Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

IENCE DIRECT?® DISCRETE
sorenoe @ ormee APPLIED

® - e MATHEMATICS
ELSEVIER Discrete Applied Mathematics 150 (2005) 121—139

www.elsevier.com/locate/dam

On uniformk-partition problems

Paolo Dell'lOlmd&, Pierre Hanséh Stefano Pallotting
Giovanni StorcHl

aDipartimento di Statistica, Probabilita e Statistiche Applicate, Universita di Roma“La Sapienza”,
P.le Aldo Moro 5, 00185 Roma, Italy
PGERAD and Ecole des Hautes Etudes Commerciales, 3000, Chemin de la Cote-Sainte-Catherine Montréal,
Qué., Canada H3T 2A7
CDipartimento di Informatica, Universita di Pisa, Via F. Buonarroti 2, 56127 Pisa, Italy
dDipartimento di Statistica, Probabilita e Statistiche Applicate, Universita di Roma “La Sapienza”,
P.le Aldo Moro 5, 00185 Roma, Italy

Received 3 January 2002; received in revised form 28 October 2004; accepted 15 February 2005
Available online 17 May 2005

This paper is dedicated to the memory of our friend and colleague Stefano Pallottino, disappeared prematurely
on the April 11, 2004

Abstract

We study various uniforr-partition problems which consist in partitioningsets, each of cardi-
nality k, into k sets of cardinalityn such that each of these sets contains exactly one element from
every original set. The problems differ according to the particular measure of “set uniformity” to be
optimized. Most problems are polynomial and corresponding solution algorithms are provided. A few
of them are proved to be NP-hard. Examples of applications to scheduling and routing problems are
also discussed.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Partition; Matrix permutation; Algorithms; Complexity

E-mail addresses:paolo.dellolmo@uniromal.i{P. Dell'Olmo), Pierre.Hansen@gerad.q®. Hansen),
giovanni.storchi@uniromal {G. Storchi).
“ Research partially supported by grants: FCAR of Québec, NSERC of Canada, MIUR-SORSA, INDAM-
GNAMPA, CNR-Agenzia 2000 contract n.CNRCO0AF27-001 of Italy.

0166-218X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.02.013

https://core.ac.uk/display/82505695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:paolo.dellolmo@uniroma1.it
mailto:Pierre.Hansen@gerad.ca
mailto:giovanni.storchi@uniroma1.it

122 P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139
1. Introduction

Let R ={R1, ..., Ry} be a collection ofn sets. Any seR; = {w;1, ..., w;;} contains
exactlyk real values, i.e|R;| = k,i =1, ..., m. Thek-partition problem is to partitiolR
into k sets{C1, ..., Ci} such thaiC; N R;| = 1 for every paiti, j, i.e., every seC;, j =
1,..., k,contains exactly one elementofaRy, i =1, ..., m. As aconsequende€ ;| =m,

j =1, ..., k. We denote by: = mk the global number of elements.

The problem can be more easily described in terms of matrix permutations. That is, let
W = [w;;] be a real-valued matrix witn rows andk columns obtained by considering the
sets{R1, ..., Ry} asitsrows, and Idil (W) be the set of all matrices obtained by permuting
elements in the rows &¥. Any permutationt(W) € I1(W) of values in each row generates
a new matrixW’ = (W) whose columns correspond tdgartition{Cy, ..., Ci}.

In the following, we preseri¢-partition problems as row-permutation problems of matrix
W. More formally, given a matrixV and a permutation of elementg(W) for each rowi,
we say that the columns of matriX’ = n(W) are ak-partition of the rows ofW, or, for
brevity, thatW’ is ak-partition of W.

Various measures can be adopted to evaluatiegfaatition. They consist in both anner
measureamong the elements belonging to the same column ajidbeal measuremong
the inner measures associated to the columns. We adopt four different measures, namely the
minimum themaximumtherange and thesum By combining these four measures at the
inner and at the global levels, and by either maximizing or minimizing the global measure,
32 differentk-partition problems are obtained.

The objective of this paper is to assess the computational complexity of each problem,
providing solution algorithms for polynomial cases and NP-completeness proofs for in-
tractable ones; however, the classification of one problem remains open. For convenience,
we group the problems into classes according to their solution characteristics and compu-
tational complexity. Although the paper is mainly theoretical, we also discuss examples in
which some of the problems have practical applications.

The paper is organized as follows. In Section 2, we introduce the notation, the problem
definition and formalize the different measures (or objective functions). In Section 2, we
show which cases are trivial, while Section 3 addresses all other polynomial cases. The
NP-hard ones are presented in Section 4. In Section 5, we discuss an open problem. Finally,
in Section 6, we propose several applications oktpartition problems and suggest further
research lines.

2. Notation and problem definition

Let ; (W) be a permutation among the elements of iogf matrixW, i =1, ..., m;
by n(W) = [=; (W)] we denote such permutations for mlirows of W. Let W = n(W) be
the permuted matrixwe denote byul’.j theith element of columrC; of W’ obtained by
permutationr; (W). The four differentinner measuresf the k columns{Cy, ..., Ci} of
W’ are defined and noted as follows:

uj:u(Cj)zmaX{wl{j:i:l,...,m} (1)

P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139 123

and

lj :l(Cj):min{wl’»j ci=1,...,m} (2)
are themaximumand theminimumof columnC;, j =1, ..., k, respectively; theangeof
Ci,j=1...kis

8;=8(Cj)=u;—1, 3)

while ¢; denotes theumof (elements ofC;:

m
sza(Cj)=Zw;-j. (4)
i=1
We use the generic forry; to indicate one of the four above-mentioned inner measures
for Cj, i.e. thejth column of W’. The fourglobal measureamong the columns of matrix
W’ are defined and noted as follows:

U=UW)=maxf;:j=1,...,k}, (5)

L=LW)=min{f;:j=1,...,k}, (6)

A=AW)=U—L, (7)
k

T=IWh=3)_fj (8)
j=1

are themaximumtheminimum therangeand thesumof W’, respectively.

If we indicate byF the generic global measure function among the four introduced above,
we have 16 differerit-partition measures. We want either to maximize or to minirkize
we obtain 32 different optimization problems.

To denote one of these problems we will use:

e “maX and “min’ to stress the maximization and the minimization of the objective
function;

e the symbold, u, 6 ando for the inner measure;

e the symbold., U, 4 andX for the global measure.

For example, maximizing the range (7) among the columns, where the inner measure is
the minimum (2), will be denoted byax (I, 4), that is to find an optimal matri®¥* such
thatz = z(W*) = max{4(W’) : W' € II(W)}, whereAd(W’) is defined in (7).

To better clarify the difficulty of each problem, we will give its time complexity together
with the number oexchangeperations needed to perm¥t&in order toprovide W', that
is the number of swappings of pairs of elements.

In Tables land2 we give a global view of the computational complexities, separately for
maxandmin. The question mark iiable 2indicates that complexity of problemin (6, A)
remains open.

Some of the above problems admit a trivial solution. They are nevertheless considered
for completeness.

124 P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139

Table 1

Complexity of the maximization problems

max L U A 2

| n n n nlogk
u n n n n

5 k25 n nlogn n

4 NP-hard n n n
Table 2

Complexity of the minimization problems

min L U A)

| n n n n

u n n n nlogk
0 nlogn nlogk ? nlogk
o n NP-hard NP-hard n

2.1. Easy problems

This class contains all the problems for which the objective function takes a constant value
foranyW’ € II(W) and all partitions (except in one case) are optimal; so, the input matrix
W can be seen as the permuted maWikwithout any swapping of elements. Consider the
problems:

e Pl:min(u,U),
o P2:max(u,U).

For both of them the optimal valueis= wy, =maX{w;; :i=1,...,m, j=1,... k},
i.e., a constant value which can be easily found by inspectior(in tthne; obviouslyW s
optimal.

Similarly, for the problems:

e P3:min(l, L),
o P4d:max(l, L),

the optimal value is = wy,;, = minfw;; :i=1,...,m, j=1,..., k}.
On the other hand, the optimal valaés given byz ="/ ; Zl;:l w;; for the following
problems:

e P5:min(o,2),
e P6:max(o,2);

and this sum is computed in(@) time.

P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139 125
Consider now the problem:
e P7:max(0,U);

since we want to maximize the largest range of the columns, this value is obtained by having
Wimaxr @Ndwy,;, In the same column. This is an easy task once the position of these two
elements iW is known, which takes @) time. To obtain the permuted matrix it suffices
to move one of them to the column containing the other.

Only one special case has to be considered, i.e., when these two elements belong to the
same row; in that case it is easy to prove that the largest range is defined eithgy.bgnd
the smallest element not belonging to the same row, or bywthg and the largest element
not belonging to the same row (more precisely, by the greatest among these two ranges).
Again this takes @) time and the permuted matriX’ is obtained fronWthrough at most
one exchange operation.

2.2. Grouping maximum and/or minimum row elements

The following three problems have as permuted maffixany matrix derived fronw
by grouping the maximum elements of each row in the same column:

e P8:max(o,U),
e P9 max(l,U),
e P10:max(l, A).

In problem P8 we want a column whose sum of elements is as large as possible. Such
a column is, indeed, that one containing the maximum element of each row. Finding these
elements takes @) time, and, with at mosh exchanged\V is transformed intdv’.

Analogously, for problemP9, we want to maximize the largest amongst the column
minima, see (2) and (5):

maxmax{/(C;): j=1,...,k}: W e II(W)}.

Thus, it is sufficient to build a permutation with one column having its minimum as
large as possible, that is a column with the maximum of raw theith element, for all,
regardless of the other columns. The same permuted matrix solves prBt@mhere the
range (7) between the minima of the columns has to be maximized:

max(l; — Iy : joh=1,... . k}=maxlj:j=1 ... k}—minfl, :h=1,... k).

Since mir{l, : h=1, ..., k} = wy,;, IS a constant, problem®10 reduces ta9.
The following three problems are solvable in the same way as the previous three, with
minimum row values instead of the maximum ones:

e Pll:min(o, L),
e P12:min(u, L),
e P13:max(u, A).

126 P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139
Let us analyze now the following problem:
e Pl4:max(o, A);
its objective function value is:
max{o;—oy : j,h=1 ..., k}=max{o; : j=1 ..., k} —min{o, : k=1, ... k}.

Thus, the maximum value of the objective function is obtained by grouping the maximum
row elements in one column and the minimum ones in another. So, prabightan be
solved by selecting, also in(@) time, the extreme values of each row and by grouping
these values in two specific columns with at mostéxchanges.

3. Other polynomial problems

The following polynomial problem are grouped in four different classes.

3.1. Grouping elements belonging to a given interval
Let us consider the following problems:

e P15:min(d, L),
e P16:max (9, A).

In problem P15 we want to minimize the minimum among the column ranges (3), this
is a balanced optimization problems considered by Martello ¢9Jal.

Let us call a real intervdl:,] usablefor matrix W if there exists at least one element in
each row ofW belonging to that interval.

Clearly, if [a, b] is usable, it is possible to select in each row one element belonging to
that interval and to group the selected elements in the same colump, C€aysider the
permuted matri¥’ so obtained; the rangﬁe]» is not greater than the interval widéh=b —a;

50,4 is an upper bound far(W’) = min{é; : j =1, ..., k} and also for the optimal value
zamong all permuted matrices.

A given usable interval of widtk is said to beminimalfor Wif no usable interval with
smaller width exists. Note that the widdhof a minimal interval is the optimal value of the
objective function for problen®15. In fact, the permuted matrix¥” obtained by grouping
the selected elements in the same colyminas exactly as the minimum range. To prove
the above statement it is sufficient to observe that neither colgmar the other ones
can have a range smaller thansince the interval is minimal. For the same reason, we
can conclude thaW’ is optimal. Note that, once the minimal interval is known, only
exchanges are necessary to provide

Let us suppose now that it is possible to construct a finite sequence of usable intervals
having the property that at least one of them is minimal. Such a sequence will be called a
feasible sequence

P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139 127

In the following we prove that it is possible to build a feasible sequence with no more
thann intervals in Qn logn) time. So, the complexity of problem15 is Qi logn).

Let T be the set of values of the components of W, |T| = ¢ <n; since the aim is to
build usable intervals of minimum width, the following observations are easy to prove:

1. only intervals whose extreme values belond taust be considered;

2. between two usable intervdls, b] and[a”, b] such that:’ < a” only the latter must be
considered; similarly, among intervdls, '] and[a, "] with »" < b” only the former
must be considered;

3. ifanintervala, b]is notusable, by denoting witlithe index set of rows without elements
belonging toa, b], the minimum width usable intervéd, 5'] havinga as lower bound
is such that

b’:max{min{wij:wl-j>b,j=1,...,k}:iel},

under the condition that for ea¢he I there exists at least oneg;; > b; otherwise, no
usable intervals with lower boung a exist;

4. if [a, b] is usable, the minimum width usable interjal,] havingb as upper bound is
such that

d:min{max{w,-j:w,-jgb,jzl,...,k}:i:l,...,m};

5. given a usable intervdd, b] such thafa’, b] is not usable for any < a’ <b, the next
lower bound to be considered in a feasible sequence is

a"=minfw;; cwij>a,i=1...,m, j=1...,k}.

By using the above observations it is possible to devise a procedure to build a feasible
sequence. Starting from a suitable valuedpthrough observation 3 the upper bouiid
is found and, through observation 4 the lower bouhds detected such th@a’, b'] is a
usable interval of the sequence, and of minimal width with respéct Tthe next valua to
be used iteratively to build the feasible sequence is obtained as described in observation 5.
In the procedure, the minimum width current interié@l 5] is maintained. At the end, i.e.,
when applying observation 3 no further usable intervals can be det@etédis a minimal
interval andd = b — a is the optimal value foP15.

The following lemma guarantees that the feasible sequence built by the above procedure
is limited byn.

Lemma 1. The maximum number of intervals built by the proceduredg.

Proof. Each time a new interval is built, its lower bound is strictly greater than the lower
bound of the previous interval. Since the number of diffengntvalues ist, the result
follows. 0O

Let Q = {[a1, b1l, [az, b2], . .., [a4, by1} With g <t, be the feasible sequence resulting
from the above procedure, such that< a;, .1, foreachh =1,...,9 — 1.

Let us suppose that we have found the firgttervals ofQ. By applying observation 5
to [ay, b,] we obtain the value” such thafa”, by] is not usable, through observation 3 we

128 P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139

obtainby, 1 = b’ (if it exists) and, finally, through observation 4 we obtajn 1 = «’, and
so the next intervdlay, 11, by11].
The following result is easy to prove:

Theorem 1. The intervalla; 11, by+1] obtained by the above procedure is such that the
following properties hold

() [ap+1, bp+1] is usable
(i) ap <ap4+1 @andby, < bpy1,
(i) no usable intervala, b] C [ap+1, bp+1] €Xists.

Proof. The formulas used in observations 3 and 4 guarantee that, for eack-rhw. . , m,
at least one valuey;; exists such thaty;; € [a;41, bpy1], and hence the first property
holds. Since the intervéd”, b;,] obtained through observation 5 is not usable, observation
3 ensures that, 1 = b’ > by, and observation 4 ensures that 1 =a’ >a” > ay; thus, the
second property also holds.

As far as the third property is concerned, if by contradiction we suppose that such an
usable intervala, b] exists, we obtain that either> a,+1 = a’ orb < b1 = b, or both.
In any case, we contradict the hypotheses thand b’ are equal to the minimum and
maximum possible values, according to observations 4 and 3, respectiizely.

Let us now formalize the above scheme into an algorithm in order to evaluate its
complexity.

The rows{Ry, ..., R, } of matrixWare properly sorted, one at a time through procedure
Sorf{(i), in non decreasing order of their values. This preprocessing talkelo@x) time
for each row and, globally, @ logk) time.

To each rowi, fori = 1, ..., m, apointer j(i) is properly maintained to indicate the
highest index of the sorted roR; in which the corresponding element;;, belongs to the
current interval, i.e., it is not greater than the current upper béynd

j@)y=argmaxw;; : j=1,..., k, w;; <bp}.

A binary heap, of sizen, containanrows({Ry, ..., R, }; thekeyassociated to rowR; is
w;jy- A minimum key row is at the root of the heap. As shown in the following, the row
pointers can only increase and, since the rows have been sorted, their keys cannot decrease.
The role of the heap is to select the minimum vad(i¢observation 4), to remove all the
minimum values until valua” is found (observation 5), and to implicitly build the $eh
order to apply observation 3.

It is easy to prove that the first valg isb1 = w =max{w;1 : i =1, ..., m}, i.e., itis
the highest among the row minima. It is also easy to prove that the last value of the lower
boundisa, = w =minfw;, : i =1, ..., m}, i.e., itis the lowest among the row maxima.

In the algorithminterval, we represent b¥mptyHeap AddHeayi), MinHeag(i), and
UpdateHeafi), the basic operations for building an empty heap of sizdor adding
element (together with its current key; ; ;) to it, for retrieving the minimum key element
i, and for updating the heap after the change of the key of elemspectively.

P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139 129

ProcedurelInterval:
begin {initialization}

Sort rowsRy, ..., Ry; corr_lputew andw;
@ = Wpin; b := b1 := w; 6 := b — a; h := 1; EmptyHeap
fori :=1tomdo

begin{initializing the heap}
while j (i) <k and w;j41<b1do j(i) := j(i) + L
AddHeayi)
end,
repeat{main loop}
MinHeap(i); a; := w;j(y;
if b, — a, < 0 then begina := ay; b := by; 0:=b—aend
if a5, <w then
begin {starting for a new interval by settinky, }
bpy1:=bp;h:=h+1;
repeat{updating the pointer of every minimum key ra\ly
j(@) = j(i)+ 1; UpdateHeaf);
if wjj(i) > by then by, := Wij(i); MinHeap(i)
until Wij(i) > Ap-1;
for i := 1tom do
begin{updating the row pointers according to the nay}
while j (i) <k and w;jg)11<bp do j (i) := j(i) + 1
UpdateHeap)
end
end
until a, = w;
return {a, b, 0}
end.

In the initialization, the two value® andw are computed and a first intervi, b] is
assigned to initializé. In the first loop, the key of each row is properly assigned according
to the initial valueb1, and the first heap is built.

In the main loop, the minimum key gives the lower boundand the search of a new
interval starts, after having possibly updated the current minimum intgrval, only if a;,

did not reach the maximum possible value

In the innerrepeat ...until loop, for each rowi, whose key is a minimum one (i.e.
w;ijiy = ap—1), the new key is selected and the upper bound is updated. Once the value
of by, is established, the keys of the rows are properly updated in order to have the min-
imum key row at the root of the heap; this minimum key gives the new lower
bounda,. B

Atthe end, the minimum intervéd, 5] and its widthd are returned; by grouping elements
belonging to that interval in the same column the optimal permuted matrix of prabliém
is obtained.

130 P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139

Let us now analyze the complexity of the algorithnterval. The rows sorting takes
O(n logk) time, while the initial heap is obtained in(@+m logm) time, sinceminsertions
into the heap of sizemare performed and no more thascannings are necessary to set the
row keys.

The main loop is repeategl<t <n times. To evaluate the complexity, it is easier to
analyze the cost of the operations globally.

The first selection of the heap minimum, the updating of the current minimum interval
and the initialization of the upper bound cost globallgg®= O(n) time. Still globally, the
inner loop costs Q:logm) time since no more than changes of keys are possible. The
lastfor ...do loop has the same time complexity#Jogm); in fact, globally, no more than
n key changes are possible, and if the key is not changed, the heap updating is performed
in constant time.

The above considerations prove the following result.

Theorem 2. AlgorithmIntervalis correct and runs irD(n logn) time in worst case.

Proof. The correctness of the algorithm has been already proved in the description of
the algorithm’s behavior. To establish its complexity, note that presorting the rows costs
O logk) time, while building the feasible sequence of intervals and finding those with
minimum width costs @:logm) time. Since the highest among the two logarithms is
bounded from above by @gn), the result follows. [J

As far as problen® 16 is concerned, we recall that its objective function, to be maximized,
ismaxé; : j=1,...,k}—min{é; : j=1, ..., k}. Tomaximize the first partis equivalent, as
shown for problemP7, to grouping the maximum and the minimum matrix elements (with
a small exception in a particular case) in the same column, while to minimize the second
part is equivalent to problerR15. It is not difficult to combine the two procedures and to
consider the possible exceptions. These latter are: maximum and minimum belonging to the
same row; elements to be grouped in the “interval” column are the “max—min” elements for
the other column. It is easy to verify that the number of exceptions is constant, and hence,
P16 has the same time complexity B&5.

3.2. Spreading k elements on k columns

Consider the following three problems:

e Pl7:max(u, L),
e P18:max(u,),
o P19:min(u, 4);

to solve them it is sufficient to find thk biggest elements in the whole matii¥ and
permute them such that they belong to different column®afFinding thekth biggest
element among can be solved in @) time [4]; then, also in @) time, thek biggest
elements can be retrieved. Once the positions of these elements is knowprahding
phase to ensure that no pair of them belong to the same column, reduershanges at
most and can be done in(d time.

P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139 131

In fact, since problenP 17 requires that the smallest maximum value among columns be
as big as possible, to assign one of khgiggest elements to each column guarantees that
the objective function value is exactly th#h biggest value. The same holds for problem
P18 in which maximizing the sum of the maximum column value is the objective function.
In problem P19, we want to minimize the difference between the biggest and the smallest
column maximum values; since the first is a constant, this is equivalent to maximizing the
smallest maximum column value, which is indeed kttebiggest one.

The following problems are symmetric to the previous ones, but they are basedlon the
smallest values and on spreading them in different columns:

e P20:min(l, U),
e P2Ll:min(l, 2),
o P22:min(l, A).
As far as the following problem is concerned:
e P23:max (0, 2);
the objective function to maximize is the sum of the column ranges (3):

k k k
Z(szzuj—le.
j=1 j=1 j=1

The maximum is obtained by spreading in different columns botlk thiggest and the
k smallest elements of matri; in fact, the first sum is maximized and the second one
is minimized. When permuting elements, we have to take care when moving the already
spread biggest elements during the spreading phase of the smallest ones. The permutation
complexity is still Q) time.

3.3. Spreading k pairs of elements on k columns

In this subsection we analyze the following problem:
o P24:max(d,L).

Let us assume we know a lower boubaf the optimum value of the objective function;
i.e., avalue which is not greater than the column ranges of an optimal permuted Witrix
Then, in each colum@’; of the permuted matrix¥” there will exist at least two values,
which we callu/j andl;., such that

Wy =121, j=1,.. k. 9)

Given a columrh and a value:), belonging to it, in order to satisfy (9), one can select
the minimum value element among those that can be pairedujyitNote that thek — 1
w;; which belong to the same row a§ cannot be grouped in coluninat the same time
asu),; moreover, in the worst case, the- 1 smallestw’s can be used as elemerlf}én the
columns of indexj # h. For this reason we can state that in finding the “mate” elerjent
it is sufficient to analyze the = 2k — 1 smallest elements &%, which form theground
set GD This set is valid for every colump =1, ..., k. By symmetry, we consider also

132 P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139

theroof set RHformed by theg biggest elements &. In the case in which almost all the
matrix elements have the same value such that they can be equivalently inser@D o
well into RF, these elements can be chosen arbitrarily to form the two sets.

Building the pairs{l;., u/j], j=1,..., k,thatvalidate (9) is a particulanatching problem
In fact, let us introduce the following bipartite graph= (G D, RF, E), where the arc set

E is defined as follows:
E={(u,v) :ueGD, veRF, u andv not belonging to the same row and< v}.

Associated to each ar@, v) € E there is its weightw(u, v) = v — u, which is by
construction non-negative.

In the case in which the number of rows\Wfis m <3, we have thaGD N RF # @; it
does not affect the matching properties sincB arcs among nodes representing the same
matrix element do not exist.

Consider amatching i.e., an arc seM C E such that no pair of arcs are incident to
the same node. Its bottleneck value (in the following we refer to itedise is given by
V(M)=min{w(u, v) : (u, v) € M};thatisthe value dl coincides with the smallest weight
among its elements. Each arcMfcorresponds to a pair, v) which can be grouped in the
same columm by ensuring that the resulting range will be:

v—u<o;.

The matching property that no pair of arcs are incident with the same node guarantees
that the pairs are independent of each other and can be assigned to different columns, thus
validating (9).

Let us now consider the followinfixed cardinality bottleneck matching problefimnd a
matchingM* of B such thaiM*| = k and its value is

VIM*y=max{V(M) : M C E and|M| = k}. (20)

Itis easy to prove that, given a valdeif there exists &-cardinality matchindl whose
value isV (M) > o, then¢ is a lower bound for the optimal valzef the objective function.
It is also easy to prove the converse: if evirgardinality matchingvl of B is such that
V(M) <0, thend is an upper bound far In fact, any possible combination among ground
and roof elements causes at least one permuted column in the range to be strictly less than
9, thus the minimum among the column ranges. Consequently, the optimalzialgieen
by V (M*).

For that, the problen®24 is equivalent of finding &-cardinality matching/* of max-
imum bottleneck value, as defined in (10), in the bipartite gapim fact, at the end we
have at the same timiepairs defined by the matching and the valu@s*) of the objective
function. To obtainW’ it is sufficient to group each pair in the same column and to spread
thek pairs in thek columns, through 2exchanges at most.

The general problem of finding a maximum cardinality bottleneck matching in a bipartite
graphG = (0, D, E) has been widely studied (see, for a general re\igjand[5]).

In particular, Punnen and Nair [20] propose an algorithm based on the binary search
on the set of all possible bottleneck values. In every such step a cardinality matching
problem in a bipartite graph has to be solved. In order to obtain the time complexity of

P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139 133

O(E|*® x (]O| + |D])*®), they use the algorithm of Alt et al. if2] for solving the
cardinality matching problem approximately. Then the cardinality of a maximum matching
can be checked by growing only a small amount of augmenting paths.

It is not difficult to adapt the algorithm proposed|[2] in order to build a bottleneck
matching “enough close” to a given cardinality, and not exceeding it, with the same com-
plexity. Thus, the binary search proposedlifl] solves thek-cardinality matching problem
and, consequently, problef24. Since our bipartite graghhas 4 — 2 nodes and @?)
arcs (and possible bottleneck values), the time complexity to solve prabehis Q(k2°)
(ordering the arcs according to their weights coste’@g k)).

3.4. Reordering all the columns

In this subsection we will analyze the following problems:

P25:min(u, 2),
P26:max(l,),
P27:min(, U),
P28:min(d, 2).

For all four problems, as proved in the following, the permuted matiixs obtained by
iteratively grouping in the same column the maximum row elements not yet grouped. This
is equivalent to sorting each row separately, e.g. from the biggest to the smallest element.
This task can be done in@logk) time and requires, in the worst casgn@®exchanges.

Let us indicate in the following byW* such a sorted matrix.

First, let us analyze probleri25. The objective function, to be minimized, is the sum

of the column inner maxima (8):

k k
Zuj:ZmaX{wfj:izl,...,m}. (11)
j=1 Jj=1

Let V e II(W); by u;(V) we indicate the maximum element in coluof matrix V
and byz(V) = 2_1;21 u j (V) its objective function value. A first result is:

Lemma 2. The matrixV’ obtained from V by grouping all the maximum row elements in
the same column is such thatV’) <z(V).

Proof. Let j be the index of any column &f containing the maximum element of the
whole matrix.V’ is obtained by moving the maximum element of each row from its current
position to columry, if itis not already located there. As a consequence, the inner maximum
”](V/) =u;(V) since that column contains the global maximum element; while, for any
other columrj, u; (V') <u (V) holds since the elements entering colupname not greater
than the corresponding leaving elements. The result follows.

If we repeat the same grouping technique on the second maximum row elements, not con-
sidering the already grouped columywe obtain another matrix whose objective function
value is not worse thagp(V).

134 P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139

Consider now a matri¥ in which h columns{j1, jo, ..., jiu}, 0<h <k, contain theh
biggest row elements, sorted in such a way that each element of cglusigreater than
or equal to the corresponding element of colupny, fors =1, ..., 2 — 1. We call such
a matrixh-sorted

Lemma 3. If V is h-sorted matrix V' obtained from V by grouping in the same
column the maximum row elements belonging to the remaining columnsis such that
(V) <z(V).

Proof. The result follows directly, by induction, from Lemma 2 and the subsequent
observation. [J

Lemma 3 proves the following theorem:
Theorem 3. W* is optimal for problempP25.

Problem P26 is symmetric toP25 since it is based on the maximization of the inner
minima; consequently¥* is also a solution foiP26.

In problemP27 we want to minimize the biggest inner range. The strategy for reducing
the range of the column containing the biggest elemel¥ &f to group in that column all
the maximum row elements. The observation also holds for the other columns, similarly to
what is stated in Lemma 3, and again, matix is optimal for P27. Note that it is optimal
for P28. Indeed, minimizing the sum of the inner ranges is obtained by iteratively grouping
the maximum row elements in the same column.

4. NP-completeness results
We start the analysis of NP-hard cases from problem:
e P29:min(a, A);

i.e., finding ak-partition W* € I1(W) of minimum width:
min{fmax{(¢(C;) —a(C;») : Cj, Cjre W', j, j'=1,... k}: W € II(W)}.

Next, we give two different reductions for the decision version of this problem proving
it is NP-complete in the strong sense evemit= 3 (k arbitrary), and NP-complete in the
ordinary sense even lif= 2 (m arbitrary). Moreover, we show that fon= 2 (k arbitrary)
it is solvable in polynomial time.

First, let us consider the decision version of problB@9 which we denote with D1.

Problem D1. Let W = [w;;] be an integer matrix witlm rows andk columns. Given an
integer numbeH, does there exist¥’ e II(W) : maxa(C;) — o(Cj) : C;,Cj €
W, j'=1... kiy<H?

Theorem 4. ProblemD1 is NP-complete in the strong sense even it 3.

P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139 135

Proof. We reduce the Numerical 3-Dimensional Matching Problem (N3-DM), known to
be NP-complete in the strong serjég to D1.

ProblemN3-DM

Instance Disjoint setsT, X, andY, each containing elements, a sizga) € Z* for each
elementa, and a bound € Z7.

QuestionCanT U X U Y be partitioned intk disjoint setsC1, Co, ..., C; such that
eachC; contains exactly one element for eachoX, andY and such that, for £i <k,
ZaéC;S(a) = B'?

In order to reduce N3-DM to D1 we considek-partition problem with matriyy =[w;;]
with 3 rows andk columns. To each € T, we associate an elemani; with wi; = s(a),
to eachu € X an elementvo; =s(a), and to each € Y an elementvs; =s(a). We choose
H = 0 as the threshold for the corresponding decision problem.

IfN3-DM has a solution, then there exists a partitifn=11(W) such that(C;)=a(C;)
J,»Jj ' =1,..., kwhich solves problem D1. If, on the other hand, problem D1 has a solution
withmax{a(C;)—a(Cj) : C;,Cjy € W', j, j'=1,... , k}=0thenforeacl;, j=1,... .k
itholds thatws; +wz; +ws; = B’, andB’ must be equal tBas} _,;w;; =k B, then N3-DM
has a solution. [J

Theorem 5. ProblemD1 is NP-complete in the ordinary sense evehif 2.

Proof. We reduce Partition to D1.

ProblemPartition

Instance Finite setA and sizes(a) € ZT for eacha € A.

Question s there a subset’ of Asuch that) ", s(a) =) ,c4_a 5(@)?

Note that Partition remains NP-complete even if the elemerAsaire ordered ag;, ay,
..., a, and we require thad’ contains exactly one afy_1,ay forl =1,...,n/2[6].

Assuming the elements &are ordered as above, for reducing Partition to D1 we consider
the following instance ok-partition with W = [w;;] an integer matrix withm rows and 2
columns and withw;1 = ag_1, w2 =ag,i=1,...,mandi=1,...,n/2. We ask if a
partition W’ e I1(W) exists such that mdx(C1) — (C2) : C1,C2 € W'} =0.

If Partition has a solution, then there existspartition W’ ={C3, C2} such that(Cy) =
a(C>), and thus withs(C1) — a(C2) = 0 which solves the decision problem D1.

Conversely, if problem D1 has a solution witliC1) — (C2) = 0 thena(C1) = 6(C2)
from which it follows) ", .4 s(@) = ,ca_a s(@). O

Now we analyze the following problems:

e P30:min(o,U),
e P3l:max(o, L).

We can give reductions for problen?30 andP 31 following Theorems 4 and 5. For this
purpose the decision versions of probleA30 andP31 are given next:

Problem D2. Let W be an integer matrix witlm rows andk columns. Given an integer
numberd € Z,3W’ € II(W) : maX{a(C;),C; € W}<H?

136 P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139

Problem D3. Let W be an integer matrix witlm rows andk columns. Given an integer
numberd € Z,3W’ € II(W) : min{a(C;), C; € W}<H?

Theorem 6. ProblemsD2 andD3 are both NP-complete in the strong sense even-f 3
and NP-complete in the ordinary sense evensf 2.

Proof. These proofs are similar to those of Theorems 4 and 5, and are omitted hére.

We conclude the analysis on NP-hard cases adding some final comments on instances
with m = 2 andk = n/2.
The decision version of problens30 andP 31 can be answered in polynomial time. In
fact, for any fixed value of threshold we can construct a bipartite graph wittvertices
and an edge between pairs of vertices if and only if the corresponding elemgnésd
wp ;- are such that:

w1 +wpy <H (problem D2 P30),
w1 +wpjy > H (problem D3 P31).

The search for the minimutd for which a maximal (perfect) matching in this bipartite
graph exists can be performed by the approach discussed in Section 3.3. In this specific
case the bipartite graph hasiodes and? edges, hence the proposed adaptation of the
algorithm of Punnen and Nair would find the solution in tim&#&P). Sincek = O(n), the
complexity is Qn?%).

As far as problenP29 is concerned in the particular caserof 2 andk =n/2, to apply
the same approach it would be required to solve even more matching problems. A simple
way to tackle this is the following. Choose arbitrarily one couplgandw,,» and consider
the bipartite graph with2nodes and an edge betweer; andwy; if and only if:

w1 + woy — H/2<wyj + woj Swy + woy + H/2.
The existence of a perfect matching in such a graph implies the existen&epairtition

W’ with max{a(C) —a(C;)} < H.Asthe couplevi, andwy, has been chosen arbitrarily, in

afirstrough analysis we should consider all possible couples and hence gotye-0(12)
maximal matching problems for each valugbfe Q and verify if the value of the matching
isk. The overall complexity of the optimization problem would then be bounded from above
by O(n*®).

5. On the open problem

The last problem is
e P32:min(d, A).

This is the only one out of the 32 problems for which complexity remains open. We just
discuss a graph theoretical interpretation which, however, has not yet led to a solution. It
can be shown that the decision versiorP@#2 is equivalent to finding a partition in cliques

P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139 137

of sizek of a particular graph. While this latter problem is NP-complete on general graphs,
to the best of our knowledge, no complexity results are known for the specific class which
we get by reducing the decision version32.

First, let us consider the decision version of problB82 which we denote with D4.

Problem D4. Let W = [w;;] be an integer matrix witim rows andk columns. Given
an integer numbeH does there exisW’ € II(W) : maxd(C;) — o6(Cj) : C;,Cjr €
W, j'=1...k j#j}<H?

The graph problem can be obtained as follows. Assume we ask if there dxigéstition
satisfying Problem D4. For eacahy; build an intervalw;; — H/2, w;; + H/2] on the real
line. Define a graph with a vertex for each interval and an edge between vertices if and only
the corresponding);; andw; j» havej # ;" and the intervals overlap. Note that the first
condition, i.e.,j # j’, does not permit to have an edge even though the closed intervals do
overlap, thus this graph is not an interval graph. Indeed, it is easy to verify that is not even
a triangulated graph.

6. Applications

The topic covered in the paper offers solutions to many problems in parallel computing,
files allocations, scheduling, and routing. In the following examples we exhibit gome
partition problems applied to lots scheduling and to routing on multigraphs.

Let us consider the following scheduling framework ($8for standard scheduling
terminology). These amaproduction facilities. A set df lots is to be executed in any order
without interruption. Lots are of different size and hence a different processing time. Each
lot is assigned to a facility. Suppose the production activity is organized on the basis of
working periods, for instance on a daily basis, i.e., each facility processes one lot per day
starting the execution at the beginning of the day. We are asked to find a schedule (i.e., the
sequence of lot processing for each facility) which optimizes some performance criterion.

In such a scenario, the problem could be investigated with respect to different objective
functions related to organizational requirements. We may be interested in balancing the
daily workload among alnfacilities, i.e., we want to find a schedule such that for each day
the difference between the completion time on the last freed machine and the completion
time of the first freed machine is minimized. Denoteuasthe duration of the processing
of lot j on facility i. A reasonable objective function for that problem could be to minimize
Z’;zl (max{w;; :i=1,...,m}—min{w;; : i =1,...,m}) which corresponds exactly to
solving problempP28.

Another acceptable balancing criterion could be minimizing over all days the maxi-
mum difference between completion times of the same day (i.e., minimizguyyax
i=1...,m, j=1... k}—minfw;:i=1...,m, j=1,..., k}). Equivalently, we are
looking for ak-partition with minimum(d, U) (see problemP27). Both problems can be
solved efficiently using algorithms described in Section 3.4.

Alternatively, we might be more concerned about the daily workload of the team of
workers tending all the facilities which, for daycan be measured 38 w;;. In this
case, either we choose to minimize the maximum workload over all the days (minimize

138 P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139

max(} 7 w;; : j =1,...,k}), or want to flatten the workload curve minimizing the
difference between the maximum and minimum workload over all the days (minimize
max{(d> /Lqw;j : j=1 ..., k} —min{}_" qw;; : j =1,...,k}), we have to face an NP-
hard problem. In fact, th&-partition problemsP30 and P29 modeling the above cases,
have been proved to be NP-hard in the strong sense (see the Section 4).

Similar applications in problems related to assembly line balancing are discug8gd in

Letus now examine examples of sokapartitions and routing problems in multigraphs. A
graph can be called an-simple-multipatfif it is possible to have each couple of sequential
nodes connected by exactly edges of lengthsy;;,i = 1,..., m. The routing problem
consists in findingn simple arc-disjoint paths, each formed bydges so that the paths
are as uniform as possib|é,8]. One may wish to minimize, for example, the sum of the
ranges between the longest and the shortest edge in the path obtaining a route with quite
balanced edges length. Alternatively, one may want to determine the set of paths in which
the difference between the longest and the shortest is minimum. It can be easily recognized
that the first problem i®23 and the latter is probler29.

Several other applications can be derived from real life combinatorial optimization
problems.

7. Conclusions

In this work we defined and examined 32 unifokrpartition problems or, equivalently,
32 matrix permutation problems. They are characterized by the particular measure of “set
uniformity” to be optimized. 21 of the studied problems can be solved by linear time algo-
rithms, 7 require more complex algorithms but can still be solved in polynomial time, and 3
are proved to be NP-hard. The complexity of only one problem, naim&8 remains open.

Acknowledgements

The authors wish to thank anonymous referees whose valuable comments allowed us to
improve the paper.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] H.Alt,N. Blum, K. Mehlhorn, M. Paul, Computing maximum cardinality matching in tinte’? . /m/Togn),
Inform. Process. Lett. 37 (1991) 237-240.

[3] J.Blazewicz, K. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Scheduling Computer and Manufacturing Processes,
Springer, Berlin, 1996.

[4] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, R.E. Tarjan, Time bounds for selection, J. Comput. System
Sci. 7 (1973) 448-461.

[5] R.E. Burkard, Selected topics on assignment problems, Discrete Appl. Math. 123 (2002) 257-302.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, New York, 1979.

[7] P. Hansen, Bicriterion path problems, in: Multiple Criteria Decision Making: Theory and Applications,
Lecture Notes in Economics and Mathematical Systems, vol. 177, 1980, pp. 109-127.

P. DellOlmo et al. / Discrete Applied Mathematics 150 (2005) 121-139 139

[8] P. Hansen, G. Storchi, T. Vovor, Paths with minimum range and ratio of arc lengths, Discrete Appl. Math. 78
(1997) 1-3, 89-102.
[9] S. Martello, W.R. Pulleyblank, P. Toth, D. de Werra, Balanced optimization problems, Oper. Res. Lett. 3
(1984) 275-278.
[10] A.P. Punnen, K.P.K. Nair, Improved complexity bound for the maximum cardinality bottleneck bipartite
matching problem, Discrete Appl. Math. 55 (1994) 91-93.

	On uniform k-partition problems62626262
	Introduction
	Notation and problem definition
	Easy problems
	Grouping maximum and/or minimum row elements

	Other polynomial problems
	Grouping elements belonging to a given interval
	Spreading =k elements on =k columns
	Spreading =k pairs of elements on =k columns
	Reordering all the columns

	NP-completeness results
	On the open problem
	Applications
	Conclusions
	Acknowledgements
	References

