

current (mV)
Veak peak amplitude of intracellular potential

(mV)
Vi rate of rise of intracellular potential (V/s)

vnmax maximum rate of rise of intracellular
potential (V/s)

VeP peak-to-peak value of extracellular potential
(mV)

Vpeak peak amplitude of transmembrane potential
(mV)

Vm rate of rise of transmembrane potential (V/s)
vmax maximum rate of rise of transmembrane

potential (V/s)
Imax maximum density of transmembrane current

(,pA/cm2)
'Na membrane Na+ current density (piA/cm2)

I max maximum density of membrane Na+ current
(,uA/cm2)

Ti time constant of the foot of intracellular
potential (ms)

Tm time constant of the foot of transmembrane
potential (ms)

At time step of Crank-Nicolson partial
differential equation solver (,s)

AX length of fiber element (,um)

INTRODUCTION

Propagation of electrical excitation in cardiac muscle has
been known to be anisotropic since the work of Kukushkin
et al. (1975) and Clerc (1976). Kukushkin et al. observed
anisotropy in the velocity of propagation of excitation, 0, in
isolated strips of atrial and ventricular muscle from dog
heart. They showed that 0 was greater along the longitudinal
axis of the fibers than in the direction at right angles to
them.

Using a series of microelectrode impalements in trabec-
ulae from the right ventricle of calf hearts, Clerc (1976)
measured 0 and the intracellular and extracellular resistivi-
ties along and at right angles to the fiber orientation. He
showed that 0 of the action potential (AP) was much faster
along than at right angles to the fiber orientation and that the
differences in 0 and the tissue resistivities obeyed the in-
verse square law of classical one-dimensional (1-D) cable

Roberts et al. (1979) reported anisotropies in the ampli-
tude and the velocity of spread of the extracellular potential
in the left ventricular epicardium of dog hearts in vivo. They
mapped the propagation of excitation with an extracellular
electrode array of 84 electrodes, applying stimuli via an

electrode at the center of the array. They found that the
spread of epicardial excitation was 2.4 times faster along the
long axes of the muscle fibers than in a direction at right
angles to them. The amplitude of the extracellular potential
was approximately 3 times greater for propagation along the
fiber axes than for propagation at right angles.

In 1981 Spach et al. showed that propagation of the
intracellular AP in the dog heart was anisotropic in both the
atrial crista terminalis and the papillary muscle of the right
ventricle, although the ratio of longitudinal to transverse
velocities in the papillary muscle was lower than the ratio in
the crista terminalis. By stimulating at differing sites around
a single intracellular recording site, they were able to gen-

erate excitation wavefronts that propagated at various an-

gles relative to the orientation of the muscle fibers. Com-
pared to propagation at right angles to the long axis of the
muscle fibers (transverse propagation, TP), propagation
along the fiber axis (longitudinal propagation, LP) was

faster and was associated with an AP having a lower max-

imum rate of depolarization (Vmax), a larger time constant of
the foot (Tfot) a lower peak amplitude (Vpeak), and a lower
safety factor for propagation (SF). The authors pointed out
that the association of faster 0 with an AP having a lower
Vpeak, a lower Vmax, and a larger Tfooot was contrary to
classical 1-D cable theory, which together with its exten-
sions to 2-D (Shiba, 1971; Shiba and Kanno, 1971) and 3-D
(Tung, 1978) domains, has been widely used to describe the
propagation of electrical excitation in cardiac muscle. In
classical 1-D cable theory, faster propagation can be caused
by either a reduction in intracellular resistance per unit
length of the fiber, ri, or an increase in the membrane ionic
current associated with the depolarization phase of the AP.
The theory shows, however, that a change in ri causes no

change in the wave form of the AP. On the other hand, the
increase in 0 caused by an increase in ionic current (e.g., an

increase in the density of Na+ channels) results in an AP
with a greater Vmax, a smaller Tft, and a greater Vpeak
(Hodgkin and Katz, 1949; Berkinblit et al., 1970), quite
contrary to the findings of Spach et al. (1981). Such clas-
sical behavior has in fact been observed (Spach et al., 1981;
Dominguez and Fozzard, 1979). Spach et al. (1981) stimu-
lated thin strands of Purkinje fibers from dog heart at a

regular, constant rate and an extra stimulus was interposed
after every 15th stimulus at the regular rate, such that the
extra stimulus fell in the relative refractory period of the
preceding regular AP. The 0 of the premature AP (initiated
by the extra stimulus) was varied by varying the degree of
prematurity of the extra stimulus relative to the preceding
regular one. In this preparation, where propagation was

confined to the long axis of the strand, 0, Vmax, and Tfoot

theory (Hodgkin and Huxley, 1952).
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varied exactly according to I -D cable theory.
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In the same paper, Spach et al. (1981) went on to show
that the anisotropies in propagation that they had observed
in the crista terminalis and papillary muscle could not have
been caused by different membrane properties, e.g., by the
organization of cells into a narrow tract. Reproducibly, in
the same preparation and from preparation to preparation,
and irrespective of the location of the stimulating electrode,
isochronal excitation maps always showed propagation
away from the stimulus site to be faster along the long axes
of the fibers than at right angles to them. In every case, the
faster the propagation at the intracellular recording site, the
lower the magnitude of Vm, and V1'a and the larger the
magnitude of Tf,t of the AP. In 1992 Spach et al. showed
that although there were differences from cell to cell in Vmax
of APs during longitudinal and transverse propagation, the
same anisotropies in propagation as observed earlier still
held.

THEORETICAL

That directional changes in intracellular resistance produce
directional changes in 0 was first shown by Joyner et al.
(1975). They simulated the propagation of electrical activity
in a two-dimensional representation of the thin-walled
atrium and investigated the effects of anisotropy in mem-
brane properties and intracellular resistivity on the wave-
fronts of propagation of electrical activity. They showed
that different internal resistance in the x and y directions
resulted in inhomogeneities in 0, as observed later experi-
mentally by Clerc (1976).

It was recognized by Spach et al. (1981) that because of
the anisotropy in the AP wave form as well as in 0, addi-
tional factors must be involved. They suggested that prop-
agation might be discontinuous in the transverse direction.
They based this idea on the fact that cardiac muscle fibers
are arranged into long bundles of small diameter (<500
,um) (Sommer and Scherer, 1985). Within these bundles the
individual fibers are electrically connected to one another
through nexuses, to such a degree that the bundle effectively
acts as a single fiber (Sommer and Johnson, 1979). On the
other hand, such bundles are interconnected less extensively
laterally, so that propagation might well be discontinuous in
a direction transverse to the long axes of the bundles.

There have been several simulations of discontinuous
propagation in cardiac muscle. Diaz et al. (1982) built a 1-D
model, with excitable cells described by the Beeler-Reuter
model for ventricular muscle (Beeler and Reuter, 1977), in
which the kinetics of the excitatory Na+ current are de-
scribed by empirically modified Hodgkin-Huxley equations
(Hodgkin and Huxley, 1952). Individual cells were sepa-
rated by resistive intercalated discs. They showed that this
model could account for the anisotropies in 0 and in Vmax,
but the model failed to account for the anisotropy in Tfoot, In
their simulations the more slowly propagating APs had a
larger rather than a smaller Tf,t Similar results were re-
ported by Joyner (1982), Spach and Kootsey (1983), Rudy

Using a two-dimensional (2-D), bidomain (intra- and
extracellular spaces) model of cardiac muscle, Kootsey and
Wu (1991) showed that an anisotropic action potential could
be generated if the extracellular space had resistive elements
along the depth of extracellular space as well as along the
membrane surface. When they reduced the resistivity of the
extracellular space to zero, the anisotropy in the wave form
of AP was eliminated. With a 2-D bidomain model repre-
senting a cross section of a block of cardiac muscle in bath,
Pollard et al. (1992) explored the effects of anisotropies in
tissue resistivities. Similar to the work by Kootsey and Wu,
the results of Pollard et al. also suggest that the influence of
the extracellular volume conductor might be one factor
causing the anisotropies in propagation observed by Spach
et al. (1981). However, the size of the spatial discreteness in
the simulation by Pollard et al. was too big, 32 ,um for both
along and transverse to the fibers. As discussed later in this
paragraph, this size would likely introduce digitization er-
rors in the wave form of the AP, especially for the trans-
verse direction, which had high equivalent intracellular re-

sistivity for the bidomain model they used. The same
discretization problem also occurred in the simulation of a
block of cardiac tissue in a bathing solution made by Hen-
riquez and Papazoglou (1993). Using the Ebihara-Johnson
(Ebihara and Johnson, 1980) membrane, they demonstrated
that anisotropic phase plots of APs could be generated in a

bidomain block with unequal anisotropic ratios of resistivi-
ties in contact with a volume conductor. However, they did
not show any of the other anisotropies observed in the
experiments of Spach et al. (1979, 1981, 1987). Further-
more, the spatial discretizations they used along the fibers,
Ax, at right angles to the fibers, Ay, and into the tissue, Az,
were 40 ,um, 25 ,um, and 40 ,im, respectively. Spach and
Kootsey (1983) simulated discontinuous propagation by
changing the value of spatial discretization Ax in the nu-
merical solution of the classical l-D cable equation. Using
a cable model with the Na+ current described by Ebihara-
Johnson equations, they computed 0 and the wave form of
the AP for different values of axial resistivity in a simulated
elongated cell 10 ,um in diameter. At low values of Ax (5
and 10 ,um), 0 and the shape of the AP were indistinguish-
able from that for a continuous cable. When Ax was in-
creased to 40 ,um, 0 deviated less than 7.8% from that for a

continuous cable. However, rTfoot increased 23% and Vmax
increased 34%, showing that discretization could cause
large changes in the shape of the AP, whereas 0 was

changed only slightly. The overall effects of discretization
on the wave form of the AP were inconsistent with the
observed anisotropies: Tfoot increased rather than decreased
as 0 decreased. Spach et al. (1987) simulated propagation of
the AP along a I-D fiber for different specific membrane
capacitance and compared the simulation results to their
experimental observations. They showed that a difference in
specific membrane capacitance in the two directions of
propagation (combined with directional differences in ef-
fective axial resistivity) could account for all of the charac-

and Quan (1987), and Leon and Roberge (1991).
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provide no explanation of how such a difference in mem-
brane capacitance could occur.

In the present study we develop a quasi- 1-D cable theory
that adds two components of current flow to the classical
1-D cable theory: 1) a first approximation to 2-D current
flow in extracellular space and 2) the exchange of excitatory
current between superficial and deeper fibers. Together with
the known anisotropy in resistivities of cardiac muscle,
simulations with this quasi- 1-D model produce anisotropies
in propagation similar to those observed by Spach et al.
(1981). Furthermore, we show that the effects of current
exchange between fibers on the propagation of activation
are equivalent to those generated by directional differences
in the effective membrane capacitance as hypothesized by
Spach et al. (1987), thereby providing a rational basis for
their hypothesis.
The second part of this study presents a simulation model

for the same phenomena of anisotropic propagation. For the
purpose of verifying the quasi-l-D theory, the simulation
model was developed separately without using the quasi-
1-D equations, although both the quasi-l-D theory and the
simulation are targeted to the same anisotropic propagation
and the same tissue structure. Their differences are in the
level of abstraction and in the technical approaches. We did
not use any curve fit in this study. Instead, both the theory
and the simulation are based on the experimental observa-
tions and on the experimentally measured parameters.

DERIVATION OF A QUASI-1-D CABLE THEORY
FOR PROPAGATION IN CARDIAC MUSCLE

Although cardiac muscle is three dimensional, the wave
fronts of longitudinal and transverse anisotropic propaga-
tions approach plane wave fronts when sufficiently far away
from the stimulation site, as shown in the experiments of
Spach et al. (1981). Propagation therefore becomes essen-
tially 1-D in each direction. As a consequence, we can study
anisotropic propagation in the two directions separately,
along and at right angles to the fibers.

a a2Vm(X, t) aVm(X, t)
2(Rs + y,Re)O2 at2 = Cm + Ion(X, t). (1)2(Ri + yRe)W ~~at
Equation 1 is the classical I-D cable equation when steady
propagation is established. As shown by Hodgkin and Katz
(1949), the waveform of the AP is only affected by local
membrane properties, i.e., the capacitance and ionic current
of membrane, but not by the tissue resistivity. The right-
hand side of Eq. 1 is solely dependent on the local mem-
brane properties and is independent of spatial properties. If
local membrane properties do not change, (Ri + yRe)02 is
constant. Any change in axial resistivity only results in a
change in 0; the waveform of AP remains unchanged.
A fundamental assumption of classical 1-D cable theory

is that the action currents associated with the propagation of
excitation flow in one direction only, namely along the long

cell, in which one dimension exceeds all others, and pro-
vided that the length constant, A, during excitation does not
approach any of the smaller dimensions, such as the diam-
eter of the cylinder or the width of the ribbon, this assump-
tion is reasonable for intracellular current flow. For current
flow in extracellular space this is rarely a reasonable as-
sumption. An exception, mentioned previously, is that of a
single, long, isolated muscle or nerve in oil, where the
conductive pathway in extracellular space is reduced to a
thin surface film (Hodgkin and Rushton, 1946). In most
other experimental situations, the potential variations in
extracellular space are assumed to be negligibly small, as
indeed they are in many circumstances, e.g., single isolated
skeletal muscle and nerve fibers.

However, in the case of a multicellular tissue such as
cardiac muscle, this often is not the case. The action cur-
rents of fibers in the deeper regions of the tissue produce
significant changes in extracellular potential and hence in
transmembrane potential. Furthermore, current flow occurs
between surface and deeper fibers through intercellular nex-
uses. Perhaps these factors are responsible, at least in part,
for the observed anisotropies in propagation. With this in
mind, we derive a quasi-l-D cable theory that includes a
simplified description of current flow in extracellular space
and current coupling between the surface and deeper fibers.
We will assume, as a first approximation, that a cardiac

muscle fiber is a continuous 1-D structure composed of a
conductive, capacitive membrane separating purely conduc-
tive intracellular and extracellular spaces. This fiber is at the
surface of a piece of muscle immersed in a bathing solution,
and is coupled, intracellularly, to adjacent fibers beneath via
resistive connections. That is to say, there is an intercellular
resistivity, R', connecting the intracellular spaces of adja-
cent fibers in the z direction, perpendicular to the surface
plane of the muscle. The intracellular current consists of two
components: one travels along the long axis of the fiber, ii(x,
t), as in classical 1-D theory; the other intracellular compo-
nent of current, ii(x, t), exchange current, flows into deeper
fibers in a direction perpendicular to the surface of the
muscle through resistive intercellular connections. In the
quasi-l-D equations that we are going to present, the intra-
cellular exchange current is only defined on the fiber, al-
though its direction is perpendicular to the fiber. Therefore,
it acts like a current source/sink to the intracellular domain
of the 1-D fiber. When we consider propagation along the
long axis of the fibers, ii(x, t) will represent current flowing
intracellularly in that direction; when we consider propaga-
tion in a direction at right angles to the long axis of the
fibers, ii(x, t) will represent the current flowing intracellu-
larly in that direction, i.e., at right angles to the fibers.

In general, extracellular space behaves as a volume con-
ductor and as such is usually described by volume conduc-
tor theory. However, in the present circumstance it is useful
to approximate the effect of current flow in such a conduc-
tor by assuming that current can flow in two directions, 1)
longitudinally along the membrane surface as in 1-D theory
(je(x, t)), and 2) away from the membrane surface into
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extracellular space. Similar to the intracellular domain, the
second component of the extracellular current flowing away
from the membrane surface is also only defined on the
surface of the membrane along the fiber. This current is the
source/sink of the extracellular axial current along the fiber.
The extracellular sink/source current can be different from
the intracellular exchange (source/sink) current. Therefore,
it can be further break down to two components: 1) an
exchange current, i'(x, t), representing the returning current
associated with the intracellular exchange current, i'(x, t),
and 2) current flowing into the depths of the tissue, id(x, t).
Because ii(x, t) and i'(x, t) form a current loop, id(x, t) is the
net current flowing from the fiber to the remote ground in
the bath. Because all currents are defined along the fiber,
although they have different directions, we ignored the
complexity of the space distribution of the extracellular
depth current. The ratio of extracellular surface potential
(Ve) to the extracellular depth current id(x, t) is represented
by the depth resistance Rd. Thus extracellular space has an
axial (fiber surface) resistivity, Re, a depth resistivity, Rd,
and an interstitial resistivity, R', for ie(x, t), id(x, t), and, i'(x,
t), respectively. Although the directions of i,(x, t), iz(x, t),
and id(x, t) are perpendicular to the fiber, they are all defined
on the fiber, i.e., in quasi-one-dimension. In summary, the
quasi- 1 -D theory describes a 1-D fiber with current sinks/
sources at both intracellular and extracellular spaces. The
current sinks/sources represent the interactions of the sur-
face fiber with the fibers beneath it in the tissue and with the
bath above it.
The addition of an extracellular depth current, id(X, t),

provides a first approximation to a volume conductor and,
as will be shown later, gives rise to biphasic extracellular
potentials during propagation similar to those recorded ex-
perimentally. Because this study is concerned primarily
with anisotropic propagation in isolated preparations of
cardiac muscle of relatively simple structure and not with
the actual spatial distribution of extracellular current, this
simplified representation of extracellular resistivities is rea-
sonable and greatly simplifies the numerical computation.

These current pathways are illustrated diagrammatically
in Fig. 1.

Relevant equations

Equations 2-6 are the relevant equations relating ri, re, rd,
cm', and i0on(x, t) to their corresponding specific counterparts,
Ri, Re, Rd, Cm, and ion(x, t)

The intracellular resistance per unit length of the fiber, ri,
is given by

Ri
ri = 2 ' (2)

where R1 is the resistivity of intracellular space, a is the
radius of the fiber, and -n has its usual meaning. Similarly,
the extracellular resistance per unit length of the fiber, re, is
given by

YRe
re-= ira2 (3)

where Re is the resistivity of bulk extracellular space, and y
is the ratio of the equivalent cross-sectional areas of intra-
cellular and extracellular space.
The unit resistance to extracellular current flow into the

depths of the tissue, perpendicular to the surface of the fiber,
is defined in terms of the fiber length, i.e., as a depth
resistance per unit length of the fiber, rd, given by

Rd
rd 2ra'

where Rd is the depth resistance per unit area of membrane.
The membrane capacitance per unit length of the fiber,

cm. is given by

Cm = 2TaCm. (5)

where Cm is the specific membrane capacitance.
The ionic current per unit length of the fiber, i,,n(x, t), is

given by

iion(x, t) = 2iraIion(x, t), (6)
where Ii.,(x, t) is the ionic current per unit area of
membrane.
The transmembrane potential, V1.(x, t), inside with re-

spect to a point immediately outside the fiber, is given by

Vm(X, t) = V(x, t) - Ve(x, t),

_ _ , ,., _ , ..~~~~~..... ... .. ..... ..

t~~~~~~~~~~~~~~~~~~~~.r1 o~~~~~~~~. .......... . ............ .. ....... ...........: ::::.
,... .. .. .........:h., ........... ......... ..... ... ... ..... ...~~~~~~~~~~~~~~~~~~ tr.... ........ :nr........

/... ........ , ~ ~~~..,,
...... .. .. ........ ... ........... .., ,, ... ._.

.. ..:.:::::::.::::.:.::::::.:.:::.. :.. ....................... .. ... ............
....... .. .. ,......... ........... .. .......

... ...... ...: ... ...........

(7)

Vi(x, t) is the intracellular potential and Ve(x, t) is the
extracellular potential, both with respect to a distant point

..... outside the fiber at zero potential.
The velocity of propagation of an AP along the axis x, O,

is given by....b

dx
x dt'

......... .. .......
... ................

........... Z
Z

e I

FIGURE 1 The quasi 1-D theory describes the propagation of activation
along the x direction on the surface of a tissue block in a bath. A surface
fiber has connections with adjacent fibers. z is the direction perpendicular
to the surface plane of the tissue.

(8)

and perpendicular to the muscle surface, along axis z, Hz, by

dz
dt (9)
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where t is time. Oz is only defined at the surface of the
muscle fiber.

The sum of intracellular and extracellular exchange cur-
rents between fibers is zero:

iz(x, t) + iz(x, t) = 0. (15)

Derivation of the quasi-I-D cable equations

For a thin sheet of parallel-aligned cardiac muscle fibers,
propagation of a uniform plane wave front of excitation
along or at right angles to the long axis of the fibers can be
completely described by classical 1-D cable theory: all
excitatory current can be assumed to be traveling intracel-
lularly in one direction only, namely the direction of prop-
agation, x, if the resistance of the extracellular space (bath)
is low, so the potential changes in extracellular space caused
by current flow there are negligibly small and extracellular
space can be assumed to be isopotential. For a thick sheet of
similarly aligned fibers, however, there are additional cur-
rents into the thickness of the sheet and into the extracellular
space, namely in the z direction, and these currents cause
significant potential differences. The currents include an
intracellular exchange (intercellular) current between the
surface and the deeper fibers, i'(x, t), together with its
corresponding extracellular component (interstitial) current,
i'(x, t), as well as an extracellular depth current, jd(X, t),
leaving the fiber in the z direction, representing current
spread through extracellular space. As we mentioned ear-
lier, the currents in the z direction are only defined at the
surface fibers. They act as the current source/sink to the
surface fibers.
The axial voltage gradients and currents, including the

extracellular depth current, obey Ohm's law, as shown in
Eqs. 10-12:

ayV(x, t) -i
, tri

ave(x, t)
ax = ie(x, t)r-

Ve(x, t)
id(x, t) =

rd

where i1(x, t) and ie(x, t) are the intracellular and extr
lular axial currents, respectively.
The change in intracellular axial current equals the

of the transmembrane current and i':

ai(x, t) im(x, t) - i (x, t).

(10)

Equation 16 relates intercellular exchange current per
unit fiber length, i'(x, t), to intercellular exchange current
per unit area in the z direction, I:(x, t):

iz(x, t) = 2aIz(x, t). (16)

Differentiating Eq. 7 yields

aVm(x, t) aVi(x, t) aVe(x, t)
ax ax ax (17)

Substituting Eqs. 10 and 11 into Eq. 17 yields

ax =-r ii(x, t) + reie(x, t).
(18)

Differentiating Eq. 18 again and substituting Eqs. 13 and
14 into it yields

a2Vm(x, t)
ax,- (19)

(ri + re)im(x, t) + r1ii(x, t) - reie(x, t) - reid(x, t).

Using Eq. 15, Eq. 19 can be rewritten as

a2Vm(X, t)
-(0

ax2 = (ri + re)(im(x, t) + i z(x, t)) - reid(x, t). (20)

The transmembrane current, im' is the sum of membrane
capacitive current and membrane ionic currents i10n, i.e.,

avm(xl t)
im(x, t) = Cm- at + iion(X, t). (21)

(1 1) Putting Eqs. 12, 20, and 21 together yields

(12)

1 a2Vm(x, t)
ri + re aX2 (22)

= cavm(xm t) re t (x t).- m at + iion(X, t) + izi(X, t) -rd(r + re
Ve(x )*acel-

sum

The change in extracellular axial current equals the sum
of the transmembrane current im(x, t), the iz(x, t), and the
extracellular depth current id(x, t):

When steady propagation of an AP is established along
the fiber, the velocity of propagation along the fiber axis, Ox,

(13) is constant. Combining with Eqs. 2-5 and 16, the partial
differential equation (PDE) 22 can be rewritten as an ordi-
nary differential equation (ODE) 23:

a d2Vm(x, t)
2(R, + yRe)0 dt2

= Cm dV + Iion(x, t)dt

1 YRe
+ I (x, t) Rd(Rj + Re)Ve(x, t). (23)aie(x, t)

ax (14)
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The intercellular exchange current per unit surface area,
Ii(x, t), is caused by the voltage gradient in the intracellular
space along direction z (perpendicular to the fiber into the
depth of the muscle) and the intercellular resistivity R'.
During steady propagation on the surface of the muscle, the
voltage gradient can be described as

1 dV (x, t)
Oz dt

Again, both Rz and Oz are defined at the surface of the fiber.
They represent the properties of the current source/sink to
the 1-D fiber. Therefore, Eq. 24 is obtained from Eq. 7.
Here, Oz is a constant for steady propagation on the surface
of the muscle.

1 dV1(x, t)
iz(x, t) = R~O d

I /dVm(x, t) dVe(x, t)\

RzOz\ dt dt /

Differentiating Eq. 11 and combining the result with Eq.
14 yields

a2Ve(x, t)
ax2

a ie (x, t)
= - aX re

= (id(X, t) - im(X, t) + ie(x, t))re.
(29)

Rearranging Eq. 29 yields

im(X, t) = id(X, t) + iz(x, t) -- a2v (30)

Substituting Eqs. 12, 15, and 30 into Eq. 20, and then
moving Ve(x, t) to the left of the equation yields

ri a2vm(X, t)
I + r, a2V,(X, t)

Ve(X, t) a2 +11+2rd a-re! x (31)

(24) Because ri is not zero in the tissue, Eq. 31 can be
(24) rewritten as Eq. 32:

Substituting Eq. 24 into Eq. 23 yields

a d2Vm(x, t) ( 1 dVm(x, t)
2(Ri + YRe)Ox2 dt2 -Cm+ 1TRzOJ dt

(25)

1 1atvm(x, t) (1 1a2Ve(X, t)
Ve(X,t) a2 ± aXrd ri a ri reax

(32)

Putting Eqs. 2-4 and 8 into Eq. 32 and rearranging yields

+yRe 1 dVe(x, t)
+ I~(, t -Rd(Ri + yRe) Vex t TRzO1 dt

2O2 /1 1
- Ve(X t) -IR + YaRd \R, YReI

a2Ve(x, t) _ 1 a2Vm(x, t)
at2 Ri at2

Here we define an apparent membrane capacitance Capp,
given by

Capp = Cm + (26)

and an apparent membrane ionic current Iapp, given by

Iapp(Xg t) = Iion(x t)- yRe Ve(x, t)
Rd(RI + 'YRe) e(27)

1 dVe(x, t)
+ iRjO1 dt

Then Eq. 25 can be rewritten to give

a d2Vm(X t')
=

dVm(x, t)
IPx,t. 28

2(R. + yR,)O,, dt Capp dt + Iapp(x, t). (28)

Equation 28 is similar to the classical -D cable equation,
except that both the membrane capacitance and transmem-
brane ionic current are replaced by the apparent membrane
capacitance and the apparent membrane ionic current. In the
rest of the paper, the difference between Capp and Cm,
l/rRz<Oz, will be referred to as the virtual membrane capac-

itance. Furthermore, the difference between Iapp(x, t) and
iion,

yRe 1 dVe(x, t)
~V(x t) +Re(Ri + yR()e 7rRzO dt 9

will be referred as the virtual membrane ionic current.

Equation 33 does not contain i'(x, t) or i'(x, t). Therefore,
i'(x, t) and i'(x, t) are not involved in the extracellular
potential, but form a closed local current loop perpendicular
to the fiber axis. Equations 32 and 33 show the relationship
among Ve(x, t), a2Vm(x, t)/at2, and a2Ve(x, t)Iat2. Depending
on the tissue resistivity, the waveform of the extracellular
potential may approach Vm(x, t) or a2Vm(x, t)/at2, as shown
by the general theory for a 1-D fiber in a volume conductor
(Plonsey, 1974).

Differentiating Eq. 10 and then combining with Eq. 13
yields

a2vi(x, t)
ax2

-= riim(x, t) + rjijZ(x, t). (34)

Differentiating Eq. 7 twice and substituting the resulting
equation with Eqs. 12, 15, 29, and 34 yields Eqs. 35 and 36:

a02vm(X, t) I +re a2¾Vi(X, t) re

aX2 aXI

a (x, t)- re a aVx, t) re

ax2 ri ax2 + rd e

(35)

(36)

Equation 35 shows the relationship between Vm(x, t) and
Vi(x, t). When the magnitude of Ve(x, t) becomes significant,
Vi(x, t) is no longer linearly related to Vm(x, t). When Rd is

very large, the effects of the spatial spread of current in
extracellular space are minimized so that Vi(x, t) becomes
linearly related to Vm(x, t). Equation 36 shows the corre-

sponding relationship between Vi(x, t) and Ve(x, t). i,(x, t)

(33)
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and i'(x, t) do not affect the relative relationships among
Vi(x, t), Vm(x, t), and Ve(x, t).

SIMULATION

Morphological considerations

The shape of most ventricular working myocytes of mam-
malian heart approximates a long cylinder with a length of
about 30-130 ,um and a width of about 8-20 ,um (Sommer
and Scherer, 1985). The nexuses, located at or close to the
ends of these long cylindrical cells, form side-to-side elec-
trical connections between adjacent cells. Cardiac cells are
linked to each other both side to side and end to end to form
bundles. Johnson and Sommer (1967) examined the struc-
ture of a small bundle of rabbit heart muscle (-60 Am
O.D.) containing about 13 fibers (in any given cross section)
with light and electron microscopy. They evaluated the
extent and distribution of regions of close cell apposition in
a - 140-pum length of the strand with 1-gm-thick serial
cross sections and demonstrated the distribution of possible
regions of resistive coupling between fibers. They found
that the lateral connections between fibers were very fre-
quent, in that all fibers within the strand were connected
laterally with one another within the 140-,um length exam-
ined. They concluded that the frequency of connections was
such that were a single fiber to be excited at any point in the
strand, excitation would spread to all fibers in the strand and
a uniform wave front would be established within - 100 ,um
from the point of excitation. Hoyt et al. (1989) showed that
individual myocytes were connected at intercalated disks to
an average of 9.1 other myocytes in canine left ventricle.
The elongated shape of myocyte generates the anisotropic

resistivity in the intracellular space. Let us assume that the
intracellular resistivity is mostly concentrated at the nexus
by assigning rn as the resistance of the nexus between two
neighboring myocytes and k as the geometrical ratio of the
length to width of the myocytes. For a square array of
myocytes arranged side by side in parallel, with the length
of the side equal to the length of a myocyte, there is one
myocyte along the length of myocytes, and k myocytes in
the transverse direction (TD). In the longitudinal direction
(LD) in the square, k myocytes are in parallel. Thus the LD
resistance is rik. Along the TD in the square, there are k
myocytes in series. Thus the TD resistance is krm. Therefore,
the anisotropic ratio of resistance ofTD versus LD is k2, and
so transverse resistivity is much higher than longitudinal
resistivity.
The anisotropic ratio of extracellular resistivity, however,

is much lower than that for intracellular space (k2). Except
where cells form intercalated disks, the cells of working
cardiac muscle of mammals are widely spaced, separated by
1 ,um or more of contiguous extracellular space (Sommer
and Johnson, 1979; Sommer and Scherer, 1985). As a
consequence, current flow in extracellular space is much
less restricted than that in intracellular space.

The simulation model and its parameters

Both the intracellular and the extracellular current sources/
sinks are new to the theory. At this moment, there are no
published experimental measurements for O and Rd. (The
experiment must be designed with quasi-l-D equations in
mind.) Therefore, we could not translate the quasi-l-D
equations directly into a simulation model without introduc-
ing arbitrary parameters. To be as faithful to the cardiac
muscle as possible, we used only the experimentally mea-
sured parameters in our simulation models. Without the
measured Rd and O, we could not abstract the bath and the
muscle fibers beneath the surface. Therefore we described
them in detail in the model. The simulation model presented
here is a vertical section of the cardiac muscle in bath.
Although the simulation is not a direct translation of the
quasi-l-D equations, both are representations of the same
tissue in bath. The difference is in the degree of abstraction.
They are two different and complementary approaches to
the same problem. Because both the quasi-l-D theory and
the model used similar structures, but the development of
the equations and simulations were separate, the equations
of the quasi-l-D theory and the results of the simulations
could verify and complement each other. The O and Rd can
be used in the future after they are measured.
The simulation model was based on the equivalent struc-

ture of the circuit diagram shown in Fig. 2. Because of the
long spatial interval between the recording and the stimu-
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FIGURE 2 A simplified representation of the model of a vertical cross

section of a block of muscle in a bath. ri, re, and rb, intracellular, extra-

cellular, and bath longitudinal resistors. r', r', and r', intracellular, extra-

cellular, and bath transverse resistors. cm, membrane capacitance. ijon,
membrane ionic current. gNa, gleak, ENa, and Eleak are the sodium and leak
conductances, and the sodium and leak equilibrium potentials, respectively.
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lation sites, the wave front of activation in the experiment
by Spach et al. (1981) was relatively flat, with very little
lateral current. Therefore, the plane wave front propagation
in a 3-D block can be simplified to the propagation in a 2-D
vertical cross section with its surface parallel to the direc-
tion of propagation.
A vertical cross section of a block of cardiac muscle in

bath is represented by a model that consists of 40 intercon-
nected parallel cell fibers and 100 rows of the bath elements.
Each cell fiber has a 10-,Am diameter and contains 200 to
300 10-,um-long elements. The fibers are arranged in a
side-to-side fashion from the surface to the depth of the
tissue, giving a tissue depth of 0.4 mm and a length of 2-3
mm. The bath elements are rectangular in shape, with the
same length as a cell element and the same width as the cell
diameter. Each row of the bath contains the same number of
elements as each tissue fiber. The first and last rows of the
bath elements are in contact with the top fiber in the muscle
and with the ground, respectively.

Along the muscle fibers, intracellular and extracellular
spaces are represented by series of interconnected resistors,
ri and re. There are also lateral connections between fibers,
represented by intracellular transverse resistors, r', connect-
ing each neighboring pairs of intracellular nodes from two
adjacent fibers. In addition, extracellular transverse resis-
tors, rz, connect each neighboring pair of extracellular
nodes at right angles to the fiber. The bath elements are
connected longitudinally and transversely by rb and r'.
Leakage and Na+ current paths across the membrane link
intracellular and extracellular spaces. Details of the mem-
brane element represented by the box are shown in the insert
in Fig. 2: gNa and gleak, and ENa and EK are the sodium and
leak conductances, and the sodium and potassium equilibrium
potentials, respectively. cm is the membrane capacitance.
The values of most of the passive parameters, as well as

the kinetics of the Na+ current used, originated from the
experiments on embryonic chick heart cells grown in tissue
culture. The Ebihara-Johnson kinetics (Ebihara and John-
son, 1980) was used for the transmembrane Na+ current.
The Ebihara-Johnson description of the Na+ current in
cardiac muscle is still the only published experimental mea-
surement of cardiac Na+ current with a normal extracellular
Na+ concentration at normal temperature. The specific
membrane capacitance Cm was 1.3 [LF/cm2, as measured
experimentally on spherical clusters of embryonic chick
heart cell by Mathias et al. (1981). The maximum mem-
brane Na+ conductivity of 23 mS/cm2 was taken from
Ebihara and Johnson (1980) for spherical clusters of chick
heart cells. The membrane leakage conductivity, gleak, was
0.05 mS/cm2, being the specific resting membrane conduc-
tance of synthetic strands of chick cardiac muscle, as mea-
sured by Lieberman et al. (1975). The Na+ equilibrium
potential ENa was 40 mV and the K+ equilibrium potential
EK was -75 mV.

Both specific intracellular and extracellular axial resis-
tivities were 180 fl cm, as measured in a synthetic strand of

gave a 0 of 0.46 m/s, similar to the 0.5 m/s observed
experimentally for longitudinal propagation in a papillary
muscle of the ventricle of dog by Spach et al. (1981).
Although the resistivity of interstitial space was -51 fl cm,
its cross-sectional area was smaller compared to that of
intracellular space in the ratio of 1:3; therefore, the effec-
tive longitudinal resistance of extracellular space was 153
fl cm, comparable to that of intracellular space. These
above default values were used unless a particular simula-
tion was designed to evaluate the effects of altering one of
them. In that case, the parameter being varied in the simu-
lation was clearly stated in the text.

METHODS

The simulation model was written in C language. The
Crank-Nicolson partial differential equation solver was used
with a time step At of 0.5 ,us to solve the propagation
equations in each fiber. Each of the simulation runs required
-2 h of CPU time on a SUN Sparc 10.

Ri was changed from 180 to 18,000 fl cm (default = 180
fl cm) in 10 steps, covering the range of resistivity from LP
to TP. Because Rj has a major effect on 0, the total number
of elements and Ax had to be changed appropriately to
maintain the accuracy of the computation. For higher Ri, Ax
was reduced in three steps from 10 ,tm to 2.5 ,tm. A
stimulus, 0.5 ms in duration and 0.02 ,uA in amplitude, was

applied to the first intracellular elements of each fiber at the
starting time.

All data in the figures were obtained from the middle
point of the surface fiber to minimize the boundary and
stimulus artifacts. The evaluation of these artifacts, which
are negligible for the results sampled at the middle of the
fiber, is shown in the Results.

Simulation results

As can be seen, the behavior of the simulated intracellular
potential of the model closely resembles the experimental
observations of Spach (1983). The top panels of Fig. 3
(a-d) show the simulation results corresponding to the
experimental findings of Spach et al. (1981), shown in the
bottom panels of Fig. 3 (e-h).

Fig. 4 shows how 0, the peak amplitudes (Vpeak and
VP"ak), the maximum rates of depolarization (VimX and
V 'X) and the time constants of the foot of the intracellular
and transmembrane potentials (Ti and Tm) vary with the
intracellular resistivity (Ri). In general, high Ri (TP) is
associated with low values of 0 (Fig. 4 a), Ti, and wTm (Fig.
4 d), as well as small extracellular APs (cf. Ve in Fig. 3 c),
together with high values of Vpeak, Vpeak (Fig. 4 b) and
vimax, vrmax (Fig. 4 c). On the other hand, low Ri (LP) is
associated with high values of 0 (Fig. 4 a), Ti, Tm (Fig. 4 d),
and Ve (cf. Fig. 3 c), but with low values of Vpeak Vpeak
(Fig. 4 b) and Vr,ax, Vmax (Fig. 4 c). Fig. 5 shows how the

chick cardiac muscle by Lieberman et al. (1975). This value
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depth fibers, o;j', and the peak-to-peak amplitude of extra-
cellular potential change with depth in the tissue. As shown
in Fig. 5 a, surface fibers activated earlier than the fibers in
the depth of the tissue. Near the surface, O is higher for
LP than for TP, and decreases to zero as the depth is
increased (in Fig. 5 b). Fig. 5 c shows that the peak to peak
of extracellular potential increases with the depth in muscle.
A comparison of the experimental results and the simulated
results is shown in Table 1.

Simulations designed to verify the simulation model
showed that the stimulation and boundary effects are limited
mostly to the first and last 100 elements of the 300-element
fiber, the middle section being relatively free of them.

Furthermore, a change in Ax from 10 ,um to 30 gm resulted
in a maximum change of 1.6%, and a change in At of the
Crank-Nicolson PDE solver from 0.5 to 0.1 ,us resulted in a

maximum change of -0.8% in the simulation results of Ti,
Tm, VPP, 1max, and V,ax, showing that the choices of Ax and
At did not introduce significant error.

DISCUSSION

The work in this paper typifies one of the most difficult
problems in the theory and simulation of biological systems:
achieving the optimum level of abstraction. Much more is
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known about the details of the geometry of cardiac muscle
than is included in the model in this paper. If too many of
these details are included, both the theory development and
the computation for the simulation would become difficult
or impossible. If too few details of tissue geometry are

included, the calculated results do not account for the ex-

perimental observations.
The classical 1-D cable has been used for many studies of

propagation in nerve and muscle cells, but this model has
not been able to account for the observations of anisotropic
propagation in cardiac muscle. The challenge is to find the
minimum set of additions to this basic propagation model
that will expand its behavior to match the observations.
Previous attempts at adding details (such as discreteness) to
the 1-D cable have not succeeded. In this paper we present
a modest set of geometrical additions that do account for the
experimental results.

The quasi-I-D theory as an extension of the
classical 1-D cable theory

Compared to the classical 1-D cable (Eq. 1), the quasi-l-D
cable (Eq. 22) has a coupling current, i'(x, t), and an

additional term on the right side of the equations that relates
to the extracellular potential and resistances:

re

rd(ri + re) e

The quasi- 1-D cable returns to the classical cable when the
coupling current, i'(x, t), is zero and Ve is zero, or Rd is very

high, or Ri/yRe is very high. This corresponds to an isolated
fiber with extracellular space at isopotential (Ve(x, t) is zero)
and in oil (Rd is very large). In the case of an isolated fiber,
when Rd is very small, both the extracellular potential Ve(x,
t) and its second-order derivative e2V0(x, t)/at2 will be
negligibly small. The &2Ve(X, t)/3? term in Eq. 33 is negli-
gible. Equation 33 can be simplified to Eq. 37:

aRd a2Vm(X, t)

Ve(X, t) = 2aRd at2

In the case of isolated fiber, 1:(x, t) is zero. Importing Eq.
37 into Eq. 23 yields the classical 1-D cable equation (Eq.
1). The quasi-l-D cable equation reverts to the classical
cable equation when it is isolated and in any of following

TABLE I Characteristics of simulated and experimentally recorded potentials

Velocity Peak to peak of Amplitude of Maximum rate of Time constant of
(m/s) Ve (mV) Vi (mV) rise of Vi (Vis) the foot of Vi (,s)

Experimental (dog atrium, Spach et al., 1981)
TP 0.1 2.0 113 191 290
LP 1.0 7.0 111 144 375
TP/LP ratio 0.1 0.286 1.02 1.33 0.773

Simulated (a vertical cross section of a block of muscle in bath, Ri: 9.0 (TP), 0.18 (LP) kfl cm)
TP 0.0535 0.3760 80.91 125.1 376
LP 0.4566 4.0258 77.70 105.1 494
TP/LP ratio 0.117 0.0934 1.041 1.19 0.761

Simulated (1-D fiber with anisotropic membrane capacitance, Spach et al., 1987)
TP (Cm: 0.5 juF/cm2) 101 291 200
LP (Cm: 1.0 ttF/cm2) 92 189 280
TP/LP ratio 1.10 1.54 0.71

a
_0.5

0

E

.2 0.4

C 0.3

i: 0.1
E

.C
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cases: near zero Rd, near infinite Rd, near zero Ve, near zero
Re- and near infinite Ri.

The effects of tissue resistivities

The addition of the intracellular coupling and extracellular
depth currents in effect adds two new terms to the classical
I-D equations-one modifies the apparent membrane ca-
pacitance, and the other appears as an addition to the term
describing the transmembrane ionic current, adding in effect
a virtual membrane capacitance and a virtual membrane
current, respectively. Both depend on tissue resistivities; the
virtual membrane ionic current also depends on the extra-
cellular potential, Ve, whereas the virtual membrane capac-
itance does not. As can be seen from Eq. 32, a higher r1
decreases Ve. So Ve is much smaller in TP compared to LP,
as observed experimentally by Spach et al. (1979). With the
higher anisotropic ratio of intracellular resistivity and lower
anisotropic ratio of extracellular resistivity in cardiac mus-
cle, the ratio of intracellular to extracellular resistivity is
much lower in the longitudinal than in the transverse direc-
tion of the fibers. Because of the larger extracellular cur-
rents, the extracellular resistivity makes a larger contribu-
tion during LP than during TP.

Because cardiac muscle fibers are well connected to each
other electrically, when steady propagation is achieved far
away from the site of stimulation the wave front of propa-
gation in a given direction will have one velocity for all
fibers throughout the depth z of the muscle, with the wave
front profile leading in the surface fibers and progressively
lagging in the direction z for deeper fibers. As a result, the
isochrone of the wave front in the z direction is curved,
more so at the surface than in the depth of the muscle.
There, given sufficient depth, the isochrones are close to
vertical and 07l have low values, whereas for the surface
fibers 071 is higher. Because of the larger contribution of
extracellular resistance for LP than for TP, the curvature of
the wave front near the surface of the muscle is much larger
for LP than for TP. As shown in Fig. 5 b, near the surface
of the muscle 0-7 is higher for LP than for TP. Similar wave
fronts were demonstrated by Henriquez and Plonsey (1990)
and Roth (1991) in their simulations of propagation along a
thick strand of cardiac muscle. The higher 071 for LP
increases the apparent membrane capacity significantly. On
the other hand, for TP, because of the smaller 071, the term
is insignificantly small, so that the Capp approaches the
specific membrane capacity Cm. If extracellular space is
assumed to be at isopotential, as was the case in the simu-
lations of Spach et al. (1987), the virtual membrane ionic
current in Eq. 28 disappears, transforming it essentially to
that of Spach et al. (1987). As pointed out previously, they
could account for the anisotropies in the waveform of the
AP observed experimentally, as well as the anisotropy in the
safety factor for propagation when they assumed (arbitrar-
ily) a larger specific membrane capacitance for LP than for
TP. The current exchange between surface and deeper fi-

bers, as described in the quasi-1-D theory, thereby provides
a rational basis for their hypothesis of directional differ-
ences in membrane capacitance. Spach et al. were unable to
account for the anisotropies in extracellular potentials, be-
cause they used 1-D cable theory with the assumption that
extracellular space was at isopotential.

Although the simulations by Spach et al. (1987) used the
same equations to describe Na+ current as were used here
(Ebihara and Johnson, 1980), the rate of rise of the intra-
cellular potentials that they computed are higher than those
of the present study (see Table 1 and Fig. 3). The reasons for
this are twofold: Spach et al. (1987) assumed that Cm for TP
was smaller (0.5 /.F/cm2) than for LP (1.0 ,uF/cm2), and
second, we used the measured value of 1.3 gF/cm2 rather
than the arbitrary value of 1.0 gF/cm2.
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