
Discrete Applied Mathematics 150 (2005) 121–139

www.elsevier.com/locate/dam

On uniformk-partition problems�

Paolo Dell’Olmoa, Pierre Hansenb, Stefano Pallottinoc,
Giovanni Storchid

aDipartimento di Statistica, Probabilità e Statistiche Applicate, Università di Roma“La Sapienza”,
P.le Aldo Moro 5, 00185 Roma, Italy

bGERAD and École des Hautes Etudes Commerciales, 3000, Chemin de la Côte-Sainte-Catherine Montréal,
Qué., Canada H3T 2A7

cDipartimento di Informatica, Università di Pisa, Via F. Buonarroti 2, 56127 Pisa, Italy
dDipartimento di Statistica, Probabilità e Statistiche Applicate, Università di Roma “La Sapienza”,

P.le Aldo Moro 5, 00185 Roma, Italy

Received 3 January 2002; received in revised form 28 October 2004; accepted 15 February 2005
Available online 17 May 2005

This paper is dedicated to the memory of our friend and colleague Stefano Pallottino, disappeared prematurely
on the April 11, 2004

Abstract

We study various uniformk-partition problems which consist in partitioningmsets, each of cardi-
nality k, into k sets of cardinalitym such that each of these sets contains exactly one element from
every original set. The problems differ according to the particular measure of “set uniformity” to be
optimized. Most problems are polynomial and corresponding solution algorithms are provided.A few
of them are proved to be NP-hard. Examples of applications to scheduling and routing problems are
also discussed.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Partition; Matrix permutation; Algorithms; Complexity

E-mail addresses:paolo.dellolmo@uniroma1.it(P. Dell’Olmo), Pierre.Hansen@gerad.ca(P. Hansen),
giovanni.storchi@uniroma1.it(G. Storchi).

� Research partially supported by grants: FCAR of Québec, NSERC of Canada, MIUR-SORSA, INDAM-
GNAMPA, CNR-Agenzia 2000 contract n.CNRC00AF27-001 of Italy.

0166-218X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.02.013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82505695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:paolo.dellolmo@uniroma1.it
mailto:Pierre.Hansen@gerad.ca
mailto:giovanni.storchi@uniroma1.it

122 P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139

1. Introduction

Let R = {R1, . . . , Rm} be a collection ofm sets. Any setRi = {wi1, . . . , wik} contains
exactlyk real values, i.e.,|Ri | = k, i = 1, . . . , m. Thek-partition problem is to partitionR
into k sets{C1, . . . , Ck} such that|Cj ∩ Ri | = 1 for every pairi, j , i.e., every setCj , j =
1, . . . , k, contains exactly one element of anyRi, i=1, . . . , m.As a consequence|Cj |=m,

j = 1, . . . , k. We denote byn = mk the global number of elements.
The problem can be more easily described in terms of matrix permutations. That is, let

W = [wij] be a real-valued matrix withm rows andk columns obtained by considering the
sets{R1, . . . , Rm} as its rows, and let�(W) be the set of all matrices obtained by permuting
elements in the rows ofW. Any permutation�(W) ∈ �(W) of values in each row generates
a new matrixW ′ = �(W) whose columns correspond to ak-partition{C1, . . . , Ck}.
In the following, we presentk-partition problems as row-permutation problems of matrix

W. More formally, given a matrixWand a permutation of elements�i (W) for each rowi,
we say that the columns of matrixW ′ = �(W) are ak-partition of the rows ofW, or, for
brevity, thatW ′ is ak-partitionofW.
Variousmeasures can be adopted to evaluate thek-partition. They consist in both aninner

measureamong the elements belonging to the same column and aglobal measureamong
the inner measures associated to the columns.We adopt four different measures, namely the
minimum, themaximum, therange, and thesum. By combining these four measures at the
inner and at the global levels, and by either maximizing or minimizing the global measure,
32 differentk-partition problems are obtained.
The objective of this paper is to assess the computational complexity of each problem,

providing solution algorithms for polynomial cases and NP-completeness proofs for in-
tractable ones; however, the classification of one problem remains open. For convenience,
we group the problems into classes according to their solution characteristics and compu-
tational complexity. Although the paper is mainly theoretical, we also discuss examples in
which some of the problems have practical applications.
The paper is organized as follows. In Section 2, we introduce the notation, the problem

definition and formalize the different measures (or objective functions). In Section 2, we
show which cases are trivial, while Section 3 addresses all other polynomial cases. The
NP-hard ones are presented in Section 4. In Section 5, we discuss an open problem. Finally,
in Section 6, we propose several applications of thek-partition problems and suggest further
research lines.

2. Notation and problem definition

Let �i (W) be a permutation among the elements of rowi of matrixW, i = 1, . . . , m;
by �(W) = [�i (W)] we denote such permutations for allm rows ofW. LetW ′ = �(W) be
thepermuted matrix; we denote byw′

ij the ith element of columnCj of W ′ obtained by
permutation�i (W). The four differentinner measuresof thek columns{C1, . . . , Ck} of
W ′ are defined and noted as follows:

uj = u(Cj) =max{w′
ij : i = 1, . . . , m} (1)

P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139 123

and

lj = l(Cj) =min{w′
ij : i = 1, . . . , m} (2)

are themaximumand theminimumof columnCj , j = 1, . . . , k, respectively; therangeof
Cj , j = 1, . . . , k, is

�j = �(Cj) = uj − lj , (3)

while �j denotes thesumof (elements of)Cj :

�j = �(Cj) =
m∑
i=1

w′
ij . (4)

We use the generic formfj to indicate one of the four above-mentioned inner measures
for Cj , i.e. thejth column ofW ′. The fourglobal measuresamong the columns of matrix
W ′ are defined and noted as follows:

U = U(W ′) =max{fj : j = 1, . . . , k}, (5)

L = L(W ′) =min{fj : j = 1, . . . , k}, (6)

� = �(W ′) = U − L, (7)

� = �(W ′) =
k∑

j=1

fj , (8)

are themaximum, theminimum, therangeand thesumofW ′, respectively.
If we indicate byF the generic global measure function among the four introduced above,

we have 16 differentk-partition measures.We want either to maximize or to minimizeF so
we obtain 32 different optimization problems.
To denote one of these problems we will use:

• “max” and “min” to stress the maximization and the minimization of the objective
function;

• the symbolsl, u, � and� for the inner measure;
• the symbolsL, U, � and� for the global measure.

For example, maximizing the range (7) among the columns, where the inner measure is
the minimum (2), will be denoted bymax(l,�), that is to find an optimal matrixW ∗ such
thatz = z(W ∗) =max{�(W ′) : W ′ ∈ �(W)}, where�(W ′) is defined in (7).
To better clarify the difficulty of each problem, we will give its time complexity together

with the number ofexchangeoperations needed to permuteW in order toprovideW ′, that
is the number of swappings of pairs of elements.
In Tables 1and2we give a global view of the computational complexities, separately for

maxandmin. The question mark inTable 2indicates that complexity of problemmin(�,�)
remains open.
Some of the above problems admit a trivial solution. They are nevertheless considered

for completeness.

124 P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139

Table 1
Complexity of the maximization problems

max L U � �

l n n n n logk
u n n n n
� k2.5 n n logn n
� NP-hard n n n

Table 2
Complexity of the minimization problems

min L U � �

l n n n n
u n n n n logk
� n logn n logk ? n logk
� n NP-hard NP-hard n

2.1. Easy problems

This class contains all the problems forwhich the objective function takes a constant value
for anyW ′ ∈ �(W) and all partitions (except in one case) are optimal; so, the input matrix
Wcan be seen as the permuted matrixW ′ without any swapping of elements. Consider the
problems:

• P1:min(u,U),
• P2:max(u,U).

For both of them the optimal value isz=wmax =max{wij : i=1, . . . , m, j =1, . . . , k},
i.e., a constant value which can be easily found by inspection in O(n) time; obviouslyW is
optimal.
Similarly, for the problems:

• P3:min(l, L),
• P4:max(l, L);

the optimal value isz = wmin =min{wij : i = 1, . . . , m, j = 1, . . . , k}.
On the other hand, the optimal valuez is given byz= ∑m

i=1
∑k

j=1wij for the following
problems:

• P5:min(�,�),
• P6:max(�,�);

and this sum is computed in O(n) time.

P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139 125

Consider now the problem:

• P7:max(�, U);

sincewewant tomaximize the largest range of the columns, this value is obtained by having
wmax andwmin in the same column. This is an easy task once the position of these two
elements inW is known, which takes O(n) time. To obtain the permuted matrix it suffices
to move one of them to the column containing the other.
Only one special case has to be considered, i.e., when these two elements belong to the

same row; in that case it is easy to prove that the largest range is defined either bywmax and
the smallest element not belonging to the same row, or by thewmin and the largest element
not belonging to the same row (more precisely, by the greatest among these two ranges).
Again this takes O(n) time and the permuted matrixW ′ is obtained fromW through at most
one exchange operation.

2.2. Grouping maximum and/or minimum row elements

The following three problems have as permuted matrixW ′ any matrix derived fromW
by grouping the maximum elements of each row in the same column:

• P8:max(�, U),
• P9:max(l, U),
• P10:max(l,�).

In problemP8 we want a column whose sum of elements is as large as possible. Such
a column is, indeed, that one containing the maximum element of each row. Finding these
elements takes O(n) time, and, with at mostmexchanges,W is transformed intoW ′.
Analogously, for problemP9, we want to maximize the largest amongst the column

minima, see (2) and (5):

max{max{l(Cj) : j = 1, . . . , k} : W ′ ∈ �(W)}.
Thus, it is sufficient to build a permutation with one column having its minimum as

large as possible, that is a column with the maximum of rowi as theith element, for alli,
regardless of the other columns. The same permuted matrix solves problemP10, where the
range (7) between the minima of the columns has to be maximized:

max{lj − lh : j, h = 1, . . . , k} =max{lj : j = 1, . . . , k} −min{lh : h = 1, . . . , k}.
Since min{lh : h = 1, . . . , k} = wmin is a constant, problemP10 reduces toP9.
The following three problems are solvable in the same way as the previous three, with

minimum row values instead of the maximum ones:

• P11:min(�, L),
• P12:min(u, L),
• P13:max(u,�).

126 P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139

Let us analyze now the following problem:

• P14:max(�,�);

its objective function value is:

max{�j−�h : j, h=1, . . . , k}=max{�j : j=1, . . . , k} − min{�h : h=1, . . . , k}.
Thus, themaximumvalue of the objective function is obtained by grouping themaximum

row elements in one column and the minimum ones in another. So, problemP14 can be
solved by selecting, also in O(n) time, the extreme values of each row and by grouping
these values in two specific columns with at most 2m exchanges.

3. Other polynomial problems

The following polynomial problem are grouped in four different classes.

3.1. Grouping elements belonging to a given interval

Let us consider the following problems:

• P15:min(�, L),
• P16:max(�,�).

In problemP15 we want to minimize the minimum among the column ranges (3), this
is a balanced optimization problems considered by Martello et al.[9].
Let us call a real interval[a, b] usablefor matrixW if there exists at least one element in

each row ofWbelonging to that interval.
Clearly, if [a, b] is usable, it is possible to select in each row one element belonging to

that interval and to group the selected elements in the same column, sayj̄ . Consider the
permutedmatrixW ′ so obtained; the range�j̄ is not greater than the interval width�̄=b−a;

so,�̄ is an upper bound forz(W ′) = min{�j : j = 1, . . . , k} and also for the optimal value
zamong all permuted matrices.
A given usable interval of width̄� is said to beminimal forW if no usable interval with

smaller width exists. Note that the width�̄ of a minimal interval is the optimal value of the
objective function for problemP15. In fact, the permuted matrixW ′ obtained by grouping
the selected elements in the same columnj̄ , has exactlȳ� as the minimum range. To prove
the above statement it is sufficient to observe that neither columnj̄ nor the other ones
can have a range smaller than�̄, since the interval is minimal. For the same reason, we
can conclude thatW ′ is optimal. Note that, once the minimal interval is known, onlym
exchanges are necessary to provideW ′.
Let us suppose now that it is possible to construct a finite sequence of usable intervals

having the property that at least one of them is minimal. Such a sequence will be called a
feasible sequence.

P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139 127

In the following we prove that it is possible to build a feasible sequence with no more
thann intervals in O(n logn) time. So, the complexity of problemP15 is O(n logn).
Let T be the set of values of the componentswij ofW, |T | = t�n; since the aim is to

build usable intervals of minimum width, the following observations are easy to prove:

1. only intervals whose extreme values belong toTmust be considered;
2. between two usable intervals[a′, b] and[a′′, b] such thata′ <a′′ only the latter must be

considered; similarly, among intervals[a, b′] and[a, b′′] with b′ <b′′ only the former
must be considered;

3. if an interval[a, b] is not usable, by denotingwithI the index set of rowswithout elements
belonging to[a, b], the minimum width usable interval[a, b′] havinga as lower bound
is such that

b′ =max{min{wij : wij > b, j = 1, . . . , k} : i ∈ I },
under the condition that for eachi ∈ I there exists at least onewij > b; otherwise, no
usable intervals with lower bound�a exist;

4. if [a, b] is usable, the minimum width usable interval[a′, b] havingb as upper bound is
such that

a′ =min{max{wij : wij �b, j = 1, . . . , k} : i = 1, . . . , m};
5. given a usable interval[a, b] such that[a′, b] is not usable for anya <a′ �b, the next

lower bound to be considered in a feasible sequence is

a′′ =min{wij : wij > a, i = 1, . . . , m, j = 1, . . . , k}.
By using the above observations it is possible to devise a procedure to build a feasible

sequence. Starting from a suitable value fora, through observation 3 the upper boundb′
is found and, through observation 4 the lower bounda′ is detected such that[a′, b′] is a
usable interval of the sequence, and of minimal width with respect tob′. The next valuea to
be used iteratively to build the feasible sequence is obtained as described in observation 5.
In the procedure, the minimum width current interval[ā, b̄] is maintained. At the end, i.e.,
when applying observation 3 no further usable intervals can be detected,[ā, b̄] is a minimal
interval and�̄ = b̄ − ā is the optimal value forP15.
The following lemma guarantees that the feasible sequence built by the above procedure

is limited byn.

Lemma 1. The maximum number of intervals built by the procedure ist�n.

Proof. Each time a new interval is built, its lower bound is strictly greater than the lower
bound of the previous interval. Since the number of differentwij values ist, the result
follows. �

LetQ = {[a1, b1], [a2, b2], . . . , [aq, bq]} with q� t , be the feasible sequence resulting
from the above procedure, such thatah <ah+1, for eachh = 1, . . . , q − 1.
Let us suppose that we have found the firsth intervals ofQ. By applying observation 5

to [ah, bh]we obtain the valuea′′ such that[a′′, bh] is not usable, through observation 3 we

128 P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139

obtainbh+1 = b′ (if it exists) and, finally, through observation 4 we obtainah+1 = a′, and
so the next interval[ah+1, bh+1].
The following result is easy to prove:

Theorem 1. The interval[ah+1, bh+1] obtained by the above procedure is such that the
following properties hold:

(i) [ah+1, bh+1] is usable,
(ii) ah <ah+1 andbh <bh+1,
(iii) no usable interval[a, b] ⊂ [ah+1, bh+1] exists.

Proof. The formulas used in observations 3 and 4 guarantee that, for each rowi=1, . . . , m,
at least one valuewij exists such thatwij ∈ [ah+1, bh+1], and hence the first property
holds. Since the interval[a′′, bh] obtained through observation 5 is not usable, observation
3 ensures thatbh+1= b′ >bh, and observation 4 ensures thatah+1= a′ �a′′ >ah; thus, the
second property also holds.
As far as the third property is concerned, if by contradiction we suppose that such an

usable interval[a, b] exists, we obtain that eithera >ah+1 = a′ or b<bh+1 = b′, or both.
In any case, we contradict the hypotheses thata′ andb′ are equal to the minimum and
maximum possible values, according to observations 4 and 3, respectively.�

Let us now formalize the above scheme into an algorithm in order to evaluate its
complexity.
The rows{R1, . . . , Rm} of matrixWare properly sorted, one at a time through procedure

Sort(i), in non decreasing order of their values. This preprocessing takes O(k logk) time
for each row and, globally, O(n logk) time.
To each rowi, for i = 1, . . . , m, a pointer j (i) is properly maintained to indicate the

highest index of the sorted rowRi in which the corresponding elementwij(i) belongs to the
current interval, i.e., it is not greater than the current upper boundbh:

j (i) = arg max{wij : j = 1, . . . , k, wij �bh}.

A binary heap, of sizem, containsm rows{R1, . . . , Rm}; thekeyassociated to rowRi is
wij(i). A minimum key row is at the root of the heap. As shown in the following, the row
pointers can only increase and, since the rows have been sorted, their keys cannot decrease.
The role of the heap is to select the minimum valuea′ (observation 4), to remove all the
minimum values until valuea′′ is found (observation 5), and to implicitly build the setI in
order to apply observation 3.
It is easy to prove that the first valueb1 is b1 = ŵ = max{wi1 : i = 1, . . . , m}, i.e., it is

the highest among the row minima. It is also easy to prove that the last value of the lower
bound isaq = w̄ =min{wik : i = 1, . . . , m}, i.e., it is the lowest among the row maxima.
In the algorithmInterval, we represent byEmptyHeap, AddHeap(i), MinHeap(i), and

UpdateHeap(i), the basic operations for building an empty heap of sizem, for adding
elementi (together with its current keywij(i)) to it, for retrieving the minimum key element
i, and for updating the heap after the change of the key of elementi, respectively.

P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139 129

ProcedureInterval:
begin {initialization}

Sort rowsR1, . . . , Rm; computêw andw̄;
ā := wmin; b̄ := b1 := ŵ; �̄ := b̄ − ā;h := 1; EmptyHeap;
for i := 1 to m do

begin {initializing the heap}
while j (i)< k andwij(i)+1�b1 do j (i) := j (i) + 1;
AddHeap(i)

end;
repeat {main loop}

MinHeap(i); ah := wij(i);
if bh − ah < �̄ then begin ā := ah; b̄ := bh; �̄ := b̄ − ā end;
if ah < w̄ then

begin {starting for a new interval by settingbh}
bh+1 := bh;h := h + 1;
repeat {updating the pointer of every minimum key rowi}

j (i) := j (i) + 1; UpdateHeap(i);
if wij(i) > bh then bh := wij(i); MinHeap(i)

until wij(i) > ah−1;
for i := 1 to m do

begin {updating the row pointers according to the newbh}
while j (i)< k andwij(i)+1�bh do j (i) := j (i) + 1;
UpdateHeap(i)

end
end

until ah = w̄;
return {ā, b̄, �̄}

end.

In the initialization, the two valueŝw andw̄ are computed and a first interval[ā, b̄] is
assigned to initializē�. In the first loop, the key of each row is properly assigned according
to the initial valueb1, and the first heap is built.
In the main loop, the minimum key gives the lower boundah, and the search of a new

interval starts, after having possibly updated the current minimum interval[ā, b̄], only if ah
did not reach the maximum possible valuew̄.
In the innerrepeat …until loop, for each rowi, whose key is a minimum one (i.e.

wij(i) = ah−1), the new key is selected and the upper bound is updated. Once the value
of bh is established, the keys of the rows are properly updated in order to have the min-
imum key row at the root of the heap; this minimum key gives the new lower
boundah.
At the end, theminimum interval[ā, b̄] and its width�̄ are returned; by grouping elements

belonging to that interval in the same column the optimal permuted matrix of problemP15
is obtained.

130 P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139

Let us now analyze the complexity of the algorithmInterval. The rows sorting takes
O(n logk) time, while the initial heap is obtained in O(n+m logm) time, sincem insertions
into the heap of sizemare performed and no more thann scannings are necessary to set the
row keys.
The main loop is repeatedq� t�n times. To evaluate the complexity, it is easier to

analyze the cost of the operations globally.
The first selection of the heap minimum, the updating of the current minimum interval

and the initialization of the upper bound cost globally O(q)=O(n) time. Still globally, the
inner loop costs O(n logm) time since no more thann changes of keys are possible. The
lastfor …do loop has the same time complexity O(n logm); in fact, globally, no more than
n key changes are possible, and if the key is not changed, the heap updating is performed
in constant time.
The above considerations prove the following result.

Theorem 2. AlgorithmInterval is correct and runs inO(n logn) time in worst case.

Proof. The correctness of the algorithm has been already proved in the description of
the algorithm’s behavior. To establish its complexity, note that presorting the rows costs
O(n logk) time, while building the feasible sequence of intervals and finding those with
minimum width costs O(n logm) time. Since the highest among the two logarithms is
bounded from above by O(logn), the result follows. �

As far as problemP16 is concerned,we recall that its objective function, to bemaximized,
ismax{�j : j=1, . . . , k}−min{�j : j=1, . . . , k}.Tomaximize thefirst part is equivalent, as
shown for problemP7, to grouping the maximum and the minimummatrix elements (with
a small exception in a particular case) in the same column, while to minimize the second
part is equivalent to problemP15. It is not difficult to combine the two procedures and to
consider the possible exceptions. These latter are: maximum andminimum belonging to the
same row; elements to be grouped in the “interval” column are the “max–min” elements for
the other column. It is easy to verify that the number of exceptions is constant, and hence,
P16 has the same time complexity asP15.

3.2. Spreading k elements on k columns

Consider the following three problems:

• P17:max(u,L),
• P18:max(u,�),
• P19:min(u,�);

to solve them it is sufficient to find thek biggest elements in the whole matrixW and
permute them such that they belong to different columns ofW ′. Finding thekth biggest
element amongn can be solved in O(n) time [4]; then, also in O(n) time, thek biggest
elements can be retrieved. Once the positions of these elements is known, thespreading
phase, to ensure that no pair of them belong to the same column, requiresk exchanges at
most and can be done in O(k) time.

P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139 131

In fact, since problemP17 requires that the smallest maximum value among columns be
as big as possible, to assign one of thek biggest elements to each column guarantees that
the objective function value is exactly thekth biggest value. The same holds for problem
P18 in which maximizing the sum of the maximum column value is the objective function.
In problemP19, we want to minimize the difference between the biggest and the smallest
column maximum values; since the first is a constant, this is equivalent to maximizing the
smallest maximum column value, which is indeed thekth biggest one.
The following problems are symmetric to the previous ones, but they are based on thek

smallest values and on spreading them in different columns:

• P20:min(l, U),
• P21:min(l,�),
• P22:min(l,�).

As far as the following problem is concerned:

• P23:max(�,�);

the objective function to maximize is the sum of the column ranges (3):

k∑
j=1

�j =
k∑

j=1

uj −
k∑

j=1

lj .

The maximum is obtained by spreading in different columns both thek biggest and the
k smallest elements of matrixW; in fact, the first sum is maximized and the second one
is minimized. When permuting elements, we have to take care when moving the already
spread biggest elements during the spreading phase of the smallest ones. The permutation
complexity is still O(k) time.

3.3. Spreading k pairs of elements on k columns

In this subsection we analyze the following problem:

• P24:max(�, L).

Let us assume we know a lower boundlb of the optimum value of the objective function;
i.e., a value which is not greater than the column ranges of an optimal permuted matrixW ∗.
Then, in each columnCj of the permuted matrixW ′ there will exist at least two values,
which we callu′

j andl
′
j , such that

u′
j − l′j � lb, j = 1, . . . , k. (9)

Given a columnh and a valueu′
h belonging to it, in order to satisfy (9), one can select

the minimum value element among those that can be paired withu′
h. Note that thek − 1

wij which belong to the same row asu′
h cannot be grouped in columnh at the same time

asu′
h; moreover, in the worst case, thek − 1 smallestw’s can be used as elementsl′j in the

columns of indexj �= h. For this reason we can state that in finding the “mate” elementl′h
it is sufficient to analyze theg = 2k − 1 smallest elements ofW, which form theground
set GD. This set is valid for every columnj = 1, . . . , k. By symmetry, we consider also

132 P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139

theroof set RFformed by theg biggest elements ofW. In the case in which almost all the
matrix elements have the same value such that they can be equivalently inserted intoGDas
well intoRF, these elements can be chosen arbitrarily to form the two sets.
Building the pairs[l′j , u′

j], j=1, . . . , k, that validate (9) is a particularmatching problem.
In fact, let us introduce the following bipartite graphB = (GD,RF,E), where the arc set
E is defined as follows:

E={(u, v) : u∈GD, v∈RF, u andv not belonging to the same row andu�v}.
Associated to each arc(u, v) ∈ E there is its weight�(u, v) = v − u, which is by

construction non-negative.
In the case in which the number of rows ofW ism�3, we have thatGD ∩ RF �= ∅; it

does not affect the matching properties since inB arcs among nodes representing the same
matrix element do not exist.
Consider amatching, i.e., an arc setM ⊆ E such that no pair of arcs are incident to

the same node. Its bottleneck value (in the following we refer to it asvalue) is given by
V (M)=min{�(u, v) : (u, v) ∈ M}; that is the valueofM coincideswith the smallestweight
among its elements. Each arc ofM corresponds to a pair(u, v)which can be grouped in the
same columnj by ensuring that the resulting range�j will be:

v − u��j .

The matching property that no pair of arcs are incident with the same node guarantees
that the pairs are independent of each other and can be assigned to different columns, thus
validating (9).
Let us now consider the followingfixed cardinality bottleneck matching problem: find a

matchingM∗ of B such that|M∗| = k and its value is

V (M∗) =max{V (M) : M ⊆ E and |M| = k}. (10)

It is easy to prove that, given a value�̄, if there exists ak-cardinality matchingM whose
value isV (M)� �̄, then�̄ is a lower bound for the optimal valuezof the objective function.
It is also easy to prove the converse: if everyk-cardinality matchingM of B is such that
V (M)� �̄, then�̄ is an upper bound forz. In fact, any possible combination among ground
and roof elements causes at least one permuted column in the range to be strictly less than
�̄, thus the minimum among the column ranges. Consequently, the optimal valuez is given
by V (M∗).
For that, the problemP24 is equivalent of finding ak-cardinality matchingM∗ of max-

imum bottleneck value, as defined in (10), in the bipartite graphB. In fact, at the end we
have at the same timekpairs defined by the matching and the valueV (M∗) of the objective
function. To obtainW ′ it is sufficient to group each pair in the same column and to spread
thek pairs in thek columns, through 2k exchanges at most.
The general problem of finding amaximum cardinality bottleneckmatching in a bipartite

graphG = (O,D,E) has been widely studied (see, for a general review,[1] and[5]).
In particular, Punnen and Nair in[10] propose an algorithm based on the binary search

on the set of all possible bottleneck values. In every such step a cardinality matching
problem in a bipartite graph has to be solved. In order to obtain the time complexity of

P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139 133

O(|E|0.5 × (|O| + |D|)1.5), they use the algorithm of Alt et al. in[2] for solving the
cardinality matching problem approximately. Then the cardinality of a maximummatching
can be checked by growing only a small amount of augmenting paths.
It is not difficult to adapt the algorithm proposed in[2] in order to build a bottleneck

matching “enough close” to a given cardinality, and not exceeding it, with the same com-
plexity. Thus, the binary search proposed in[10] solves thek-cardinality matching problem
and, consequently, problemP24. Since our bipartite graphB has 4k − 2 nodes and O(k2)
arcs (and possible bottleneck values), the time complexity to solve problemP24 is O(k2.5)
(ordering the arcs according to their weights costs O(k2 logk)).

3.4. Reordering all the columns

In this subsection we will analyze the following problems:

• P25:min(u,�),
• P26:max(l,�),
• P27:min(�, U),
• P28:min(�,�).

For all four problems, as proved in the following, the permuted matrixW ′ is obtained by
iteratively grouping in the same column the maximum row elements not yet grouped. This
is equivalent to sorting each row separately, e.g. from the biggest to the smallest element.
This task can be done in O(n logk) time and requires, in the worst case, O(n) exchanges.
Let us indicate in the following byW ∗ such a sorted matrix.
First, let us analyze problemP25. The objective function, to be minimized, is the sum

of the column inner maxima (8):

k∑
j=1

uj =
k∑

j=1

max{w′
ij : i = 1, . . . , m}. (11)

Let V ∈ �(W); by uj (V) we indicate the maximum element in columnj of matrixV
and byz(V) = ∑k

j=1 uj (V) its objective function value. A first result is:

Lemma 2. The matrixV ′ obtained from V by grouping all the maximum row elements in
the same column is such thatz(V ′)�z(V).

Proof. Let j̄ be the index of any column ofV containing the maximum element of the
whole matrix.V ′ is obtained by moving the maximum element of each row from its current
position to column̄j , if it is not already located there.As a consequence, the innermaximum
uj̄ (V

′) = uj̄ (V) since that column contains the global maximum element; while, for any
other columnj, uj (V ′)�uj (V) holds since the elements entering columnj are not greater
than the corresponding leaving elements. The result follows.�

If we repeat the same grouping technique on the secondmaximum row elements, not con-
sidering the already grouped columnj̄ , we obtain another matrix whose objective function
value is not worse thanz(V).

134 P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139

Consider now a matrixV in which h columns{j1, j2, . . . , jh}, 0<h<k, contain theh
biggest row elements, sorted in such a way that each element of columnjs is greater than
or equal to the corresponding element of columnjs+1, for s = 1, . . . , h − 1. We call such
a matrixh-sorted.

Lemma 3. If V is h-sorted, matrix V ′ obtained from V by grouping in the same
column the maximum row elements belonging to the remainingk − h columns, is such that
z(V ′)�z(V).

Proof. The result follows directly, by induction, from Lemma 2 and the subsequent
observation. �

Lemma 3 proves the following theorem:

Theorem 3. W ∗ is optimal for problemP25.

ProblemP26 is symmetric toP25 since it is based on the maximization of the inner
minima; consequently,W ∗ is also a solution forP26.
In problemP27 we want to minimize the biggest inner range. The strategy for reducing

the range of the column containing the biggest element ofW is to group in that column all
the maximum row elements. The observation also holds for the other columns, similarly to
what is stated in Lemma 3, and again, matrixW ∗ is optimal forP27. Note that it is optimal
for P28. Indeed, minimizing the sum of the inner ranges is obtained by iteratively grouping
the maximum row elements in the same column.

4. NP-completeness results

We start the analysis of NP-hard cases from problem:

• P29:min(�,�);

i.e., finding ak-partitionW ∗ ∈ �(W) of minimum width:

min{max{�(Cj) − �(Cj ′) : Cj , Cj ′ ∈ W ′, j, j ′ = 1, . . . , k} : W ′ ∈ �(W)}.
Next, we give two different reductions for the decision version of this problem proving

it is NP-complete in the strong sense even ifm = 3 (k arbitrary), and NP-complete in the
ordinary sense even ifk= 2 (marbitrary). Moreover, we show that form= 2 (k arbitrary)
it is solvable in polynomial time.
First, let us consider the decision version of problemP29 which we denote with D1.

Problem D1. LetW = [wij] be an integer matrix withm rows andk columns. Given an
integer numberH, does there existsW ′ ∈ �(W) : max{�(Cj) − �(Cj ′) : Cj , Cj ′ ∈
W ′, j, j ′ = 1, . . . , k}�H?

Theorem 4. ProblemD1 is NP-complete in the strong sense even ifm = 3.

P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139 135

Proof. We reduce the Numerical 3-Dimensional Matching Problem (N3-DM), known to
be NP-complete in the strong sense[6], to D1.

ProblemN3-DM
Instance: Disjoint setsT,X, andY, each containingkelements, a sizes(a) ∈ Z+ for each

elementa, and a boundB ∈ Z+.
Question: CanT ∪ X ∪ Y be partitioned intok disjoint setsC1, C2, . . . , Ck such that

eachCi contains exactly one element for each ofT, X, andY and such that, for 1� i�k,∑
a∈Ci

s(a) = B?
In order to reduceN3-DM toD1we consider ak-partition problemwithmatrixW=[wij]

with 3 rows andk columns. To eacha ∈ T , we associate an elementw1j with w1j = s(a),
to eacha ∈ X an elementw2j = s(a), and to eacha ∈ Y an elementw3j = s(a).We choose
H = 0 as the threshold for the corresponding decision problem.
If N3-DMhasa solution, then there exists a partitionW ′=�(W) such that�(Cj)=�(Cj ′)

j, j ′ =1, . . . , k which solves problem D1. If, on the other hand, problem D1 has a solution
withmax{�(Cj)−�(Cj ′) : Cj , Cj ′ ∈ W ′, j, j ′=1, . . . , k}=0 then for eachCj ,j=1, . . . , k
it holds thatw1j +w2j +w3j =B ′, andB ′ must be equal toBas

∑
ijwij =kB, then N3-DM

has a solution. �

Theorem 5. ProblemD1 is NP-complete in the ordinary sense even ifk = 2.

Proof. We reduce Partition to D1.

ProblemPartition
Instance: Finite setA and sizes(a) ∈ Z+ for eacha ∈ A.
Question: Is there a subsetA′ of A such that

∑
a∈A′ s(a) = ∑

a∈A−A′ s(a)?
Note that Partition remains NP-complete even if the elements inA are ordered asa1, a2,

. . . , an and we require thatA′ contains exactly one ofa2l−1, a2l for l = 1, . . . , n/2 [6].
Assuming the elements inAare ordered as above, for reducingPartition toD1we consider

the following instance ofk-partition withW = [wij] an integer matrix withm rows and 2
columns and withwi1 = a2l−1, wi2 = a2l , i = 1, . . . , m and l = 1, . . . , n/2. We ask if a
partitionW ′ ∈ �(W) exists such that max{�(C1) − �(C2) : C1, C2 ∈ W ′} = 0.
If Partition has a solution, then there exists ak-partitionW ′ ={C1, C2} such that�(C1)=

�(C2), and thus with�(C1) − �(C2) = 0 which solves the decision problem D1.
Conversely, if problem D1 has a solution with�(C1) − �(C2) = 0 then�(C1) = �(C2)

from which it follows
∑

a∈A′ s(a) = ∑
a∈A−A′ s(a). �

Now we analyze the following problems:

• P30:min(�, U),
• P31:max(�, L).
We can give reductions for problemsP30 andP31 following Theorems 4 and 5. For this

purpose the decision versions of problemsP30 andP31 are given next:

Problem D2. LetW be an integer matrix withm rows andk columns. Given an integer
numberH ∈ Z, ∃W ′ ∈ �(W) : max{�(Cj), Cj ∈ W ′}�H?

136 P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139

Problem D3. LetW be an integer matrix withm rows andk columns. Given an integer
numberH ∈ Z, ∃W ′ ∈ �(W) : min{�(Cj), Cj ∈ W ′}�H?

Theorem 6. ProblemsD2 andD3 are both NP-complete in the strong sense even ifm= 3
and NP-complete in the ordinary sense even ifk = 2.

Proof. These proofs are similar to those of Theorems 4 and 5, and are omitted here.�

We conclude the analysis on NP-hard cases adding some final comments on instances
with m = 2 andk = n/2.
The decision version of problemsP30 andP31 can be answered in polynomial time. In

fact, for any fixed value of thresholdH we can construct a bipartite graph withn vertices
and an edge between pairs of vertices if and only if the corresponding elementsw1j and
w2j ′ are such that:

w1j + w2j ′ �H (problem D2, P30),

w1j + w2j ′ �H (problem D3, P31).

The search for the minimumH for which a maximal (perfect) matching in this bipartite
graph exists can be performed by the approach discussed in Section 3.3. In this specific
case the bipartite graph hask nodes andk2 edges, hence the proposed adaptation of the
algorithm of Punnen and Nair would find the solution in time O(k2.5). Sincek =O(n), the
complexity is O(n2.5).
As far as problemP29 is concerned in the particular case ofm=2 andk=n/2, to apply

the same approach it would be required to solve even more matching problems. A simple
way to tackle this is the following. Choose arbitrarily one couplew1t andw2t ′ and consider
the bipartite graph with 2k nodes and an edge betweenw1j andw2j ′ if and only if:

w1t + w2t ′ − H/2�w1j + w2j ′ �w1t + w2t ′ + H/2.

The existence of a perfect matching in such a graph implies the existence of ak-partition
W ′ withmax{�(Cj)−�(C′

j)}�H .As the couplew1t andw2t ′ hasbeen chosenarbitrarily, in

a first rough analysis we should consider all possible couples and hence solveO(k2)=O(n2)
maximalmatching problems for each value ofH ∈ Q and verify if the value of thematching
isk. The overall complexity of the optimization problemwould then be bounded fromabove
by O(n4.5).

5. On the open problem

The last problem is

• P32:min(�,�).

This is the only one out of the 32 problems for which complexity remains open. We just
discuss a graph theoretical interpretation which, however, has not yet led to a solution. It
can be shown that the decision version ofP32 is equivalent to finding a partition in cliques

P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139 137

of sizek of a particular graph.While this latter problem is NP-complete on general graphs,
to the best of our knowledge, no complexity results are known for the specific class which
we get by reducing the decision version ofP32.
First, let us consider the decision version of problemP32 which we denote with D4.

Problem D4. Let W = [wij] be an integer matrix withm rows andk columns. Given
an integer numberH does there existW ′ ∈ �(W) : max{�(Cj) − �(Cj ′) : Cj , Cj ′ ∈
W ′, j, j ′ = 1, . . . , k, j �= j ′}�H?

The graph problem can be obtained as follows.Assumewe ask if there exists ak-partition
satisfying Problem D4. For eachwij build an interval[wij −H/2, wij +H/2] on the real
line. Define a graph with a vertex for each interval and an edge between vertices if and only
the correspondingwij andwi′j ′ havej �= j ′ and the intervals overlap. Note that the first
condition, i.e.,j �= j ′, does not permit to have an edge even though the closed intervals do
overlap, thus this graph is not an interval graph. Indeed, it is easy to verify that is not even
a triangulated graph.

6. Applications

The topic covered in the paper offers solutions to many problems in parallel computing,
files allocations, scheduling, and routing. In the following examples we exhibit somek-
partition problems applied to lots scheduling and to routing on multigraphs.
Let us consider the following scheduling framework (see[3] for standard scheduling

terminology). These aremproduction facilities.A set ofk lots is to be executed in any order
without interruption. Lots are of different size and hence a different processing time. Each
lot is assigned to a facility. Suppose the production activity is organized on the basis of
working periods, for instance on a daily basis, i.e., each facility processes one lot per day
starting the execution at the beginning of the day. We are asked to find a schedule (i.e., the
sequence of lot processing for each facility) which optimizes some performance criterion.
In such a scenario, the problem could be investigated with respect to different objective

functions related to organizational requirements. We may be interested in balancing the
daily workload among allm facilities, i.e., we want to find a schedule such that for each day
the difference between the completion time on the last freed machine and the completion
time of the first freed machine is minimized. Denote aswij the duration of the processing
of lot j on facility i. A reasonable objective function for that problem could be to minimize∑k

j=1 (max{wij : i = 1, . . . , m} −min{wij : i = 1, . . . , m}) which corresponds exactly to
solving problemP28.
Another acceptable balancing criterion could be minimizing over all days the maxi-

mum difference between completion times of the same day (i.e., minimize max{wij :
i =1, . . . , m, j =1, . . . , k}−min{wij : i =1, . . . , m, j =1, . . . , k}). Equivalently, we are
looking for ak-partition with minimum(�, U) (see problemP27). Both problems can be
solved efficiently using algorithms described in Section 3.4.
Alternatively, we might be more concerned about the daily workload of the team of

workers tending all the facilities which, for dayj, can be measured as
∑m

i=1wij . In this
case, either we choose to minimize the maximum workload over all the days (minimize

138 P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139

max{∑m
i=1wij : j = 1, . . . , k}), or want to flatten the workload curve minimizing the

difference between the maximum and minimum workload over all the days (minimize
max{∑m

i=1wij : j = 1, . . . , k} − min{∑m
i=1wij : j = 1, . . . , k}), we have to face an NP-

hard problem. In fact, thek-partition problemsP30 andP29 modeling the above cases,
have been proved to be NP-hard in the strong sense (see the Section 4).
Similar applications in problems related to assembly line balancing are discussed in[3].
Let usnowexamineexamplesof somek-partitionsand routingproblems inmultigraphs.A

graph can be called anm-simple-multipathif it is possible to have each couple of sequential
nodes connected by exactlym edges of lengthswij , i = 1, . . . , m. The routing problem
consists in findingm simple arc-disjoint paths, each formed byk edges so that the paths
are as uniform as possible[7,8]. One may wish to minimize, for example, the sum of the
ranges between the longest and the shortest edge in the path obtaining a route with quite
balanced edges length. Alternatively, one may want to determine the set of paths in which
the difference between the longest and the shortest is minimum. It can be easily recognized
that the first problem isP23 and the latter is problemP29.
Several other applications can be derived from real life combinatorial optimization

problems.

7. Conclusions

In this work we defined and examined 32 uniformk-partition problems or, equivalently,
32 matrix permutation problems. They are characterized by the particular measure of “set
uniformity” to be optimized. 21 of the studied problems can be solved by linear time algo-
rithms, 7 require more complex algorithms but can still be solved in polynomial time, and 3
are proved to be NP-hard. The complexity of only one problem, namelyP32, remains open.

Acknowledgements

The authors wish to thank anonymous referees whose valuable comments allowed us to
improve the paper.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[2] H.Alt,N.Blum,K.Mehlhorn,M.Paul,Computingmaximumcardinalitymatching in timeO(n1.5

√
m/ logn),

Inform. Process. Lett. 37 (1991) 237–240.
[3] J. Blazewicz, K. Ecker, E. Pesch,G.Schmidt, J.Weglarz, SchedulingComputer andManufacturingProcesses,

Springer, Berlin, 1996.
[4] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, R.E. Tarjan, Time bounds for selection, J. Comput. System

Sci. 7 (1973) 448–461.
[5] R.E. Burkard, Selected topics on assignment problems, Discrete Appl. Math. 123 (2002) 257–302.
[6] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

Freeman, NewYork, 1979.
[7] P. Hansen, Bicriterion path problems, in: Multiple Criteria Decision Making: Theory and Applications,

Lecture Notes in Economics and Mathematical Systems, vol. 177, 1980, pp. 109–127.

P. Dell’Olmo et al. / Discrete Applied Mathematics 150 (2005) 121–139 139

[8] P. Hansen, G. Storchi, T. Vovor, Paths with minimum range and ratio of arc lengths, Discrete Appl. Math. 78
(1997) 1–3, 89–102.

[9] S. Martello, W.R. Pulleyblank, P. Toth, D. de Werra, Balanced optimization problems, Oper. Res. Lett. 3
(1984) 275–278.

[10] A.P. Punnen, K.P.K. Nair, Improved complexity bound for the maximum cardinality bottleneck bipartite
matching problem, Discrete Appl. Math. 55 (1994) 91–93.

	On uniform k-partition problems62626262
	Introduction
	Notation and problem definition
	Easy problems
	Grouping maximum and/or minimum row elements

	Other polynomial problems
	Grouping elements belonging to a given interval
	Spreading =k elements on =k columns
	Spreading =k pairs of elements on =k columns
	Reordering all the columns

	NP-completeness results
	On the open problem
	Applications
	Conclusions
	Acknowledgements
	References

