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Abstract

We analyze the off-shell scattering amplitudes in the framework of the light-front perturbation theory. 
It is shown that the previously derived recursion relation between tree level off-shell amplitudes in this 
formalism actually resums whole classes of graphs into a Wilson line. More precisely, we establish a 
correspondence between the light-front methods for the computation of the off-shell amplitudes and the 
approach which makes use of the matrix elements of straight infinite Wilson lines, which are manifestly 
gauge invariant objects. Furthermore, since it is needed to explicitly verify the gauge invariance of light-
front amplitudes, it is demonstrated that the Ward identities in this framework need additional instantaneous 
terms in the light-front graphs.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Scattering amplitudes in quantum chromodynamics (QCD) with on-shell initial and final 
states are basic objects which can be calculated using perturbative methods of quantum field 
theory. Together with the suitable factorization theorems [1,2] and parametrizations of the non-
perturbative parton densities [3,4] and fragmentation functions [5] they are used to evaluate cross 
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sections for various observables at high transverse momenta in the processes that occur in high 
energy collisions. Over the past two decades there has been an enormous progress in the compu-
tational techniques of the scattering amplitudes and their implementation in the computer codes 
for calculating various processes, see for example [6–10]. Of particular importance are the cal-
culations of the on-shell scattering amplitudes with the fixed helicities [11], for a review see 
[6,12]. Since the amplitudes with different helicity configurations do not interfere with each 
other, they can be added incoherently. On-shell helicity scattering amplitudes can be efficiently 
computed using the Berends–Giele recursion methods [13] which use off-shell currents or the 
Britto–Cachazo–Feng–Witten (BCFW) recursion relations [14,15] which utilize gauge invariant 
on-shell amplitudes with shifted complex momenta.

On-shell scattering amplitudes have however some limitations, since in reality the quarks and 
gluons are never on-shell particles, and thus are never observed as free states in the experiments. 
The off-shell matrix elements are more general objects which can be used for the construction 
of the on-shell scattering amplitudes, like for example in the above-mentioned Berends–Giele 
recursion. Furthermore, the use of the off-shell matrix elements in the phenomenology together 
with the unintegrated parton densities and appropriate kT factorization approaches is the alterna-
tive method for the computation of the cross sections, see for example [16–18]. This approach, 
albeit more theoretically challenging, has the benefit of taking into account kinematics more ac-
curately. This can be essential for example, when computing more exclusive processes which 
do require information about the details of the kinematics. One complication though in using 
off-shell matrix elements is the condition of the gauge invariance. Recently, a progress has been 
made [19–21] in the construction of the off-shell amplitudes which do satisfy Ward identities 
and hence obey gauge invariance. The general method [20] utilizes infinite Wilson line operators 
corresponding to the off-shell gluons, whose directions are defined by the polarization vectors 
perpendicular to the momenta of the off-shell gluons. It has been shown that such a definition 
of the off-shell matrix elements satisfies the corresponding Ward identities with respect to the 
remaining on-shell states and, as such, is gauge invariant.

In previous works [22–25] gluon wave functions, fragmentation functions and scattering am-
plitudes for selected helicity configurations have been derived using the methods of perturbation 
theory on the light-front [26–28]. In particular, certain interesting recursion relations have been 
proved between the off-shell amplitudes, which enabled in turn to construct all tree level Maxi-
mally Helicity Violating (MHV) on-shell amplitudes in this framework [25].

In this paper we shall explain in detail the physical origin of this recursion relation. Namely, 
we shall show that it is a direct consequence of the gauge invariance, as for any off-shell ampli-
tude one can construct its gauge invariant extension, using for example Wilson lines as in [20]. 
Those Wilson lines encode certain recursion, which turns out to be identical to the one obtained 
within the light-front perturbation theory (LFPT). Moreover, since we are interested in the gauge 
invariance properties of the amplitudes within this formulation of QCD, we need a method to 
check the Ward identities explicitly on the light-front. To this aim, we shall demonstrate that 
one needs to redefine the rules for the LFPT in the context of the Ward identities. Namely, in 
the calculation of the ordinary light-front diagrams, the minus components of the momenta only 
occur in the energy denominators and as such are not conserved. However, in order to show the 
Ward identity in the light-front theory the minus components actually appear in the numerators 
of the expression for the amplitudes, because of the replacement of the polarization vector with 
the momentum. This results in the additional instantaneous terms which need to be considered 
in addition to the standard light-front diagrams and which, in fact, restore the full momentum 
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conservation in the vertices, for all light cone components. After this is taken into account, the 
Ward identities are satisfied on the light-front for gauge invariant objects as expected.

The outline of the paper is as follows. In the next section we introduce the notation and con-
ventions used throughout the paper, in Section 3 we recall the recursion relation for the off-shell 
amplitudes on the light-front which was derived in [25]. This recursion relation was derived start-
ing from the Berends–Giele like relations for the light-front off-shell amplitudes. We also recall 
an expression for the off-shell amplitude with (+ → + · · ·+) helicity configuration which was 
derived in the light-front. This amplitude is non-zero for off-shell states and vanishes in the on-
shell limit. In Section 4 we discuss the Ward identities within the light-front formalism. We shall 
enforce ourselves with an explicit example of the lowest nontrivial order amplitude (+ → − ++)

on the light-front. Using this low-order example we demonstrate that the light-front recursion re-
lation for off-shell amplitude indeed contains a natural and gauge invariant object, which in turn 
originates in a straight infinite Wilson line. In Section 5 we generalize this picture to the scat-
tering amplitudes with arbitrary large number of external gluons. Finally in Section 6 we state 
our conclusions. Appendices A–E contain useful identities and technical details regarding some 
formulae discussed in the main text.

2. Notation and conventions

The decomposition of any four vector u in the light cone basis reads

uμ = 1

2
u+ημ + 1

2
u−η̃μ + u

μ
⊥ , (1)

with uμ
⊥ = (

0, u1, u2,0
) ≡ (0, �u⊥,0) and the minus and plus components are defined by a pro-

jection on the following null four vectors

η = (1,0,0,1) , (2)

η̃ = (1,0,0,−1) . (3)

A scalar product in this basis can be written as u · w = 1
2u+w− + 1

2u−w+ − �u⊥ · �w⊥.
We shall be dealing with gluon amplitudes with definite helicities throughout this paper. A po-

larization vector ελ
i (q) for a gluon with helicity λ = ± is typically constructed using two null 

four vectors: a gluon momentum ki and a reference momentum q such that

ki · ε±
i (q) = q · ε±

i (q) = 0, (4)

ε±
i (q) · ε∓

i

(
q ′) = ε±

i (q) · ε±∗
i

(
q ′) = −1. (5)

For later use, let us note the following useful properties of the polarization vectors

ε±
i (q) · ε±

i

(
q ′) = ε±

i (q) · ε±
j (q) = ε±

i (q) · ε∓
j (ki) = 0, (6)

where kj is a momentum of another gluon and q ′ is some other arbitrary null reference four vec-
tor. The change of a reference momentum renders a vector proportional to the gluon momentum

ε
±μ
i (q) = ε

±μ
i

(
q ′) + k

μ
i βi

(
q, q ′) , (7)

where βi

(
q, q ′) is a certain function which depends on the actual representation of the polariza-

tion vectors (see also Eq. (10) below). If an amplitude is gauge invariant, the second term in (7)
does not contribute due to the Ward identity.
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One of the most convenient representations for the polarization vectors is provided by the 
spinor formalism (see e.g. [12]). However, for the purpose of this work we choose another rep-
resentation, given by

ε
±μ
i (η) ≡ ε

±μ
i = ε

±μ
⊥ + �ε ±

⊥ · �ki⊥
ki · η ημ , (8)

with

ε±
⊥ = 1√

2
(0,1,±i,0) . (9)

Here, the reference momentum is explicitly set to q = η which is especially convenient when 
one works in the light-like axial gauge with the gauge vector η. The change of the reference 
momentum can be realized as follows

ε
±μ
i (q) = ε

±μ
i (η) + 1

ki · q
(

�ε ±
⊥ · �q⊥ − q · η

ki · η �ε ±
⊥ · �ki⊥

)
k
μ
i . (10)

Throughout the paper we shall often encounter the following scalar products

ṽij = ε−
j · ki = k+

i vji , (11)

where

vij = �ε⊥ ·
( �ki⊥

k+
i

− �kj⊥
k+
j

)
. (12)

The quantities ṽij and vij satisfy several useful relations which we list in Appendix A. In the 
following we shall frequently use the light-front longitudinal momentum fraction zi defined by

zi ≡ k+
i

P + , (13)

with P + the total incoming longitudinal momentum. Since P + is the total momentum which is 
constant and all the objects are boost invariant we shall set P + = 1 for simplicity in the following. 
The variables vij are related to the spinor products that are frequently used to express the helicity 
amplitudes in the literature

[ji] = √
2zizj ε−

⊥ ·
( �ki⊥

zi

− �kj⊥
zj

)
= √

2zizj vij ,

〈ij〉 = √
2zizj ε+

⊥ ·
( �ki⊥

zi

− �kj⊥
zj

)
= √

2zizj v
∗
ij , (14)

where the spinor products are defined as

〈ij〉 = 〈i − |j+〉, [ij ] = 〈i + |j−〉, (15)

and the chiral projections of the spinors for massless particles are defined as

|i±〉 = ψ±(ki) = 1
(1 ± γ5)ψ(ki) , 〈±i| = ψ±(ki) . (16)
2
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Fig. 1. Diagram for the 1 to N off-shell amplitude MN for helicity configuration (+ → − + · · ·+). The gluon with 
momentum k1...N is incoming and off-shell, whereas gluons with momenta k1, . . . , kN are outgoing as indicated by the 
arrows.

We shall use so-called dual (or color) decomposition of amplitudes, which is a standard tech-
nique to deal with multi-gluon amplitudes. That is, for a gluonic amplitude with external colors 
a1, . . . , aN the expansion has the form

Ma1...a2 =
∑

{1,...,N}
Tr

(
ta1 . . . taN

)
M (1, . . . ,N) , (17)

where the sum is over all non-cyclic permutations of the indices, ta are the color generators 
and Tr denotes the trace over colors. The so-called color-ordered amplitudes on the r.h.s. con-
tain only kinematical parts of the amplitude, and are built from only planar diagrams and their 
argument order indicate the order of external legs. In what follows, we shall consider only one 
color-ordered amplitude M (1, . . . ,N) ≡M.

3. Recursion relation with off-shell light-front amplitudes

The color-ordered amplitude M is a QCD amplitude that is regularly obtained by the addition 
of the appropriate Feynman diagrams. The focus of this paper is on off-shell amplitudes which 
have a helicity configuration of (+ → − + · · ·+), where the left-most particle is incoming and 
all the other particles are outgoing. In the on-shell limit of the incoming gluon this is by defini-
tion the Maximally Helicity Violating (MHV) amplitude which is the first non-trivial one,1 see 
for example [12]. By off-shell amplitudes we are referring to amplitudes which have incoming 
gluons off-shell and outgoing gluons on-shell and, henceforth, it should be assumed that all the 
processes and diagrams we discuss are off-shell unless otherwise specified. The particular pro-
cess we will be looking at is depicted in Fig. 1, where the left, incoming gluon with momentum 
k1...N is the only off-shell gluon and where the single-line-blob represents the sum of all the 
possible intermediate processes. This off-shell amplitude, M(+→−+···+)(k1...N ; k1, . . . , kN), has 
been previously studied using light-front methods [25]. To find this amplitude at the tree level 
for arbitrary number of external legs a recursion relation has been used which is illustrated in 
Fig. 2. Each of these graphs gives a contribution to this amplitude and it involves either triple 
vertex (graphs (a) and (b)), four-gluon vertex (graph (c)) or Coulomb interaction (graph (d)) 

1 Typically for the helicity amplitudes, the convention used throughout the literature is that all the particles are outgoing. 
Therefore our amplitude (+ → − + · · ·+) in the on-shell limit corresponds to the MHV amplitude (− − + · · ·+) which 
is indeed the first non-trivial one. The origin of the different convention in this paper stems from the fact that we are 
performing calculations in the light-front perturbation theory with definite direction of the light-front time in the graphs. 
Also note that in the convention used in this paper ‘−’ helicity corresponds to the ‘+’ (and vice versa) in the convention 
used in [12].
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Fig. 2. Schematic representation of the contributions to the off-shell amplitude M(+→−+···+)(k1...N ; k1, . . . , kN ). 
Graphs (a) and (b) involve contributions from the triple gluon vertex, graph (c) from the four-gluon vertex and graph 
(d) from the Coulomb interaction present in the light-front formalism. The sums on the left-hand side of the graphs run 
over the number of the external legs in each of the contributing subamplitude in the graph. Graphs (a) and (b) differ by 
the helicity of the intermediate gluon which is incoming to the subamplitude M(±→−+···+)(k1...j ; k1, . . . , kj ). Vertical 
dotted lines indicate the energy denominators which are present in the calculation. The summation over the light-front 
time orderings within the blobs has been already performed.

as well as the amplitudes for lower number of legs and with different helicity configurations: 
(+ → − + · · ·+), (+ → + + · · ·+), (− → − + · · ·+). Note that the last two amplitudes vanish 
in the on-shell limit, but, since the objects used here are off-shell, they are not zero, leading to 
non-trivial contributions to the recursion relation. Finally, a summation over different combina-
tions of the number of external partons is performed, as illustrated in Fig. 2. This recursion has 
been constructed using the factorization property of the fragmentation functions on the light-
front, or the so-called cluster decomposition theorem [29], and it is the light-front analog of the 
Berends–Giele recursion relation [13]. We note that, to arrive at this recursion, the summation 
over all possible light-front time orderings of the vertices inside the blobs in Fig. 2 has been per-
formed. The solution to this recursion relation yields the following expression for the off-shell 
amplitude

M(+→−+···+)(k1...N ; k1, . . . , kN)

= M(+→−+···+)(k1...N ; k1, . . . , kN)

− z2
1...ND(1,...,N)

N−1∑
i=2

1

z1...iz1...i+1

1

zi+1 . . . zN

gN−i

vi+1 i+2 . . . vN−1 N

× M(+→−+···+)(k1...i; k1, . . . , ki)
. (18)
vi+1(1...i+1)D(1,...,i)
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Here, M is an object that appears when solving the recursion relation. It has the same structure 
as the on-shell MHV amplitude but cannot be directly calculated from diagrams in the light-front. 
Given that its kinematics is the same as for M, we refer to it as an off-shell amplitude as well. 
Later, in Section 5, we will see that (18) can also be obtained from a matrix element of a straight 
infinite Wilson line. It will be then demonstrated that, interestingly, M is gauge invariant. Its 
explicit expression is2

M(+→−+···+)(k1...j ; k1, . . . , kj )

≡ −2igj−1 z1...j z1

z2z3 . . . zj

v3
(1...j )1

v12v23 . . . vj−1 j vj (1...j )

= −i(
√

2g)j−1 [(1 . . . j )1]4

[(1 . . . j )j ] [j (j − 1)] . . . [21] [1(1 . . . j )] . (19)

We should note that, in order to have a fitting correspondence with [20], we use a different 
notation for amplitudes than [25]. Furthermore, from now on we will be using the following 
shorthand notation for the arguments of the amplitudes:

M(k1...j ; k1...i , ki+1, . . . , kj ) ≡ M(k(1...i)i+1...j ) . (20)

This amplitude corresponds to a process k1...j → k1...i + ki+1 +· · ·+ kj . For example, we denote 
M(+→+++)(k123; k(12), k3) as M(+→+++)(k(12)3).

The energy denominator D(1,...,i) is defined as

D(1,...,i) =
i∑

j=1

E−
j − E−

1...i =
i∑

j=1

�k2
j⊥
zj

−
�k2

1...i⊥
z1...i

, (21)

it is the difference between the light-front energies of the outgoing state and an intermediate 
state. Similarly energy denominator D(1,...,N) is

D(1,...,N) =
N∑

j=1

E−
j − E−

1...N =
N∑

j=1

�k2
j⊥
zj

−
�k2

1...N⊥
z1...N

. (22)

One interesting aspect to note about M(+→−+···+) is that it is written as a sum of amplitudes 
M(+→−+···+) with different number of legs. Looking at Fig. 2, it is not immediately obvious 
as to why M(+→−+···+) should dominate the expression since only Fig. 2a has a substructure 
with helicity configuration (+ → − + · · ·+). It turns out that the other graphs, even though their 
substructures do not have the right helicity configuration, do contribute terms proportional to 
M(+→−+···+). Writing out the these terms explicitly and through some algebraic manipulation, 
it can be shown [25] that the following term emerges from Figs. 2b–2d:

k∑
j=1

z1z
2
j+1...k+1

z1...j

1

vk+1 k . . . vj+2 j+1vj j−1 . . . v21
.

This term can be rewritten using the following identity

2 The normalization factor 
√

2
j−1

in the MHV amplitude is due to the fact that in our convention the color ordered 
vertices do not contain 1/

√
2 factors and therefore they differ from convention used in [12].
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−2i(−g)k
vk+1 (1...k+1)

z2z3 . . . zk

k∑
j=1

z1z
2
j+1...k+1

z1...j

1

vk+1 k . . . vj+2 j+1vj j−1 . . . v21

= zk+1vk+1(1...k+1)

{
M(+→−+···+)(k1...k+1)

v(1...k+1)1

−
k∑

j=2

1

zj+1 . . . zk+1

z2
1...k+1

z1...j z1...j+1

1

vj+1 j+2 . . . vk k+1

gk+1−j

vj+1(1...j+1)

M(+→−+···+)(k1...j )

v(1...j )1

}

(23)

and it is seen that it is proportional to M .
The recursion relation (18) can be rewritten in a more elegant way, which demonstrates fac-

torization into different subamplitudes. In order to do that let us inspect the second term in (18). 
We shall show that it can be expressed as the sum over the products

M(+→+···+)(k(1...i)i+1...N )
i

z1...iD(1,...,i)

M(+→−+···+)(k1...i ).

Let us start with the definition of the off-shell subamplitude for the helicity configuration (+ →
+ · · ·+)

M(+→+···+)(k(1...i)i+1...N ) = −igN−i
z2

1...N

z1...izi+1 . . . zN

D((1...i),i+1,...,N)

v(1...i)i+1vi+1 i+2 . . . vN−1 N

. (24)

The energy denominator in this expression is equal to

D((1...i),i+1,...,N) = E−
1...i +

N∑
j=i+1

E−
j − E−

1...N =
�k2

1...i⊥
z1...i

+
i∑

j=i+1

�k2
j⊥
zj

−
�k2

1...N⊥
z1...N

. (25)

Note that (24) vanishes in the on-shell limit D((1...i),i+1,...,N) = 0, which is consistent with the 
fact that the on-shell amplitude vanishes for this helicity configuration (+ → + · · ·+). Com-
paring with (18), we see that the term inside the sum is very similar to the above off-shell 
subamplitude with some additional prefactors.

Substituting (24) in (18) and using the identity (63) we finally obtain the following version of 
the recursion relation

M(+→−+···+)(k1...N )

= M(+→−+···+)(k1...N ) +
N−1∑
i=2

D(1,...,N)

D((1...i),i+1,...,N)

M(+→+···+)(k(1...i)i+1...N )

× i

z1...iD(1,...,i)

M(+→−+···+)(k1...i ) . (26)

We see that the second term on the right-hand side of this recursion has a nice factorized 
form which can be recast diagrammatically as in Fig. 3. It consists of the sum over the factorized 
products of amplitudes M and M. M, however, is evaluated with a different denominator in 
the sense that the ratio D(1,...,N)/D((1...i),i+1,...,N) cancels the energy denominator inside of M
and replaces it with D(1,...,N). We shall prove in Section 5 that the above recursion relation has 
its roots in the recurrence property of the straight infinite Wilson line, which involves gauge 
invariant amplitude M .
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Fig. 3. Schematic representation of the second term in the recursion formula (26). The dotted vertical line represents 
the energy denominator 1/Di , the graph on the left-hand side of this line is the amplitude M(+→+···+)(k(1...i)i+1...N )

whereas the graph on the right-hand side is the amplitude M(+→−+···+)(k1...i ). The double line around the blob in the 
latter graph indicates that this is M (with an explicit form of (19)) rather than M which are different objects as explained 
in the text.

4. The Ward identity for light-front amplitudes

Since, in the present work, we are interested in the gauge invariance properties of the off-shell 
amplitudes on the light front, in this section we want to discuss certain issues regarding the Ward 
identities within this framework. In order to illustrate the issue, we shall first verify the identity 
for the lowest order amplitude (+ → − + +) on the light-front. It will become clear that one 
needs to modify the rules for the computation of the Ward identities, in order to guarantee the 
four-momentum conservation. Standard light-front rules do not involve the minus components 
in the calculation, except for the denominators, where it is not conserved [26–28]. However, 
for the Ward identity to hold, the minus components need to be taken care of in the vertices as 
well and, thus, the procedure for the computation of this identity needs to be revised. We shall 
demonstrate that this results in the additional instantaneous-like component, which needs to be 
taken into account. Then the result of the calculation is proportional to the energy denominator 
of the initial state and the Ward identity holds on the light-front. Second, we shall perform the 
Ward identity check using the recursion relation (18). It turns out that the second term in the r.h.s. 
of (26), which is a sum of lower order amplitudes in this recursion, gives the expression which 
is exactly equal to the term previously derived by the explicit calculation of the Ward identity 
from diagrams. This means that the new amplitude M which appears in the recursion relation is 
gauge invariant, i.e. the Ward identity gives exactly zero for this object despite the fact that it is 
off-shell.

4.1. Example: the Ward identity check for the lowest order amplitude

Let us recall, that for a generic QCD amplitude M with external momenta ki on-shell and 
corresponding polarization vectors εi , the Ward identities read

M|ε →k = 0 for any i . (27)

i i
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These identities do not work for light-front amplitudes when applied directly and appropriate 
modifications must be performed to ensure that they are satisfied. The reason is that one injects 
into the vertices a minus light cone component when replacing a gluon polarization vector by 
its momentum, while the actual minus light cone components flowing through the diagram are 
integrated out prior to this replacement.

The problem can be illustrated by the following explicit example. Consider a light-front am-
plitude for the 1 → 3 process with the helicity configuration (+ → − + +) (first particle is 
incoming and the rest are outgoing). This is the lowest non-trivial MHV amplitude. We then 
replace the polarization vector of the third outgoing particle by the corresponding momentum. 
We have

M(+→−+k3)
1→3 =A1 +A2 +A3 +A4 +A5, (28)

where A1–A5 are the contributions from the diagrams depicted in Fig. 4. Here, and below we 
use a notation for replacement εi ↔ ki in the superscript, i.e. we replace the helicity indication 
by the corresponding momentum. Using the rules of the LFPT and color-ordered vertices we get

A1 = −2ig2 z2z3z123 (z123 + z12)

z2
12D(1,2)

v(12)1v(123)3v
∗
(123)3 , (29)

A2 = −2ig2 z2z3z23 (z2 + z23)

z2
23D(2,3)

v(123)1v23v
∗
23 , (30)

A3 = ig2 z3
(
v(123)3 − 2v13

)
, (31)

A4 = ig2 z3 (z1 − z2)

z12
v(123)3 , (32)

A5 = 0 . (33)

Let us note that the above results are obtained without the full four-momentum conservation 
as, according to LFPT rules, at each vertex there is a Dirac delta for the plus and transverse 
components, but not for minus components, which for each momentum are fixed by the on-shell 
condition. Adding the diagrams we get

M(+→−+k3)
1→3 = −ig2

[
2

z3

z12

(
z1v1(123) + z2v13

) + (z23 + z2) v(123)1

− z2z3z123

z1z
2
12v

∗
12

(z123 + z12) v(123)3v
∗
(123)3

]
. (34)

If the Ward identity was satisfied, this result should be proportional to the energy denominator 
D(1,2,3), which vanishes for physical on-shell partons. However this is not the case for (34).

The above problem stems from the fact that the light-front diagrams in Fig. 4 were obtained 
assuming that there are no external minus components. Indeed, for an amplitude calculation, 
the polarization vectors (8) project only on plus and transverse components. The only minus 
components that flew inside diagrams were integrated out giving energy denominators and in-
stantaneous terms. However, for the above Ward identity check, the triple gluon vertex that 
appears, for example, in A1, reads
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Fig. 4. Diagrams for the Ward identity check for 1 → 3 light-front amplitude with helicity configuration + → − + ±. 
The solid line with an arrow instead of a gluon line represents replacement of a polarization vector with the corresponding 
momentum. The two right-most diagrams contain instantaneous interactions.

V
+→+k3
3 (−k23, k2, k3) = ig

[
− k3 · (k2 + k23)

(
ε+

23

)∗ · ε+
2 + (

ε+
23

)∗ · (k2 − k3) k3 · ε+
2

+ ε+
2 · (k23 + k3)

(
ε+

23

)∗ · k3

]

= ig
z2z3 (z23 + z2)

z23
v23v

∗
23. (35)

The problematic term is the first one in the square bracket. Formally, we cannot write k3 ·
(k2 + k23) = 2k2 · k3 since we do not have full momentum conservation. We have to consider 
k2 · k3 and k23 · k3 as different scalar products and this causes the Ward identity to fail.

As already mentioned in the beginning of this section, in the correct procedure one should 
integrate out all the minus components. In (35) the internal minus component k−

23 appears in 
the numerator and thus leads to instantaneous-like additional contribution to (28). We give an 
explicit calculation of this term in Appendix B. It turns out, that this additional term added to 
(35) gives

Ṽ
+→+k3
3 (−k23, k2, k3) = 2ig z2z3v23v

∗
23 , (36)

and it effectively restores the full momentum conservation (in the numerator). Repeating the 
procedure for A2 (the other diagrams are not affected) we get

M(+→−+k3)
1→3 = ig2 z2

z1

D(1,2,3)

v∗
12

, (37)

which obviously vanishes in the case of the on-shell amplitude, i.e. for D(1,2,3) → 0.

4.2. Ward identity and the recursion relation for the lowest order amplitude

In the recursion relation (18) the new amplitude M that actually solves the recurrence, has 
exactly the form of the MHV amplitude. Therefore, once we impose the on-shell condition for 
the process, the result is equal to the MHV amplitude as expected. The amplitude M , however, 
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as it stands in the recursion relation, is an off-shell object. As we shall see shortly, it has a 
remarkable property, namely, it turns out that it is gauge invariant.

This can be explicitly illustrated by taking (26) for n = 3 and checking the Ward identity. 
However, one needs to take care of the issues discussed in the preceding section. We need to 
calculate

M
(+→−+k3)
1→3 =M(+→−+k3)

1→3 − D(1,2,3)

D(12,3)

M(+→+k3)
1→2

i

z12D(1,2)

M
(+→−+)
1→2 . (38)

In the above expression we have replaced the polarization vector both in the 1 → 3 amplitude 
and 1 → 2 subamplitude. The second term can be simplified to

D(1,2,3)

D(12,3)

(
2ig z3z123v(123)3v

∗
(123)3

) i

z12D(1,2)

(
2igz2v(12)1

) = ig2 z2

z1

D(1,2,3)

v∗
12

(39)

where we have used the relations z12D(1,2) = 2z1z2v12v
∗
12, z12D(12,3) = 2z123z3v(123)3v

∗
(123)3

and z1v(12)1 = −z2v12. We see that (39) precisely cancels the previously derived term (37), 
leaving M(+→−+k3)

1→3 equal to zero. Therefore M(+→−++)
1→3 is the gauge invariant amplitude ir-

respectively whether the incoming leg is on-shell or off-shell.
It may be argued that the Ward identity for M is satisfied in general, for arbitrary number of 

external legs

M
(+→−+...ki ...+)
1→N = 0. (40)

We shall undertake this task in the next section.

5. Proof of gauge invariance of the amplitude M from Wilson lines

In the previous section it has been claimed that the off-shell amplitude M which appears in the 
recurrence relation (18) is gauge invariant and thus satisfies the Ward identities (40). Although, 
in principle, one could show this by arranging a similar recurrence for the Ward identity and 
showing that M vanishes for arbitrary number of legs, we will study a connection of Eq. (18)
with the matrix element of certain straight infinite Wilson line (or gauge link) operator. For 
that object one can immediately write a recurrence which resembles (18), which, after a careful 
derivation turns out to be exactly the same. We will start by reviewing the Wilson line approach 
for off-shell amplitudes. Later, we will derive the recursion (18) directly from this approach.

5.1. Matrix elements with Wilson lines and off-shell amplitudes

Let us consider a tree level gluonic Green’s function in momentum space with external mo-
menta k1...N , k1, . . . , kN satisfying momentum conservation (we assume, as before, that k1...N is 
incoming and the rest are outgoing). As such, the Green’s function is a purely off-shell object, 
i.e. the external momenta have arbitrary virtuality; moreover, the external gluon Lorentz indices 
are not contracted. In order to obtain a scattering amplitude, we reduce the Green’s function by 
amputating the external propagators, taking the on-shell limit for the external momenta, and con-
tracting the external legs with appropriate polarization vectors transverse to (on-shell) momenta. 
Here, we shall consider the Green’s function where the legs k1, . . . , kN are on-shell and reduced 
as above, while the leg k1...N is kept off-shell and is contracted with a vector e1...N . We shall call 
this vector a “polarization” vector for the off-shell gluon. At this point, it is only assumed that 
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this vector is transverse to the off-shell momentum, e1...N · k1...N = 0. We will call the Green’s 
function reduced in that manner an off-shell amplitude.

The off-shell amplitude constructed according to the above procedure is not gauge invariant, 
i.e. it does not satisfy the Ward identities with respect to the on-shell legs (for a general choice of 
e1,...,N and external polarization vectors). However, one can find a gauge invariant extension of 
such off-shell amplitude. For example, in analysis of a scattering at high-energy one encounters 
similar objects. There, the e1...N is set to one of the light-cone components n± (n2± = 0) of a 
hadron momentum and k1...N = xn± + kT , so that k1...N · n± = 0. The gauge invariant vertices 
corresponding to transitions of such off-shell gluons to a set of on-shell gluons can be derived 
from the so-called Lipatov’s effective action [30,31].

In Ref. [20] the author discussed a more general situation, where e1...N is arbitrary. In that 
case the gauge invariant extension of the off-shell amplitude can be found by considering a 
matrix element of a straight infinite Wilson line operator. More precisely, one defines an object

Ma1...N a1...aN
e1...N

(k1...N ; k1, . . . , kN)

=
∫

d4x eik1...N ·x 〈
0
∣∣∣T {

R a1...N
e1...N

(x) eiS Y–M
}∣∣∣k1, λ1, a1; . . . ; kN,λN,aN

〉
c

, (41)

with

R a1...N
e1...N

(x) = Tr

⎡
⎣ta1...NP exp

⎛
⎝ig

+∞∫
−∞

ds Ab
μ (x + s e1...N ) e

μ
1...N tb

⎞
⎠

⎤
⎦ , (42)

where T is the time-ordering, P is the path-ordering, S Y–M is the Yang–Mills interaction action, 
and, finally, |ki, λi, ai〉 are one-gluon on-shell states with momentum ki , helicity λi and color ai . 
The color of the off-shell gluon is a1...N . The subscript c means that we take only connected con-
tributions. The infinite Wilson line operator R a1...N

e1...N
sandwiched in the matrix element is explicitly 

gauge invariant with respect to small gauge transformations. Actually, in Ref. [20], instead of a 
straight infinite path in (42), deformed paths were considered in order to regularize the integrals 
and to show that they form certain generalized functions.

Let us now consider a color-ordered version of the matrix element (41) with order 
(a1...N , a1, . . . , aN). According to [20] it is proportional to the momentum conservation Dirac 
delta and the delta assuring the Wilson line direction e1...N and the momentum k1...N are mutually 
transverse

Me1...N
(k1...N ) = δ4 (k1...N − k1 − · · · − kN) δ (e1...N · k1...N )M̃(λ1...λN )

e1...N
(k1...N ) , (43)

where we have used the shorthand notation for momenta arguments as defined in Eq. (20). The 
above relation defines the gauge invariant off-shell amplitude M̃ with “polarization” vector e1...N

for the off-shell gluon. It satisfies the Ward identities with respect to the external on-shell legs 
(but not with respect to e1...N , i.e. the Wilson line slope)

M̃(λ1...ki ...λN )
e1...N

(k1...N ) = 0 for i = 1, . . . ,N . (44)

Let us stress that the amplitude M̃ is indeed gauge invariant only when k1...N · e1...N = 0.
Diagrammatically, the amplitude M̃ can be written as
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(45)

The double line represents the Wilson line in momentum space. Each double line connecting 
two gluon attachments contributes the propagator i/p · e1...N , with p being the momentum flow-
ing through the line. The gluons couple to the Wilson line via an igeμ1...N vertex. More on the 
Feynman rules can be found in [20].3 The blobs represent standard QCD contributions with the 
numbers indicating the number of external on-shell legs. The ellipses after the last plus sign 
represent contributions with more blobs connected to the gauge link. Note that the first contri-
bution in (45) is the off-shell amplitude defined at the beginning of this subsection (modulo ig
factor due to a coupling with the gauge link). In what follows we will denote this amplitude as 
M(e1...N→λ1...λN ) (k1...N ). It will contain the off-shell propagator and a coupling to the Wilson 
line (we include an additional i factor for further convenience)

M(e1...N→λ1...λN )
(
k1,...,N

) = ig
−i

k2
1...N

iM(e1...N→λ1...λN )
(
k1,...,N

)
, (46)

where M is the standard QCD amplitude calculated from Feynman diagrams (with, however, 
off-shell kinematics). Let us underline one more time that the amplitude M (or M) itself does 
not satisfy the Ward identities, but they are restored thanks to the rest of the r.h.s. of Eq. (45).

The decomposition (45) can be written in a more compact form by means of the following 
recursion:

(47)

We will utilize this recursion throughout the rest of the paper; therefore, we will need its algebraic 
form:

M̃(λ1...λN )
e1...N

(k1...N )

=
N−1∑
m=0

M̃(λ1...λm)
e1...N

(k1...m)
1

k1...m · ε1...N

M
(
e1...N→λm+1...λN

) (
km+1,...,N

)
, (48)

with

M̃(λi )
e1...N

(ki) = i2g e∗1...N · ελi

i , (49)

3 We have modified the rules of [20] by “cutting off” the double line carrying the zero momentum, which is more 
transparent.
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and M̃(λ1...λm)
e1...N

(k1...m) = 1 for m = 0. Let us emphasize an important difference between the 
amplitudes M̃ which appear on both sides of Eq. (48). The amplitude on the left-hand side of 
(48) satisfies property (44) and thus is gauge invariant. On the contrary, the amplitude M̃ which 
appears on the right-hand side of (48) is not gauge invariant. This stems from the fact that the 
replacement εi ↔ ki will lead to the non-vanishing result

M̃(λ1...ki ...λm)
e1...N

(k1...m) �= 0 for i = 1, . . . ,m . (50)

This is because the Wilson line slope defining M̃ is not perpendicular to the off-shell momentum, 
e1...N · k1...m �= 0, as required by (44).

5.2. Light-front recursion relation from Wilson lines

We will now relate the recursion with Wilson lines (48) to the recursion (18) obtained within 
the light-front formalism. To this end, we first have to choose the appropriate “polarization” 
vector e1...N for the off-shell gluon. We choose, of course, the same vector as in the formalism to 
obtain (18), i.e. we choose

e
μ
1...N = ε

+μ
1...N , (51)

where ε+
1...N is defined by (8). Note that ε1...N ·k1...N = 0, despite that k1...N is off-shell and, thus, 

M̃(λ1...λN )

ε+
1...N

(k1...N ) is gauge invariant. Choosing helicities as λ1 = −, λ2 = · · · = λN = + and the 

reference momenta for the polarization vectors to be η as in (8), we can write (48) as

M̃(−+···+)

ε+
1...N

(k1...N ) =M(+→−···+)
(
k1,...,N

)

+
N−1∑
m=2

M̃(−+···+)

ε+
1...N

(k1...m)
1

ṽ(1...m)(1...N)

M(+→+···+)
(
km+1,...,N

)
.

(52)

Note that now the sum starts with the index m = 2, as for m = 1 the term vanishes due to (49)
and ε+∗

1...N (η) · ε−
1 (η) = 0 according to (6). In order to proceed, we have to find an explicit 

expression for M(+→+···+). This can be done using the recursion (48) with λ1 = · · · = λN = +
and observing that

M̃(+···+)

ε+
1...N

= 0. (53)

The details are given in Appendix C. The result reads

M(+→+···+)
(
k1,...,N

) = −gN ṽ(1...N)1

ṽ1(1...N)

1

ṽN(N−1) . . . ṽ32ṽ21
. (54)

Let us note that this is the same as obtained from the light-front approach (24). To show this we 
set i = 1 in (24), and use the relation (46) with k2

1...N = z1...ND1...N . However, even with this 
encouraging result, the recursion (52) is different then the one obtained within the light-front 
formulation. Indeed, this recursion does not involve the same object on the l.h.s and r.h.s. of the 
equation, as we already discussed below Eq. (48). The recursion relation (52) can be, however, 
written entirely in terms of gauge invariant off-shell amplitudes. That is, we will look for a kernel 
KmN such that
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M̃(−+···+)

ε+
1...N

(k1...N )

= M(+→−···+)
(
k1,...,N

) +
N−1∑
m=2

M̃(−+···+)

ε+
1...m

(k1...m) KmN M(+→+···+)
(
km+1,...,N

)
. (55)

Let us underline the difference with relation (52). Now, on the r.h.s., we encounter
M̃(−+···+)

ε+
1...m

(k1...m), which does satisfy the Ward identities since ε+
1...m ·k1...m = 0. On the contrary, 

in (52) we had M̃(−+···+)

ε+
1...N

(k1...m) (note the different Wilson line slope here), which is not gauge 

invariant, as discussed below Eq. (48). There is one more comment in order here. Our assumption 
of the existence of the kernel KmN is guided by the light-front result discussed in Section 3. It is 
not obvious however if such kernel exists for any helicity configuration.

In order to find KmN , we first have to find the relation between M̃(−+···+)

ε+
1...N

(k1...m) and 

M̃(−+···+)

ε+
1...m

(k1...m). It can be done by observing that the first term on the r.h.s. of (52) does not 

depend on the Wilson line direction (this is the consequence of the gauge we are using). Thus, 
we can write this equation separately for M̃(−+···+)

ε+
1...N

(k1...m) and M̃(−+···+)

ε+
1...m

(k1...m) and subtract 

them. Doing this recursively one can find the desired relation. The technical details are given in 
Appendix D. Here, we give only the final answer:

M̃(−+···+)

ε+
1...N

(k1...m) = M̃(−+···+)

ε+
1...m

(k1...m) +
m−2∑
p=1

m−1∑
i1=2

i1−1∑
i2=2

. . .

ip−1−1∑
ip=2

M̃(−+···+)

ε+
1...ip

(
k1...ip

)
×M(+→+···+)

(
kip+1,...,ip−1

)
. . .M(+→+···+)

(
ki1+1,...,m

)
× ṽ(1...m)(1...N)

ṽ(
1...ip

)
(1...N)ṽ(1...m)

(
1...ip

) 1

ṽ(1...i1)
(
1...ip

) . . . ṽ(
1...ip−1

)(
1...ip

) . (56)

The desired relation is obtained by inserting the above formula into Eq. (52). However, the result 
has a very complicated structure containing a tower of sums. Remarkably, it turns out, that these 
sums satisfy an equation which resembles an old-fashioned propagator theory and the solution to 
this equation can be found. We relegate all the technical details to Appendix E and here we restrict 
ourselves to a pictorial description. Namely, the kernel KmN can be thought of as a propagator 
for certain Hamiltonian which – after algebraic manipulations – is expressed by the tower of 
sums and the expression with ṽij in (56). A careful inspection of the sums reveals that they are 
ordered in a way that resembles time ordering of old fashioned perturbation theory. One can 
introduce then an object that plays the role of the free propagator (see Eq. (121) in Appendix E) 
and another one which can be interpreted as a vertex (Eq. (122) in Appendix E). It becomes then 
clear that all the sums, except one, form again the full propagator, see diagram (124). One can 
then write the compact integral equation for the kernel KmN . Finally it is easy to show that its 
solution gives the desired kernel with the simple form:

KmN = z1...N

zm+1...N ṽ(1...m+1)(m+1)

. (57)

It is straightforward to check that (55) with (57) and (54) coincides exactly with (18) obtained 
within the light-front approach. To this end one only needs to redefine M and M in (18) to 
include the energy denominators with appropriate zi’s forming in fact propagators. This means 
also, that the MHV off-shell amplitude M in (18) is indeed gauge invariant since it corresponds 
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to the gauge invariant M̃ from the Wilson line approach. Yet another confirmation of this re-
sult comes from the work [21] where similar off-shell gauge invariant helicity amplitude was 
calculated and turned out to have also the MHV form.

6. Conclusions

In this work we have analyzed gauge invariance properties of the gluon off-shell scattering 
amplitudes with Maximal Helicity Violating configurations using the light-front formalism. The 
recurrence relation for such amplitudes, that was first derived in [25], encodes a new object, 
which is off-shell but has the form of an on-shell MHV amplitude. We demonstrate that this 
new amplitude is gauge invariant despite its off-shellness. In order to check the gauge invari-
ance within the light-front formalism, we had to find a way to verify the Ward identities. Unlike 
in the standard formulation of QCD this is not straightforward on the light front, as the minus 
light-cone components are integrated out by default within this formalism and the standard QCD 
prescription has to be modified. The proper treatment of the Ward identities involves additional 
instantaneous-like terms, which effectively can be taken into account by forcing the full mo-
mentum conservation in the vertices. Furthermore, we recognize that the light-front recurrence 
relation has a very similar form to a recurrence that is encoded in the Wilson line formulation of 
off-shell amplitudes [20]. In fact, we prove that they are precisely the same. Therefore, remark-
ably, the new off-shell amplitude that appears in the light-front recursion is gauge invariant.

As far as different helicity configurations are considered, the situation is much more compli-
cated. A recurrence relation, similar to Eq. (52), can be easily written for any helicity configu-
ration using the Wilson line approach, cf. Eq. (48). However, it appears extremely cumbersome 
and it remains unknown whether it would be possible to cast it into simple, truly recursive form 
as in Eq. (55).

Let us, finally, conclude that our study once again stresses the importance of gauge invariance 
in any QCD computations. As we have shown in the current paper, the complicated resummation 
of whole classes of light-front diagrams, as performed in Ref. [25], leads precisely to the straight 
infinite Wilson line, which is a manifestly gauge invariant object.
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Appendix A. Useful identities

In this supplement we summarize certain relations for the quantities ṽij and vij defined in 
Eqs. (11), (12).

Straight from the definition, we have an antisymmetry property of vij

vij = −vji . (58)

For the ṽij the exchange of indices gives

ṽij = −k+
i

k+ ṽj i . (59)

j
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Obviously

ṽii = 0 , (60)

what comes out of the identity (59) or the transversity of polarization vectors. Finally, we have 
the following decomposition relation

ṽij − ṽil = k+
i

k+
l

ṽlj . (61)

The above relations come straight from the definitions and can be easily proved.
Let us now consider a set of ṽij constructed for momenta k(1...N), k1, . . . , kN such that k1...N =

k1 + k2 + · · · + kN . Then we have

ṽ(1...i)(1...N) = −ṽ(i+1,...N)(1...N) (62)

and so on. Another useful relation reads

ṽ(i...N)i = ṽii + ṽ(i+1...N)i = ṽ(i+1...N)i (63)

thanks to property (60). Moreover, the following summation relations hold

N∑
j=1

ṽ(1...j )j

ṽj(1...j )

ṽj(j+1) = ṽ(1...N)N , (64)

N−1∑
i=m

ṽ(i+1...N)(i+1)

ṽ(i+1)(i+1...N)

ṽ(i+1)i = ṽ(m...N)m. (65)

They are proven using (61). For example, for (65) we have

N−1∑
i=m

ṽ(i+1...N)(i+1)

ṽ(i+1)(i+1...N)

ṽ(i+1)i = −
N−1∑
i=m

zi+1...N

zi+1
ṽ(i+1)i

=
N−1∑
i=m

(
ṽ(i+1...N)(i+1) − ṽ(i+1...N)i

)

=
N∑

k=m+1

ṽ(k...N)k −
N−1∑
i=m

ṽ(i...N)i

= −ṽ(m...N)m + ṽNN = −ṽ(m...N)m (66)

Above, we have used (59) and (63).

Appendix B. Explicit example for the Ward identity check on the light-front

In this appendix we will demonstrate that, when checking the Ward identity within the light-
front formalism, additional instantaneous-like terms appear. These terms, in fact, recover the full 
momentum conservation.

We will use a specific, yet quite general example. Consider the following diagram
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Mλ2 (P, k2, k3) = (67)

where the arrow denotes the contraction with the momentum instead of the corresponding polar-
ization vector. The momenta labels are chosen in such a way that the contact with Fig. 4 can be 
established. The amplitude can be expressed as

Mλ2 (P, k2, k3) =
∫

d4x B̃μ (x;P)gμνÃνλ2 (x; k2, k3) , (68)

where

B̃μ (x;P) = eiP ·xBμ (P ) (69)

represents the blob and Ãνλ2 (x; k2, k3) represents the gluon splitting. The λ2 is the polarization 
of the gluon with momentum k2. The gluon propagator is included in Ã.

For the purpose of this example, the transition to the light-front formalism will be done ac-
cording to [26]. The basic idea is to integrate the minus components in the propagators. In our 
example, we will first reintroduce the suitable integration. In order to proceed let us decompose 
the tensor gμν as follows

−gμν =
∑

λ23=±
ελ23
μ ελ23∗

ν + · · · , (70)

where λ23 is the polarization of the intermediate gluon and the dots stand for the gauge terms and 
the term that will lead to the instantaneous interactions. For the purpose of the present example 
we will retain only the part containing the polarization vectors and show that the instantaneous-
like term appears (in addition to the standard instantaneous term originating from the terms 
represented by the dots in (70)). The corresponding contribution reads

M′ λ2 (P, k2, k3) =
∑
λ23

∫
d4x B̃λ23 (x;P) Ãλ23λ2 (x; k2, k3) , (71)

where

B̃λ23 (x;P) = eiP ·xBμ (P ) ελ23∗
μ (P ) (72)

and

Aλ23λ2 (x; k2, k3) = e−ix·(k2+k3)
−i

(k2 + k3)
2 + iε

V
λ23λ2k3
3 (−k2 − k3, k2, k3) (73)

with the generic color-ordered triple gluon vertex

V
λ1λ2λ3
3 (p1,p2,p3) = iελ1

α1
(p1) ελ2

α2
(p2) ελ3

α3
(p3)

× [
gα1α2 (p1 − p2)

α3 + gα2α3 (p2 − p3)
α1 + gα3α1 (p3 − p1)

α2
]
.

(74)

The k3 instead of a polarization superscript for V3 in (73) denotes the replacement ε3 ↔ k3. We 
can rewrite (73) as



C. Cruz-Santiago et al. / Nuclear Physics B 895 (2015) 132–160 151
Ãλ23λ2 (x; k2, k3) =
∫

d4k23 e−ik23·x −i

k2
23 + iε

V
λ23λ2k3
3 (−k23, k2, k3) δ4 (k23 − k2 − k3) .

(75)

Above, we have restored the unintegrated propagator (the scalar part). Switching to light-cone 
variables and using the integral representation for the Dirac delta for the minus component, we 
have

Ãλ23λ2 (x; k2, k3)

= 1

2

∫
dy+

2π
e−i 1

2 y+(
k−

2 +k−
3

) ∫
dk+

23 e−i 1
2 k+

23x
−
∫

d2k23T ei�k23T ·�xT

×
∫

dk−
23 e−i 1

2 k−
23·

(
x+−y+) −i

k+
23k

−
23 − k2

23T + iε
V

λ23λ2k3
3 (−k23, k2, k3)

× δ
(
k+

23 − k+
2 − k+

3

)
δ2

(�k23T − �k2T − �k3T

)
. (76)

Since the polarization vectors project only on plus and transverse components (cf. (8)) we can 
write

V
λ23λ2k3
3 (−k23, k2, k3) = V1 + V2, (77)

where

V1 = −ik23 · k3 ε
λ2
2 · ελ23

23 , (78)

V2 = −ik2 · k3 ε
λ2
2 · ελ23

23 . (79)

The contribution V1 contains k23 · k3 in the numerator, i.e. the integration variable and thus 
will lead to instantaneous-like term (this is not the case for V2). Therefore, in what follows we 
consider a contribution to (67) only from V1. It reads

Ã1 (x; k2, k3)

= −1

2

∫
dy+

2π
e−i 1

2 y+(
k−

2 +k−
3

) ∫
dk+

23 e−i 1
2 k+

23x
−
∫

d2k23T ei�k23T ·�xT

× ελ2 (k2) · ελ23 (k23)

∫
dk−

23 e−i 1
2 k−

23·
(
x+−y+) 1

2k−
23k

+
3 + 1

2k+
23k

−
3 − �k23T · �k3T

k+
23k

−
23 − k2

23T + iε

× δ
(
k+

23 − k+
2 − k+

3

)
δ2

(�k23T − �k2T − �k3T

)
. (80)

The light-front approach is achieved by integrating over the k−
23 component. The relevant inte-

gral can be done by the residue technique and reads (since k+
2 , k+

3 > 0 only k+
23 > 0 part gives 

contribution)


(
k+

23

)∫ dk−
23

2π
e−i 1

2 k−
23·

(
x+−y+) 1

2k−
23k

+
3 + 1

2k+
23k

−
3 − �k23T · �k3T

k+
23k

−
23 − k2

23T + iε

= 
(
k+

23

)
k+

23

[
−ik̂23 · k3

(
x+ − y+)

e−i 1
2 k̂−

23

(
x+−y+)

+ 1

2
δ
(
x+ − y+)

k+
3

]
(81)

where
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k̂23 · k3 = 1

2
k̂−

23k
+
3 + 1

2
k+

23k
−
3 − �k23T · �k3T (82)

with

k̂−
23 = k2

23T

k+
23

(83)

is the scalar product with the minus component of k23 set to the on-shell value, as given by the 
residue. Note that the first term of the r.h.s. of (81) is the one that was taken into account in the 
example (34) and alone leads to an incorrect result. Clearly, the second term of (81) was missing. 
Let us now calculate the contribution to the amplitude M′ coming from the first term in (81). 
Performing the integrals over the light-cone time we get

M′ λ2
1a (P, k2, k3)

= − 2

P +
∑
λ23

(2π)4 δ
(
P + − k+

2 − k+
3

)
δ
(
P − − k−

2 − k−
3

)
δ2

( �PT − �k2T − �k3T

)

× 
(
P +) 1

P − − k̂−
23 + iε

Bλ23 (P ) k̂23 · k3 ελ2 (k2) · ελ23 (k23) . (84)

Above (and below), k̂−
23 is understood as

k̂−
23 =

(�k2T + �k3T

)2

k+
2 + k+

3

. (85)

Next, the contribution of the instantaneous-like term reads

M′ λ2
1b (P, k2, k3)

= − k+
3

2P +
∑
λ23

(2π)4 δ
(
P + − k+

2 − k+
3

)
δ
(
P − − k−

2 − k−
3

)
δ2

( �PT − �k2T − �k3T

)

× 
(
P +)

Bλ23 (P ) ελ2 (k2) · ελ23 (k23) . (86)

Both contributions have to be added:

M′ λ2
1a (P, k2, k3) +M′ λ2

1b (P, k2, k3)

= − 2

P +
λ2∑
λ23

δ
(
P + − k+

2 − k+
3

)
δ
(
P − − k−

2 − k−
3

)
δ2

( �PT − �k2T − �k3T

)

× 
(
P +)

Bλ23 (P ) ελ2 (k2) · ελ23 (k23)

[
k̂23 · k3

P − − k̂−
23 + iε

+ 1

2
k+

3

]
(87)

However, the square bracket can be rewritten as

k̂23 · k3

P − − k̂−
23 + iε

+ 1

2
k+

3 = k23 · k3

P − − k̂−
23 + iε

, (88)

where we have used the delta function δ
(
P − − k−

2 − k−
3

)
appearing in (87) to write the scalar 

product on the r.h.s. This is indeed the correct contribution from the vertex (77) as is easily seen 
by integrating back the delta δ4 (k23 − k2 − k3) in (75).
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Appendix C. Off-shell + → + ···+ amplitude from Wilson lines

Let us consider the gauge invariant amplitude M̃(+···+)
+ with the choice of the polarization 

vectors (8). As mentioned in Section 2 this corresponds to choosing η as the reference momentum 

for all the polarization vectors. Since M̃(+···+)
+ ≡ M̃

(
ε+

1 (η)...ε+
N(η)

)
ε+

1...N (η)
is gauge invariant, we can 

freely change the reference momenta of the polarization vectors ε+
1 (η) , . . . , ε+

N (η). Let us thus 
use (10) and set k1...N as the reference momentum

M̃
(
ε+

1 (η)...ε+
N (η)

)
ε+

1...N (η)
= M̃

(
ε+

1 (k1...N )...ε+
N(k1...N )

)
ε+

1...N (η)
. (89)

Note that the properties (4)–(6) still hold for εi (k1...N ) despite the fact that k1...N is off-shell 
(actually, only the last relation of (6) is non-trivial to check). The amplitude (89) is given by the 

expansion (45). Consider any blob M
(
ε+

1...N (η)→ε+
i (k1...N )...ε+

j (k1...N )
)
, j > i, attached to the Wilson 

line. Such blob contains terms with at least one scalar product of polarization vectors. This is due 
to the following standard argument (see e.g. [12])). Since the are at most j − i − 1 triple gluon 
vertices there may be at most j − i − 1 momentum vectors in the numerator. These vectors are 
contracted with j − i + 1 polarization vectors, which means that at least two polarization vectors 
must be contracted together. Due to our choice of reference momenta all such scalar products 
vanish due to (6). This happens for all the blobs, therefore

M̃(+···+)
+ = 0. (90)

Of course, for the reference momenta set to η the blobs itself no longer vanish, but different 
contributions get canceled due to the gauge invariance.

Let us now look at the consequences of the above equation. Consider the recursion (47) for 
N = 2 and the Wilson line slope set to a vector u defined by

uμ = ε
+μ
⊥ + �ε +

⊥ · �p⊥
p · η ημ (91)

for certain momentum p (for example for p = k1...N we have u = ε1...N , but we want to keep it 
more general here). We have

M̃(++)
u (k12) =M(u→++) (k12) + M̃(+)

u (k1)
1

k1 · uM
(u→+) (k2) . (92)

If u = ε+
12 the l.h.s. vanishes according to (90) and we have

M(+→++) (k12) = −M̃(+)
+ (k1)

1

k1 · ε12
M(+→+) (k2) (93)

or diagrammatically

(94)

Calculating the r.h.s. we get (remember that by convention we include an additional i factor, cf.
(46))
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M(+→++) (k12) = −i2 (ig)2 ε−
12 · ε+

1 ε−
12 · ε+

2

k1 · ε−
12

= −g2 1

ṽ1(12)

= g2 z12

z1

1

ṽ21
. (95)

Inserting this back to (92) we get

M̃(++)
u (k12) = −g2

(
1

ṽ1(12)

− 1

ṽ1(u)

)
= g2 z1

zu

ṽ(u)(12)

ṽ1(12)ṽ1(u)

, (96)

where we have used (61) and introduced

ṽi(u) = ki · u, zu = p+ . (97)

Also, we have utilized the fact that in the light-cone gauge

M(+→++) (k12) =M(u→++) (k12) , (98)

as the propagator on the l.h.s. of (94) always projects (91) to ε+
12.

For N = 3 we have

M̃(+++)
u (k123) =M(u→+++) (k123) + M̃(+)

u (k1)
1

k1 · uM
(u→++) (k23)

+ M̃(++)
u (k12)

1

k12 · uM
(u→+) (k3) (99)

Inserting (96) we get

M̃(+++)
u (k123) =M(u→+++) (k123) − g3

(
1

ṽ1(u)ṽ2(23)

− z1

zu

ṽ(u)(12)

ṽ1(12)ṽ1(u)ṽ(12)(u)

)
. (100)

Setting u = ε+
123 we eliminate l.h.s. and thus

M(+→+++) (k123) = g3
(

1

ṽ1(123)ṽ2(23)

− z1

z123

ṽ(123)(12)

ṽ1(12)ṽ1(123)ṽ(12)(123)

)

= −g3 ṽ(123)1

ṽ1(123)

1

ṽ32ṽ21
. (101)

Again, one can calculate M̃(+++)
u by inserting the above to (100).

The above results generalize. We have

M(+→+···+) (k1...N ) = −gN ṽ(1...N)1

ṽ1(1...N)

1

ṽN(N−1) . . . ṽ32ṽ21
(102)

and thus

M̃(+···+)
u (k1...N ) = −gN

(
1

ṽ1(1...N)

− 1

ṽ1(u)

)
ṽ(1...N)1

ṽN(N−1) . . . ṽ32ṽ21

= (−g)N
ṽ(1...N)(u)

ṽ1(u)

1

ṽN(N−1) . . . ṽ32ṽ21
(103)

The proof is by checking that these expressions satisfy the recursion relation (47) rewritten for 
the current helicity case and for u = ε+

1...N . That is, we need to verify if

M(+→+···+)
(
k1,...,N

)
= −

N−1∑
M̃(+···+)

ε+
1...N

(k1...m)M(+→+···+)
(
km+1,...,N

) 1

ṽ(1...m)(1...N)

. (104)

m=1
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The r.h.s. with (102) and (103) reads

−
N−1∑
m=1

gm ṽ(1...m)(1...N)

ṽ1(1...N)

1

ṽm(m−1) . . . ṽ32ṽ21

×
[
gN−m ṽ(m+1...N)(m+1)

ṽ(m+1)(m+1...N)

1

ṽN(N−1) . . . ṽ(m+2)(m+1)

]
1

ṽ(1...m)(1...N)

= −gN
N−1∑
m=1

1

ṽ1(1...N)

ṽ(m+1...N)(m+1)

ṽ(m+1)(m+1...N)

ṽ(m+1)m

ṽN(N−1) . . . ṽ32ṽ21

= −gN 1

ṽN(N−1) . . . ṽ32ṽ21

1

ṽ1(1...N)

[
N−1∑
m=1

ṽ(m+1...N)(m+1)

ṽ(m+1)(m+1...N)

ṽ(m+1)m

]

= −gN 1

ṽN(N−1) . . . ṽ32ṽ21

ṽ(1...N)1

ṽ1(1...N)

, (105)

where we have used (65) to perform the sum. This indeed coincides with (102).

Appendix D. Derivation of (56)

In order to find the required relation we will use (52). We will subtract two forms of this 
equation: one with N = m set everywhere except the Wilson line slope (i.e. the subscript of M̃), 
second, with N = m set literally everywhere. We get

M̃(−+···+)

ε+
1...N

(k1...m) = M̃(−+···+)

ε+
1...m

(k1...m) +
m−1∑
i=2

⎡
⎣M̃(−+···+)

ε+
1...N

(k1...i )

ṽ(1...i)(1...N)

−
M̃(−+···+)

ε+
1...m

(k1...i )

ṽ(1...i)(1...m)

⎤
⎦

×M(+→+···+)
(
ki+1,...,m

)
(106)

for N ≥ m. Using this equation recursively to express the r.h.s. entirely in terms of M̃ε+
1...a

(k1...a)

we get

M̃(−+···+)

ε+
1...N

(k1...m)

= M̃(−+···+)

ε+
1...m

(k1...m)

+
m−1∑
i=2

M̃(−+···+)

ε+
1...i

(k1...i ) M(+→+···+)
(
ki+1,...,m

)( 1

ṽ(1...i)(1...N)

− 1

ṽ(1...i)(1...m)

)

+
m−1∑
i=2

i−1∑
j=2

M̃(−+···+)

ε+
1...j

(
k1...j

)
M(+→+···+)

(
kj+1,...,i

)
M(+→+···+)

(
ki+1,...,m

)

×
[

1

ṽ(1...i)(1...N)

(
1

ṽ(1...j )(1...N)

− 1

ṽ(1...j )(1...i)

)

− 1

ṽ(1...i)(1...m)

(
1

ṽ(1...j )(1...m)

− 1

ṽ(1...j )(1...i)

)]
+ · · · (107)

It can be readily generalized to
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M̃(−+···+)

ε+
1...N

(k1...m) = M̃(−+···+)

ε+
1...m

(k1...m)

+
m−2∑
p=1

m−1∑
i1=2

i1−1∑
i2=2

. . .

ip−1−1∑
ip=2

M̃(−+···+)

ε+
1...ip

(
k1...ip

)
×M(+→+···+)

(
kip+1,...,ip−1

)
. . .M(+→+···+)

(
ki1+1,...,m

)
×

[
a

(p)
i1...ip

(N) − a
(p)
i1...ip

(m)
]
, (108)

where

a
(n)
ip...ip+n−1

(l) = 1

ṽ(
1...ip

)
(1...l)

a
(n−1)
ip+1...ip+n−1

(l) − 1

ṽ(
1...ip

)(
1...ip−1

) a
(n−1)
ip+1...ip+n−1

(
ip−1

)
(109)

with the initial conditions

a(0) (l) = 1, a
(n)
ip...ip+n−1

(
iq

) = 0 for q < 1. (110)

This binary tree can be simplified by an extensive use of the identities from Appendix A, notably 
Eq. (61). For example, for p = 1 in the sum in (108) we have

a
(1)
i1

(N) − a
(1)
i1

(m) = 1

ṽ(1...i1)(1...N)

− 1

ṽ(1...i1)(1...m)

= z1...i1

z1...N

ṽ(1...N)(1...m)

ṽ(1...i1)(1...N)ṽ(1...i1)(1...m)

= ṽ(1...m)(1...N)

ṽ(1...i1)(1...N)ṽ(1...m)(1...i1)

. (111)

Next, for p = 2 we have

a
(2)
i1i2

(N) − a
(2)
i1i2

(m) = 1

ṽ(1...i1)(1...N)

a
(1)
i2

(N) − 1

ṽ(1...i1)(1...m)

a
(1)
i2

(i1)

= z2
1...i2

z1...i1z1...N

−ṽ(1...N)(1...m)

ṽ(1...i1)(1...N)ṽ(1...i2)(1...m)ṽ(1...i2)(1...i1)

= ṽ(1...m)(1...N)

ṽ(1...i1)(1...N)ṽ(1...m)(1...i2)ṽ(1...i1)(1...i2)

(112)

and so on. In fact, the solution to (109) reads

a
(n)
ip...ip+n−1

(l)

=
ṽ(

1...ip−1
)
(1...l)

ṽ(
1...ip+n−1

)
(1...l)

1

ṽ(
1...ip−1

)(
1...ip+n−1

)ṽ(
1...ip

)(
1...ip+n−1

) . . . ṽ(
1...ip+n−2

)(
1...ip+n−1

) , (113)

for p > 1, as can be easily verified. Therefore, Eq. (108) can be written as

M̃(−+···+)

ε+
1...N

(k1...m) = M̃(−+···+)

ε+
1...m

(k1...m)

+
m−2∑
p=1

m−1∑
i1=2

i1−1∑
i2=2

. . .

ip−1−1∑
ip=2

M̃(−+···+)

ε+
1...ip

(
k1...ip

)
×M(+→+···+)

(
kip+1,...,ip−1

)
. . .M(+→+···+)

(
ki1+1,...,m

)
× ṽ(1...m)(1...N)

ṽ(
1...ip

)
(1...N)ṽ(1...m)

(
1...ip

) 1

ṽ(1...i1)
(
1...ip

) . . . ṽ(
1...ip−1

)(
1...ip

) . (114)
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Appendix E. Proof of recursion (55)

First, we use (114) to rewrite (52) purely in terms of gauge invariant amplitudes. The resulting 
equation is, however, very complicated. In order to simplify it we note the following identity

M(+→+···+)
(
kip+1,...,ip−1

)
. . . M(+→+···+)

(
ki1+1,...,m

)
= zip+1...ip−1 . . . zi2+1...i1

zip+1 . . . zi1+1

zi1+1...mzip+1

zip+1...m

ṽ(
ip−1+1

)
ip−1

. . . ṽ(i1+1)i1

×M(+→+···+)
(
kip+1,...,m

)
. (115)

It follows directly from (54). Using this we can write (52) as

M̃(−+···+)

ε+
1...N

(k1...N )

= M(+→−···+)
(
k1,...,N

) +
N−1∑
m=2

M̃(−+···+)

ε+
1...m

(k1...m)
1

ṽ(1...m)(1...N)

M(+→+···+)
(
km+1,...,N

)

+
N−1∑
m=2

m−2∑
p=1

m−1∑
i1=2

i1−1∑
i2=2

. . .

ip−1−1∑
ip=2

M̃(−+···+)

ε+
1...ip

(
k1...ip

)
M(+→+···+)

(
kip+1,...,N

)

× zip+1...ip−1 . . . zi2+1...i1

zip−1+1 . . . zi1+1

zi1+1...m

zip+1...N

zm+1...N

zm+1

× ṽ(m+1)m

ṽ(
1...ip

)
(1...N)ṽ(1...m)

(
1...ip

)
ṽ(i1+1)i1 . . . ṽ(

ip−1+1
)
ip−1

ṽ(1...i1)
(
1...ip

) . . . ṽ(
1...ip−1

)(
1...ip

) . (116)

The amplitudes on the r.h.s. depend only on single summation variable ip, and it turns out that 
one can perform the remaining sums. To this end, let us reorganize the sums as follows

N−1∑
m=2

m−2∑
p=1

m−1∑
i1=2

i1−1∑
i2=2

. . .

ip−1−1∑
ip=2

=
N−3∑
p=1

N−1∑
ip=2

N−1∑
ip−1=ip+1

. . .

N−1∑
i1=i2+1

N−1∑
m=i1+1

. (117)

Let us also rename variables m → i0, ip → m. This allows to rewrite (116) as

M̃(−+···+)

ε+
1...N

(k1...N )

= M(+→−···+)
(
k1,...,N

)
+

N−1∑
m=2

M̃(−+···+)

ε+
1...m

(k1...m)M(+→+···+)
(
km+1,...,N

) 1

zm+1...N ṽ(1...m)(1...N)

×
{

zm+1...N +
N−4∑
p=0

N−1∑
ip=m+1

. . .

N−1∑
i0=i1+1

zm+1...ip . . . zi1+1...i0zi0+1...N

zip+1 . . . zi0+1

×
ṽ(i0+1)i0 . . . ṽ(

ip+1
)
ip

ṽ(1...i0)(1...m) . . . ṽ
(
1...ip

)
(1...m)

}
. (118)

The tower of sums above can be utilized as follows. First, let us introduce
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κmN = zm+1...N +
N−4∑
p=0

N−1∑
ip=m+1

· · ·

N−1∑
i0=i1+1

zm+1...ip · · · zi1+1...i0zi0+1...N

zip+1 · · · zi0+1

ṽ(i0+1)i0 · · · ṽ(
ip+1

)
ip

ṽ(1...i0)(1...m) · · · ṽ(
1...ip

)
(1...m)

. (119)

It can be rewritten as

κmN = z̃mN +
N−4∑
p=0

∑
ip

. . .
∑
i0

z̃miphip (m) z̃ipip−1 . . . hi0 (m) z̃i0N, (120)

where

z̃ij = (j − i − 1) z(i+1)...j (121)

with  (j − i) being the Heaviside step function, and

hi (m) = ṽ(i+1)i

zi+1ṽ(1...i)(1...m)

. (122)

We can consider z̃ij as a “free propagator” and hi (m) as a “vertex”, and (120) as the equation 
for the “full propagator”. Graphically it can be represented as

(123)

where the blob represents κmn, the black dots represent vertices hi , and the lines represent prop-
agators z̃ij . At each vertex there is a summation over the corresponding index. It is easy to see 
that (120) has the following factorization property, graphically

(124)

or

κmn = z̃mn +
∑

i

κmihi (m) z̃(i+1)n. (125)

We will prove, that the solution to this equation reads

κmn = z1...nṽ(1...m)(1...n)

ṽ(1...m+1)(m+1)

. (126)

First, consider the sum on the r.h.s. of (125) inserting the above ansatz∑
i

 (n − i − 1)(i − m − 1)
z1...i ṽ(1...m)(1...i)

ṽ(1...m+1)(m+1)

ṽ(i+1)i zi+1...n

zi+1ṽ(1...i)(1...m)

= z1...m

ṽ(1...m+1)(m+1)

n−1∑
i=m+1

ṽ(i+1...n)(i+1)

ṽ(i+1)(i+1...n)

ṽ(i+1)i = −z1...mṽ(m+1...n)(m+1)

ṽ(1...m+1)(m+1)

(127)

thanks to the identity (65). The complete r.h.s. of (125) now reads
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z(m+1)...n − z1...mṽ(m+1...n)(m+1)

ṽ(1...m+1)(m+1)

= z(m+1)...n − zm+1...nṽ(m+1)(m+1...n)

ṽ(m+1)(1...m)

= z(m+1)...n

ṽ(m+1)(1...m)

[
ṽ(m+1)(1...m) − ṽ(m+1)(m+1...n)

]
= zm+1ṽ(1...n)(1...m)

ṽ(m+1)(1...m)

= z1...nṽ(1...m)(1...n)

ṽ(1...m+1)(m+1)

(128)

where we have used identities from Appendix A. We see that this is the same as (126), thus we 
have accomplished the proof.

It is now easy to read out the expression for KmN defined in (55). It follows from comparison 
of (55) and (118) and simply reads

KmN = z1...N

zm+1...N ṽ(1...m+1)(m+1)

. (129)
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