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1. Introduction 

Generalized Rees rings over Dedekind rings were introduced in [3] as a particular 
case of  graded Dedekind rings. It was discovered soon that these rings simplified 
the study of certain Dedekind rings (cf. e.g. [4]). Extending the concept of  a 
generalized Reesring to higher dimensions and to the non-commutative case pro- 
vided new examples o f  rings with interesting properties (see [2], [6]). 

We are interested in the following application. Let A be an H.N.P.  order with 
center R (in the sense of  [5]). Then there is a finite number of maximal ideals 
MI,..., M k of R such that AMi is not an Azumaya algebra. Denote rad(AMi) by Ji 
and let J--Jl"'" Jk. It is well known that J is an invertible A ideal. Now it is easily 
proved that d = ~i~z J i x i  is a Z-graded unramified maximal order over a graded 
Dedekind ring S. Under some mild extra conditions zi is even an Azumaya algebra. 

The close relation between A and d makes it possible to relate invariants of  A 
to invariants of  the (easier) ring d .  We will give some applications of this principle 
in a subsequent paper. However since S is not necessarily a generalized Rees ring 
it is necessary in the first place to further the study of arbitrary Z-graded Dedekind 
rings. The theory of  graded Dedekind rings is not completely parallel to the un- 
graded case. As a matter of  fact, the approximation property does not hold and this 
has a drastic consequence, namely: the graded class group of  a graded semilocal 
Dedekind ring need not be zero. Another problem arises because there is no direct 
generalization of  Steinitz's theorem available. The aim of this paper is to study the 
graded module category and the graded class group of a graded Dedekind ring and 
to derive some results which may be used as substitutes for those parts of  the un- 
graded theory that cannot be recovered in a trivial way. The author thanks F. Van 
Oystaeyen for some comments. 

* The author is supported by an NFWO grant. 
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2. Notations and conventions 

(a) Let R be an integral domain. We denote by Frac(R) the set of fractional ideals 
of R. The set of invertible fractional ideals of R is denoted by Inv(R) and the set 
of maximal ideals of R is denoted by g2(R). 

~ )  Let R be a Dedekind ring, a e © and I ~  Frac(R). We may write I as 
M 1 --.Mff k for some M I , . . . , M k e g 2 ( R  ). Then I a is defined a s  M~lnla]'"M~k nka] 
where Ffl ] with fl ~ ~ stands for the smallest integer _> ,8. A more general definition 
of these 'rational powers' is provided in the appendix. 

(c) In this paper 'graded' always means 'Z-graded'. Constructions of a graded 
nature, paralleling similar constructions in the ungraded theory are denoted by the 
ungraded symbol but with a sub- or superscript g, e.g. Qg(R) means the graded 
quotientring etc. 

(d) - means 'isomorphism'. If this symbol is used in connection with graded 
objects it always means graded isomorphism. 

(e) Throughout we use terminology and notations of [1]. 

3. Graded discrete valuation rings 

3.1. Definition. Let K be a graded field. A graded subring R of K is a graded dis- 
crete valuation ring of K if and only if for every homogeneous x in K either x or 
x -l is in R. 

3.2. Definition. Let K be a graded field. A graded valuation is a map o : h(K) ~ T 
where F is an ordered group satisfying the following properties. 

(a) Va, b e h(K)  : o(ab) = o(a) + o(b). 
(b) Va, b ~ h(K)  : deg(a) = deg(b) = o(a + b) > Min(o(a), o(b)). 

If F =  7/in the foregoing, then o is called a graded discrete valuation. Properties 
of graded valuations and graded valuation rings may be found in [1]. Let us only 
mention the bijective correspondence between graded valuations and graded valua- 
tion rings. A graded valuation ring corresponding to a graded discrete valuation is 
called a graded discrete valuation ring. 

3.3. Theorem. Let  K = K o [ X , X  -1 ] be a graded f ield with d e g X =  1. A graded dis- 

crete valuation ring is o f  one o f  the fol lowing types. 

(a) Ko[X], 
Co) go[X-l], 
(c) Zn~z M-~aXn where a e © and M is the maximal ideal o f  a discrete valua- 

tion ring R o o f  Ko. 

Proof. Let o : h(K)  ~ 7/be the graded valuation corresponding to R. Since o(Ko)CT/ 
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two possibilities may occur: o(Ko)=0 or o(Ko)= nZ for some n e N \ {0}. 

First, if o(K0)=0, then R D K o  and since X e R  or X -1 e R ,  it follows that 
R DKo [X] or RDKo[X-1]. Now Ko[X] and K0[X -l ] are both graded discrete valua- 
tion rings [1] hence maximal graded subrings of K. So R =K0[X ] or R =K0[X-l ] .  

Secondly, if  o(Ko)= nZ, then R o is a discrete valuation ring with corresponding 
valuation o [ Ko. 

It is possible to normalize o such that o(Ko)=Z. In the sequel we suppose all 
valuations to be normalized in this way. Let us denote o(X) by a. By definition 
h ( R ) =  {xeh(g)[o(x)>_O} and so 

Ri = { x ~ g i  l o(x)>-O} 

= { y X i [ y e K o ,  o(yXi)>_O} 

= { Y X i  I Y ~ M - i a  } = M-iax i .  [] 

In the sequel all graded discrete valuation rings are supposed to be of  the latter 
type. 

If  we replace X by n k x  where n is the uniformizing element of  R 0 we may 
always assume that 0_< a <  1. The type of R is defined to be the number  a Mod 1 
and it will be denoted by t(R). Note that t(R) and R0 completely determine R. 

3.4. Theorem. Let R be a graded valuation ring with t (R)=p/e ,  O<_p<e and 
(p, e) = 1. (I f  t(R) = 0 we put  p = 0 and e = 1.) Let m denote the maximal ideal o f  R o 
and M the graded maximal ideal o f  R. Then: 

(a) M e = mR. Hence it makes sense to call e the ramification index o f  R. 
(b) The homogeneous units o f  R have degrees ke with k ~ 7/. 
(c) The uniformizing elements o f  R have degrees p' where p p ' -  1 Mode.  
(d) R / M = R o / m [ X e ,  X -e] with d e g X =  1. 

Proof. From Theorem 3.3 we infer that R = ~,,~z m"aX". We first establish (b). 
Clearly m-naX" contains a unit i f f  

m-".m""=Ro mr- . - l+  r . - I  = Ro r-n l + rn l = nq Z e In. 

Now it is clear that the minimal  value attained by the valuation of an element of  
m-naX n is F-na]  +ha. So for m r-n~lxn to contain a uniformizing element, 
F - n a ]  + na should be as small as possible. The lowest value that F - n a ]  + na can 

possibly take is clearly 1/e. For this to happen it is necessary that e l l -  np or 
equivalently np-ffi 1 Mode.  Conversely, if  n p -  1 rood e, then a direct calculation 
shows that F-na]  +ha= 1/e. This also proves (a). It remains to prove (d). We 
know that R / M  = Ro/m IX y, X -I] ( R / M  is a graded field). To find f we must find 
the smallest i such that R i ~ M i .  Since M i = { x ~ R i l  o(x)>_l/e} it is clear that 
M i ~ R  i ~ ~tx6 R i • o ( x ) =  0 ~ R contains a homogeneous unit ~ i = Ice. This proves 
the statement. [] 
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3.5. Remarks. (a) From the foregoing it is clear that the valuation of a homo- 
geneous element is not independent of its degree. In fact it is easy to show that for 
a e h ( K )  

o(a) -- a deg a Mod 1. 

(b) From [7] it follows that all units of R are homogeneous. So the adjective 
'homogeneous' in 3.4(b) is superflous. 

4. Graded Dedekind rings 

A lot of equivalent characterizations of graded Dedekind rings are to be found 
in [1]. We use the following definition. 

4.6. Definition. A graded domain is a graded Dedekind ring if and only if 
(a) R is (graded) integrally closed. 
(b) R is (graded) Noetherian. 
(c) gr-K dim R = 1. 

4.7. Proposition. Let (Ri)i~ I be a family  o f  graded discrete valuation rings in some 
f ixed graded field. Suppose: ~ R i ,  o is a Dedekind ring, Ri, o~Rj, o f o r  i ~ j  and 
t(Ri) = 0 f o r  almost all i. Then R = Ai~z Ri is a graded Dedekind ring. 

Proof. R is graded integrally closed since each R i is graded integrally closed. Let 
e be the least common multiple of the ramification indices of the Ri ' s .  (This defini- 
tion makes sense since t (Ri)= 0 for almost all i.) From R~o:/=Rj, o for i ~ j  it follows 
that R (e) is a generalized Rees ring. So R (e) is graded Noetherian and has graded 
Krull dimension one because R 0 has the corresponding ungraded properties R(e)= 
IR for some invertible R-ideal. This implies that R is generated by R o, R 1, . . . ,  R e_ 1 
over R(e). So R is finitely generated and gr-integral over R(e). This shows that R 
is Noetherian and had graded Krull dimension 1. [] 

In the sequel we only consider graded Dedekind rings which arise in this way. 
From [1] it follows that the only two which are not of this type are k[X]  and 
k[X-1]. 

4.8. Remark. (a) The condition R~u~Rj,  o is necessary. Take for example RI= 
~,n~z M n x n  and R2= ~,n~z M - n x n  where M is the maximal ideal of a discrete 
valuation ring. Then R1 N R 2 has graded Krull dimension two. 

(b) From 4.7 it follows that R = ~:n~z In/exn" Thus R is a so-called lepidopterous 
Rees ring (cf. [2]). (It is possible to do this in a slightly more general way, cf. the 
Appendix.) 

(c) From 4.7 it follows that there is a bijective correspondence between maximal 
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ideals of R0 and graded maximal ideals of R. If M e  12g(R), then the graded locali- 
zation of R at M is denoted by RM. If m =MNR0,  then RM=Rno\m. The corres- 
ponding ramification index and graded valuation will be denoted by eM and oM 
respectively. 

4.9. Definition. Let R be a graded Dedekind ring with graded field of quotients 
K0 [X, X -1] (deg X = 1). We say that R satisfies the graded approximation property 
if the following condition holds. 

Let S be a finite subset of £2g(R) and (np)p~s a set of integers. Then there exists 
an xeh (K)  such that epOp(X)=np for all p e S  and Op(X)>O for p¢S.  

4.10. Theorem. Let R be a graded Dedekind ring. Then R satisfies the graded 
approximation property if  and only i f  (ep, eq) = 1 for p, q e 19g(R), p ~ q. 

Proof. Assume that R satisfies the graded approximation property. If p, q e l'2g(R), 
p ~: q, there exists a r e h (R) such that Up(Z)= 0 and Vq(r)= 1/eq. 3.5 (a) implies that 
deg r--0 mod ep and deg z=--I mod eq; this is only possible when (ep, eq)= 1. 

Conversely, just like in the ungraded case, it suffices to show that h(P1)~ 
h(p2)O .-. O h(Pn) for PI, ...,Pnef2g(R). Let p '  be the degree of a uniformizing 
element of Re .  Take a k such that k=-.p'modev~ and k-Omodep, ,  i= 1, .. . ,n. In 
this case (Pi)k=(Pi, O)aiRk for i = l , . . . , n  with a l>0  for i=2, . . . ,n  and (P2)k= 
(Pl, o)a[Rk with a~ >al .  Then it follows from the ungraded approximation theorem 
that 

(Pl)k tZ (P2)k O "" I..J (Pn)k" [] 

We will now investigate the graded module category of a graded Dedekind ring. 

4.11. Proposition. I f  R is a graded Dedekind ring and M a finitely generated graded 
R-module, then M = N  ® T where N is a graded torsion free R-module and T is a 
graded torsion R-module. 

Proof. Exactly as in the ungraded case. [] 

4.12. Proposition. Suppose that R is a graded Dedekind ring and T is a graded 
finitely generated torsion R-module. Then T=(~7= 1 R/P[ ~i with Pi e~2g(R). 

Proof. Let a be the annihilator of T. We may write a as b¢ with b + ¢ = R. Choose 
elements of degree zero seb,  t e¢  such that s+ t=  I. Now it is that sT= tT= T. Let 
x e s T N t T .  Then x=(s+t )x=sx+tx=O.  So by induction T - - T I ~ ' " O T n  were 
anh(T/) = P~ for some Pie ~2g(R). The R-modules annihilated by some power of a 
P e ~gg(R) are in one-one correspondence with the torsion modules over the ring Rg 
which is a graded P.I.D. The proof may now be carried further exactly as in the 
ungraded case [8]. []  
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4.13. Proposition. I f  R is a graded Dedekind and M is a graded R-lattice (i.e. a 
graded torsion free finitely generated R-module), then M =  al @'-" ~) an where 
al, a2, ..., an ~ Fracg(R). 

Proof. Exactly as in the ungraded case. [] 

4.14. Proposition. Let R be a graded discrete valuation ring. For ( h i ) i =  1 . . . . .  k, 
(mi)i=l ..... kEZ we have R(nl)@...@R(nk)=R(m~)@... OR(m k) if  and only i f  
there is a permutation q~ { 1,..., k} ~ { 1,..., k} such that n , ( i )  ---- mi mode where e is 
the ramification index of  R. 

Proof. Write M and N for R(n)O)...@)R(nt) and R(ml)@...@)R(mk) respec- 
tively. Denote the graded maximal ideal of R by P. 3.4 implies that 

and 
M/PM-~ k[Xe, X-el (nl) @ "'" @ k[Xe, X-el (nk) 

N / P N  = kIXe, X-el(m~) ~ "'" @) k[Xe, x-el(mk). 

Comparing dimk(M/PM)i to dimk(N/PN)i yields the desired result. The converse 
is trivial. [] 

4.15. Definition. Let R be a graded Dedekind ring, M and N two graded R-lattices. 
We say that M and N are in the same genus (notation: M - N )  if Mp=Np for all 

4.16. Definition. Let R be a graded Dedekind ring and M a graded R lattice of 
rank n. Then det M denotes the graded module of rank 1: A~M. This means that if 

M = a l  G "'" Gan, then det M--- al ... an. 

4.17. Lemma. Let R be a graded Dedekind ring and consider (a)/, (hi)e Fracq(R) 
( i = l , . . . , n )  such that al t~---@an-bl@-.-C~b~,  t~Ro. Then the following are 
equivalent 

(a) al"'" anbn 1' '" ]~l ___ tR, 

Co) (an)o(bl) ' "'" = tRo .  

Proof. It suffices to check this locally. So we may assume that R is a graded 
discrete valuation ring. Let r(R)=p/e with (p ,e)= 1, O<_p<e, and let p '  denote 
the degree of a uniformizing element H of R. Thus ai =Hr'R and lii =HS'R. 
Since a l ( ~ ' " @ a n - b n t ~ ' " @ b n  we may suppose that r i - s t=k ie  (by 4.14). Thus 
al ""anbi -1 ""b~ ~=fIerk'R. Theorem 3.4 implies that IIe=ztu where zt is a uni- 
formizing element of R0 and u is a homogeneous unit. Hence HeEk'R=rtEk'R. 
Furthermore 

(ai)o = ( I I r ~ R f ~  - l l r ~ R  - n i p '  a n d  (hi)0 = ( I l S i R i ) o  = l-IS~R - siP'. 
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So 
(fli)0 ([}i)O 1 "- l ~ k ' e ( R  - -  r i p ) ( R  - s i p ' )  -~ 

= 17kieTt F(p /e )rP ' ]X-r ip 'T t -F(p /e )s tP ' ]XS~P'Ro 

- 7t(pp'+ l ) k i l l k i x - k i e P ' R o  

= 7t(PP'+ l)ki(7 t -pp 'xp 'e)kix-kiep 'R0 = 7[kiRo . 

Thus ql,0-.-an,0b~,g..-bn.~= nr-k'Ro . [] 

4.18. Corollaries. (a) Let M , N  be two graded R-lattices with M - N .  I f  f e 
Homg(M,N) then f is an isomorphism i f  and only i f  fo is an isomorphism 

(fo=f [ g0). 
(b) det M--  det N i f  and only i f  M o = N o. 
(c) a, beFracg(R). Then a - b  implies that a=Ib for  some I~Frac(R0). 

Proof. (a) We may suppose that M=-al@. . .Gan and N=-b10) '"Obn with 
ai,bieFracg(R). Then t may be represented as an element of degree zero of 
(a~-I bj)j = Ii:::i~- The statement that f0 is an isomorphism is equivalent to R0 det f =  
al,~--- a~,~bl,o"- bn, o. By 4.17 this is equivalent to R d e t f =  ai -1... a~Ibl --. bn. So f is 
an isomorphism. 

(b) With notations as in (a) we have that det M=-al '"  an and det N_=_ hi"" bn. So 
(b) is a direct consequence of 4.17 and Steinitz's theorem. 

(c) a - b  implies that ab - I - R  and since (ab-1)0R¢-. ¢tb -1, (a) implies that ab -1= 

(ab-1)0 R. [] 

4.19. Lemma. Let R be a graded Dedekind ring and consider graded R-lattices M, N 
such that M - N  and M = a l O " " ~ a n ,  ai eFracg(R). Then there exists (bi)i E 
Fracg(R) such that N-~bl (~ ". ~bn and b i - a  i for  i= 1, ...,n. 

P r o o f .  In view of Proposition 4.14 we may suppose that N is of the form 
YI~ "'" ~Yn with O,i)i~Fracg(R). We use the approximation property of R 0. 
Choose tl , . . . ,  tn ~ Ro with the following properties: 

(a)  t 1 = 1. 

(b) Let p e ~2g(R) be such that the following condition holds: (al)p~R, or (Yi ) :  

(Yi)p#:Rp.  Then there exists an i such that (~i)p~---(fll)p (by 4.14). We require: 

up(t i) + Op(yi) <- Min(op(tl) + Op(yl), ..., Op(ti_ l) + o,(Yi_ 1), 

op(ti+ l) + Op(Yi+ 1), . . . ,  op(tn) + Op(Yn))" 

Note that there is only a finite number of p ' s  satisfying the condition. 
(c) For primes different from the above we demand that 0_< Up(t2),..., 0 <__ Op(tn). 

Let bl denote tlyl + "" + tnYn. Then it is easy to see that t h - a l .  Put N ' =  
ker(N t~ ..... tn,bl). Thus N-- -N '~b l  with N' -a2 t~" .O)an .  The proof proceeds 
by induction. [] 
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4.20. Lemma. Suppose that 111,/12,/21,/22 C Frac(R) where R is a Dedekind ring. I f  
- -i=1,2 111/22 + I12/21 =R,  t h e n  there  ex is ts  (aij))= l,2 w i th  all a 2 2 -  a12aEl = 1. 

Proof. Define A = {pe~(R)[YI i j .op(I iy): / :O }. Choose a~l,a~2 such that the fol- 
lowing conditions hold. 

If p e A, then Op(a[x) = Op(Ill) and Op(a~2) = 0p(I22). If p e A c, then Op(a~l) >_ 0 and 
? P ! ! 

Op(aE2)>--_O. Choose a21 and a12 such that: If p c A ,  then Op(a21 ) = op(I21 ) and 
Op(a[2 ) = Op(Ii2 ). If p e A  c we distinguish two cases: 

(a) If Op(a~l):/:O or Op(a~2):/:O , then Op(a~E)=Op(a~l)=O. 
(b) If Op(a[!)=Op(a~2)=O , then Op(a~2)>_O and Vp(a~l)>_O. 
The choice of the aij's guarantees that Ra~la~E+Ra~Ea~l =R. The statement of 

the lemma is a trivial consequence of this. [] 

4.21. Lemma. Let R be a graded Dedekind ring. Let I, J eFrac(Ro) and a,b 
Fracg(R). Then Ia ~ Jb = o (~ IJb. 

Proof. Let M and N denote Ia~)Jb  and a~)IJb respectively. We can write 
Hom(M, N)  as 

I-IR 
Jo-lb 

J-1l~-la ~ 

m / 

Since ( I -  1R )0 (IR)o + ( J -  1 b- 1 ft)O = Ro ' Lemmas 4.20 and 4.17 imply that there exists 
a graded isomorphism between M and N. [] 

We are now ready to prove the main theorem of this paper. 

4.22. Theorem. Consider a graded Dedekind ring R and graded R lattices M and 
N. The following statements are equivalent. 

(a) M=N.  
Co) M -  N and det M-= det N. 
(c) M -  N and M o = N o. 
(d) M -  N and det M0 = det N 0. 

Proof. The equivalence of (c) and (d) is Steinitz's theorem since R0 is a Dedekind 
ring. The equivalence of Co) and (c) follows from 4.18. So it remains to establish 
the equivalence of (a) and (b). To this end we may assume that M----a1 t~ . - -~an.  
From 4.19 and 4.20 we retain that N = I l a l ~ ) . . .  ~Inon with I i ~Frac(R0). From 
4.22 we retain that N=(I1 ""Inal) t~aEt~- ' - t~nn.  Since d e t M = d e t N  we obtain 
I~ . . . In=R.  [] 

4.23. Theorem. (Cancellation for graded Dedekind rings). Let  R be a graded 
Dedekind ring. I f  M, N, P are graded R-lattices, then M ~) P = N ~  P implies M --- N. 

Proof. An easy consequence of 4.22. [] 
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5. Class groups of  graded Dedekind rings 

In [1] several different classgroups of graded Krull domains have been introduced. 
(a) Clg(R): the graded isomorphism classes of graded divisorial R-ideals. 
(b) Clg(R): the (ungraded) isomorphism classes of graded divisorial R-ideals. 
(c) Cl(R): the isomorphism classes of divisorial R ideals. 

In [1] it has been proved that Clg(R)~CI(R). We calculate Clg(R) and CIg(R) for 
graded Dedekind rings. 

5.24. Definition. Let R be a graded Dedekind ring. The genus group of R is defined 
a s  

g ( R ) =  .]~ Z/epT/. 
p ~ ~ (R) 

go(R) is defined to be g(R) / ( . . . ,  1, ..., 1, ...). 

5.25. Lemma. Let R be a graded Dedekind ring. The proo f  o f  4.7 implies that 
R(e) = IR where e is the l.c.m, o f  the (ep)p ~ f2g(R) and I e  Frac(R0). The following 
diagram with canonical arrows is exact. 

0 0 0 

0 " G )  

L 
0 , CI(Ro) 

L 
o ,Cl(Ro)/G) 

0 

, (R(1))  

L 
' Clg(R) 

( . . . ,  1, . . . ,  1,... )--*0 

,0 ,g(R) 

I 
'go(R) 

L 
0 

, Clg(R) ,0 

0 

Proof. Exactness of the columns and the first row follows by definition. Exactness 
of the middle row is a consequence of 4.18. Exactness of the 3rd row follows from 
the snake lemma. 

5.26. Corollary. (a) Suppose that R satisfies the graded approximation property. 
Then CIg(R)=CI(Ro)/(I) .  This generalizes a result o f  [1]. 
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(b) Suppose that R is graded semilocal. In this case R is a graded principal ideal 
domain i f  and only i f  R satisfies the graded approximation property. 

Proof. (a) If  R satisfies the graded approximation property, then 4.10 implies that 

g(R)o = O. Hence CIg(R)-= CI(Ro)/(I) by 5.24. 
(b) If R is semilocal, then R0 is also semilocal. (b) is then an consequence of 4.10 

and 5.25. 

6. Appendix: iepidopterous Rees rings 

We want to give a structure theorem for graded integrally closed rings containing 
a generalized Rees ring. The foregoing indicates that such rings may be viewed as 
generalizations of graded Dedekind rings. Let R0 be an integrally closed ring and 

consider I e  Inv(R0). 
(a) For p ~ 7 /  we define 11/p to be the sum of all ideals J that satisfy JPCI.  

We claim that (II/P)PcI. Actually it suffices to check that J f C I t J ~ C I  entails 
(J l  + J2) p C [ .  Since (J l  + J2) p=  ~f=0 j~ jp - i  the problem reduces to the validity of 
j~ j~ - i  C I for i =  1, ..., p. Now (J~ J~-iI-1)P C(J f ) i (JP)p- i l -p  C R  0 and since R 0 is 

integrally closed this implies that J~JP-*cI. 
(b) Let a = P / q e Q ,  q>_O. We define I a as (IP) l/q. To prove that this is well 

defined it suffices to show that (IP)l/q=(inp)l/q=(InP) 1/np for all n ~  N. Now 
((IPn)l/qn)qnCIPn and exactly as in (a) this implies that ((IPn)l/qn)qcI p and hence 
(IPn)l/qnCIP/q. The other inclusion follows from ((IP)l/q)qrcIPn. In case R 0 is a 

Dedekind ring one easily deduces that this definition coincides with the one given 

in the foregoing. 

6.27. Proposion. Let R o be an integrally closed ring. The following properties hold. 
(a) Va, Be Q: IaI#cI a+#. 
(b) V a e Q :  IaJ~e(IJ)~.  
(c) Va, B e Q :  a < B < y : I ~ N I Y c I  B. 

(This is a kind o f  continuity property). 

Proof. The proofs are based on elementary techniques. As an example let us 

prove (d). 
(a) Let p, q, n ~ Z: p < n < q. We prove that I p CI I ¢ C I n. n may be written as 

(ap + bq)/(a + b) for some a, b e 7/. Since R is integrally closed it is again sufficient to 
prove that (I p f) iq)a + b C I ap + bq. This inclusion follows from I Cp- q)b t'l I (q- p)a C Ro 
which is easily proved: take x ~ I (p-  q)b f') I(q -p)a, then x a e I (p - q)ab and x b ~ I (q- b)ab. 

Hence x a + b ~ R and so x ~ R. 
(b) Let a, fl, y ~ Q ,  a<fl<_y. We may write t~=p/t, f l=r/ t ,  y = q / t  for some 

t~ N , p , n , q ~ Z .  Then ( IaCIIr ) tc IPNIqCInC(I~) t .  [] 
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The foregoing remarks now lead to the structure theorem. 

6.21t. Theorem. Let R be a graded integrally closed ring such that R te) is a genera- 
lized Rees ring for  some positive integer e. Then R =- ~,~z In/exn with I t  Inv(Ro) 
and ee N. Conversely, every graded ring o f  this type (with R o integrally closed) is 
integrally closed. 

Proof. Put Qg(R)=k[X,X-I] .  We may write R as Ei Ii X i  where I i is a R0 module 
in k. The fact that R contains a generalized Rees ring implies that Q(Ro)= k and 
the Ii's are fractional ideals in k. Since R is integrally closed we have that x t  h(R) 
if and only if x e t  h(R(e)). So I i = {X t Ri  l x e t  Iei }. Now Iei = j i  for a certain 
I t  Inv(R0). So I i= { x t R  o I x e t I  i} = I  i/e. Hence R =  ~,~ In/ex  n. The opposite 
direction is almost obvious for if R '  is the integral closure of R, then R'-=- ~ In/ex n 
and hence R ' =  R. So R is integrally closed. 
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