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Prion diseases are transmissible, fatal neurodegenerative

diseases that include scrapie and bovine spongiform

encephalopathy (BSE) in animals and Creutzfeldt–Jakob

disease (CJD) in human. The prion protein gene (PRNP) is the

major genetic determinant of susceptibility, however, several

studies now suggest that other genes are also important. Two

recent genome wide association studies in human have

identified four new loci of interest: ZBTB38-RASA2 in UK CJD

cases and MTMR7 and NPAS2 in variant CJD. Complementary

studies in mouse have used complex crosses to identify new

modifiers such as Cpne8 and provided supporting evidence for

previously implicated genes (Rarb and Stmn2). Expression

profiling has identified new candidates, including Hspa13,

which reduces incubation time in a transgenic model.
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Introduction
Prion diseases or transmissible spongiform encephalopa-

thies are fatal neurodegenerative diseases characterised

by long incubation periods, accumulation of abnormal

prion protein (PrPSc), spongiosis, gliosis and neuronal loss

[1]. They include scrapie and bovine spongiform ence-

phalopathy (BSE) in animals and Creutzfeldt–Jakob dis-

ease (CJD) in human. Sporadic CJD typically presents in

late middle-old age as a rapidly progressive multifocal

cortical dementia with additional neurological features

including cerebellar ataxia, pyramidal and extrapyramidal

motor dysfunction, myoclonus and dysfunction of the

visuoperceptual system. Despite increasing ascertain-

ment, these remain rare conditions, with typical inci-

dences in the developed world of 1–2 cases/million/

year. Variant CJD (vCJD), resulting from the human

transmission of BSE mainly through dietary exposure,

has steadily declined in incidence in the UK since 2000,

with a total 176 cases [1,2]. Although the decline in vCJD
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www.sciencedirect.com 
is most welcome, the prevalence of subclinical infection

indicated by anonymous surveys of appendiceal tissue,

remains a significant concern at around 1:2000 in the UK

(http://www.hpa.org.uk/hpr/archives/2012/

news3212.htm#bnrmlprn). Subclinically infected individ-

uals may never convert to clinical cases, however they

pose risks for iatrogenic transmission by blood or blood

product transfusion, by dentistry and surgery.

PrP is central to the disease process with its misfolded

form thought to be the principal component of the

infectious particle. Mutations in the prion protein gene

(PRNP) are causative for inherited prion diseases [3,4]

and a common polymorphism (M129V) has a significant

effect on susceptibility and phenotype [5,6].

In this review we highlight progress since 2010 in deter-

mining genetic susceptibility to prion diseases. The use

of human genome-wide association studies (GWAS) and

complementary mouse studies reinforce the key role of

PRNP and identify new genetic modifiers. We outline the

challenge of verifying the role of putative modifiers and

propose a way forward for gene identification and vali-

dation (Figure 1).

Human genetics
Recent work has focussed on the collection of large

patient cohorts for GWAS, which has necessarily been

an international collaborative endeavour given that

human prion diseases are rare. As a generality from

common diseases, genetic risk factors discovered by

GWAS have been modest in their effects (odds ratios

1–1.2) requiring sample sizes of several thousand to have

the statistical power required for unequivocal detection of

significant variants. Two collaborative groups are working

in prion disease GWAS. The UK MRC Prion Unit in

collaboration with the Universities of Munich, Gottingen

and Perth has conducted a GWAS of sporadic CJD,

variant CJD, iatrogenic CJD, inherited prion disease,

and kuru involving over 2000 samples [7,8��]. A

Europe-wide collaboration led by Dutch and Spanish

investigators published a GWAS of vCJD involving 93

samples [9��]. In these studies, the PRNP locus was

unequivocally and strongly associated with risk of prion

disease, driven by the known coding variation at PRNP
codon 129.

In the European vCJD GWAS two single nucleotide

polymorphisms (SNPs) (rs4921542 and rs7565981)

reached genome-wide significance after pooling discov-

ery and replication populations. Rs4921542

( p = 1.6 � 10�8) is an intronic variant in the myotubularin
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From modifier gene discovery to functional validation. Current strategies for prion disease susceptibility gene discovery include both human and

mouse studies. These include human GWAS case–control studies and complementary QTL and GWAS studies in advanced mouse crosses. GWAS

results can be displayed as a Manhattan plot as shown here with highly significant hits shown for PRNP SNPs. Expression profiling of key tissues for

example comparing short (blue) and long (red) incubation time mice has also revealed new pathways and candidates. Next generation sequencing of

patients can now be used to identify high risk alleles at novel genes to generate an allelic mutation series as shown here for PRNP. Options for

functional validation of candidate genes include both in vitro (scrapie cell assay) and in vivo approaches (mouse models). GWAS – genome-wide

association studies; CJD – Creutzfeldt–Jakob disease; QTL – quantitative trait loci; SNP – single nucleotide polymorphism.
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Figure 2
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PrP mutations and polymorphisms. A schematic representation of full length human PrP is shown with the cleaved signal sequences shown in grey and

the octapeptide repeat region in pink. Disease associated mutations are shown in red and non-synonymous non-pathogenic genetic variants in green.

OPRD – octapeptide repeat deletion; OPRI – octapeptide repeat insertion.
related protein 7 gene (MTMR7), which is specifically

expressed in the central nervous system and dephosphor-

ylates phosphatidylinositol 3-phosphate and inositol 1,3-

bisphosphate. Rs7565981 ( p = 4.2 � 10�8) is in an inter-

genic region upstream of the neuronal PAS (per-ARNT-

sim) domain-containing protein 2 gene (NPAS2), a regu-

latory gene belonging to a family of transcription factors.

In the UK-German sporadic CJD study, no non-PRNP
loci achieved genome-wide signficance. SNPs at the

ZBTB38-RASA2 locus were associated with CJD in the

UK (rs295301, p = 3.13 � 10�8) but these SNPs showed

no replication evidence of association in German sporadic

CJD or in kuru based tests. Overall, it is likely that the

PRNP locus contains the only strong risk factors which act

universally across human prion diseases. Whilst some

genome wide significant loci have been proposed in

vCJD, the low incidence of this condition means that

there is no way at present to generate unequivocal genetic

evidence at these loci. The collective data are most

consistent with the findings in other diseases, of strong

effects being the exception but many risk loci of modest

effects. In prion disease this will require large collabora-

tive GWAS in sCJD to provide definitive statistical evi-

dence of these weak effects.

The PRNP locus and inherited prion disease
Genetic research in human prion disease has not

been restricted to GWAS. In inherited prion disease,
www.sciencedirect.com 
important information has accrued about which variants

are completely penetrant, partially penetrant or simply

benign polymorphisms (Figure 2). Several publications

originate from groups that routinely sequence PRNP
and include the distributions of inherited prion disease

and new mutations from the UK, China, Japan, US, the

Netherlands, and further lessons on how easily inher-

ited prion disease, particularly that caused by trunca-

tion mutation, can be mistaken for Alzheimer’s disease

[10�,11–18]. Sequencing the CEPH Human Diversity

Panel and the Pakistani population showed that small

insertions in the octapeptide repeat region of PRNP are

probably not pathogenic as they are found in the

healthy population, albeit rarely [10�,13,19]. Sequen-

cing of the healthy Korean population showed both the

M232R and V180I variants implying that these may not

be pathogenic mutations [11]. Finally, a study of the

rare four octapeptide repeat mutation showed that

penetrance of the clinical disease is determined by

the genotype at codon 129. When the mutation is

linked to codon 129 methionine and the non-mutant

allele is also 129 methionine, the disease appears to be

penetrant, whereas it is non-penetrant when the non-

mutant allele is 129 valine [20].

Mouse models of prion disease
Human genetic studies provide the most direct link

between susceptibility genes and patients, however,

these are limited in power and inference regarding
Current Opinion in Genetics & Development 2013, 23:345–351
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mechanisms may be complex. Uniquely amongst neuro-

degenerative diseases mice are naturally susceptible to

prion diseases thus providing an ideal model organism for

both gene discovery and hypothesis testing.

Previous mouse quantitative trait loci (QTL) mapping

studies using simple crosses have successfully identified

many loci linked to prion disease incubation time [21–25].

A new report has added to these data using recombinant

inbred lines [26]. Many regions are implicated although

only loci on Mmu11 are replicated between the exper-

imental models. Large regions of this chromosome have

also been implicated in previous studies [21–23]. The

main disadvantage of these studies is the limited resol-

ution resulting in linkage to very large regions that have

proved intractable for candidate gene identification. The

availability of advanced crosses such as heterogeneous

stocks (HS) of mice and the development of the new

Collaborative Cross provide �10–20 higher resolution

and are already providing realistic prospects for identify-

ing individual candidate genes [27–29].

Heterogeneous stock (HS) mice
The Northport HS was successfully used to fine map and

identify candidate genes on Mmu19 (Hectd2) and Mmu15
(Cpne8) [30,31��]. For Mmu15, the region of linkage was

reduced to 3.6Mb from the previous report of 30Mb [24].

Haplotype analysis and genotyping representative SNPs

identified Cpne8 as the most promising candidate. The

role of Cpne8 in prion disease has not been established

but it may be implicated in PrP processing and targeting

as Cpne8 is a member of the copine family that are Ca2+

dependent phospholipid binding proteins thought to be

involved in membrane trafficking [32].

The identification of Cpne8 and Hectd2 highlight the value

of HS mice for linkage mapping but they can also be used

for association studies, although the existence of large

haplotype blocks precludes single gene resolution. This is

illustrated by a study to validate two candidates, RARB
(retinoic acid receptor beta) and STMN2 (Stathmin-like

2), originally identified as part of a vCJD GWAS [7,31��].
Statistical analysis showed a modest association for Stmn2
but a highly significant association for the Rarb locus

[31��]. Although individual loci have been screened using

the HS mice their full potential has not yet been

exploited. The advent of high density SNP arrays, similar

to those available for the human genome, means that

GWAS and copy number variation analysis is now

possible. Combined with the availability of genomic

sequence for the HS parental strains, this should make

candidate gene discovery and validation easier.

mRNA expression
The use of high density microarrays to look at differential

expression of mRNA transcripts during disease pro-

gression has identified hundreds of differentially
Current Opinion in Genetics & Development 2013, 23:345–351 
expressed genes and more importantly highlighted gene

networks associated with the key cellular processes

[33,34]. These studies provide a global view of disease

associated changes but are difficult to interpret and many

of the pathways may be secondary effects rather than key

drivers of the process. We have taken the alternative

approach of looking for differential expression between

inbred lines of mice with different incubation times. We

used uninfected mice and to enrich for relevant genes we

looked for a correlation between expression level and

incubation time across five lines of mice [35]. Five poten-

tial candidates were identified including Hspa13 (Stch), a

member of the Hsp70 family of ATPase heat shock

proteins. To functionally test Hspa13 we generated an

overexpressing transgenic mouse and following infection

with three different prion strains showed highly signifi-

cant reductions in incubation time. The precise function

of Hspa13 is unknown but it has an intra-organellar

localisation and is induced by Ca2+ release suggesting a

role in ER stress and the unfolded protein response

(UPR) [36]. It has also been associated with TRAIL-

induced apoptosis [37].

Links to other neurodegenerative diseases
Prion diseases and other neurodegenerative disorders

share many common features including familial disease

as well as sporadic, aggregation of misfolded protein and

neuronal loss. Indeed, there is now evidence that cell to

cell spread in these diseases occurs through a ‘prion-like’

mechanism of seeded protein polymerisation [38,39].

The similarities between these diseases had led to cau-

sative genes in one disease being tested for an effect in

prion disease. Hyperphosphorylated microtubule-associ-

ated protein Tau forms the neurofibrillary tangles associ-

ated with Alzheimer’s disease and frontotemporal

dementia and a-synuclein (SNCA) is found in the protein

deposits (Lewy bodies) seen in Parkinson’s disease (PD).

Mice deficient in Tau and SNCA have been challenged

with prions and in both cases no difference in incubation

time was seen [40,41]. Mutations in SNCA are associated

with familial PD and in contrast, mice expressing mutant

SNCA (A53T) show a reduction in incubation time [42].

Functional validation
High throughput technologies such as GWAS and expres-

sion profiling suggest many candidate genes but the key

challenge is to translate this to phenotypic relevance

(Table 1). Therefore, the goal is to develop an in vitro
screen for functional validation. This is being done using

neuroblastoma derived cell lines that are highly suscept-

ible to prion infection and are able to sustain chronic

infection. The scrapie cell assay (SCA) allows rapid

bioassay of prions by counting the numbers of individual

infected cells in a culture following serial splits after

exposure to an unknown prion isolate and then comparing

to standard curves and can be combined with RNAi

technology to knockdown gene expression either
www.sciencedirect.com
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Table 1

Genes implicated in prion disease

Gene or locus Source (human/mouse) Comment Reference

PRNP GWAS (H) Seen across all human prion diseases and in

mouse experimental transmissions.

[7,8��,9��]

RARB GWAS (H) vCJD and iCJD [7,31��]

SNP association (M) HS mice

STMN2 GWAS (H) vCJD and kuru [7,31��]

SNP association (M) HS mice

ZBTB38-RASA2 GWAS (H) Sporadic CJD (UK) [8��]

MTMR7 GWAS (H) vCJD [9��]

NPAS2 GWAS (H) vCJD [9��]

HECTD2 QTL (M) vCJD and kuru [30]

SNP association (H) HS mice

Cpne8 QTL (M) HS mice [45�]

Stch Expression profile and

transmission studies (M)

Inbred and transgenic lines [35]

SNP, single nucleotide polymorphism; vCJD, variant Creutzfeldt–Jakob disease; HS, heterogeneous stock; QTL, quantitative trait locus; GWAS,

genome wide association study.
transiently or stably to investigate the effect if any on

prion propagation [35,43]. The assay can be automated

and used either in its full format or using chronically

infected cells to measure curing of infection when target

genes are manipulated. The SCA is prion strain selective

and cannot fully substitute for the disease process in brain

or the peripheral pathogenesis before neuroinvasion in

natural infections and so some important genes will not

report in this system. However, the assay should capture

genes involved in the fundamentals of cellular prion

infection, propagation and clearance thus providing triage

for prioritising candidate genes for future studies.

The gold standard for functional validation is to generate

a mouse model such as a transgenic, or knockout and look

for a perturbation of phenotype such as incubation time.

Generating mouse models can be time consuming and

expensive, however, rapidly expanding public reposi-

tories such as the International Mouse Knockout Con-

sortium (www.knockoutmouse.org) are generating null

alleles for all mouse genes in embryonic stem (ES) cell

lines which should considerably speed up the process.

Alternatives include the use of viral vectors for RNAi

delivery to targeted regions of the brain for which proof of

concept has already been provided with Prnp knockdown

[44].

Conclusions
There is no doubt that genes other than PRNP contribute

to prion disease susceptibility and considerable progress

has been made towards their identification, however, in

human it is becoming clearer that there may be many

common variants but these are of modest effect. It may be

possible to screen larger sets of sporadic CJD, however,

the technology is now available for exome or genome

sequencing to look for rare variants which may have
www.sciencedirect.com 
stronger effects. The mouse genetic data complements

the human and the use of GWAS in HS mice promises to

deliver more candidate genes. The challenge will be to

test these candidates either in vitro or in vivo. Function-

ally validated candidates may then be considered as

potential therapeutic targets.
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