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Abstract

In this paper, a post-plus language is de.ned as a language which contains all the catenations
of each word in the language with a proper su0x of this word. The set of all d-primitive words
is a natural post-plus language. The family of all post-plus languages is a subfamily of all
non-counting languages. Some basic properties and characterizations of post-plus languages are
investigated. We obtain that a post-plus language spanned by a word over an alphabet with two
letters is context-free if and only if the language is regular. Some general properties of post-plus
languages related to code, dense property and formal language theory such as the nature of
context-free, context-sensitive languages are also studied in this paper. c© 2001 Elsevier Science
B.V. All rights reserved.

1. Introduction

A language L is a post-plus language if uv∈L implies uv2 ∈L for u; v∈X+. The
purpose of this paper is to study the family of post-plus languages. In [12], it is shown
that if u; v∈X+ and uv is a d-primitive word, then for any k¿2, the word uvk is a
d-primitive word. Thus, the set of all d-primitive words is a post-plus language. This
indicates that natural post-plus languages exist.
Properties of the set of all primitive words and properties of primitive words are

studied frequently for the reason that they are concerned with the basic compositions
of words. At the same time, properties of d-primitive words are also investigated in
many researches. For instance, d-primitive words are also called non-overlapping words
in [12], dipolar words in [13], or unbordered words in [1]. Recently, Shyr and others
wrote many papers related to d-primitive words ([5, 13, 15], etc.)
There are many other languages consisting of some kinds of word powers. In [2],

power absorbing languages are investigated; right k-dense languages are studied in [6];
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the k-catenation of words is introduced in [9]; left non-counting languages and power-
separating languages are studied in [12]; e-closed and c-closed languages are discussed
in [13]; and so on.
There are several reasons that make languages consisting of word powers and the

generating operations an important research topic. Firstly, a set of word powers could
have some special mathematical properties and could be a useful model for pat-
tern combinations. Secondly, the inserting and deleting procedures could aGect the
observation and the characterization of languages of word powers. Thirdly, catena-
tion is a basic insertion operation in formal language theory. The k-catenation oper-
ation is studied in [9]; the insertion and deletion operations are investigated in [8];
e-insertion and c-deletion operations are studied in [13]; shuHe relations of words
are proposed in [14]; etc. In this paper, we focus our investigation on the catenation
operation.
In Section 3, we investigate the general properties of post-plus languages. Some

special kinds of post-plus languages are given as examples. We show that the post-
plus languages (P;⊆;∩;∪) forms a distributive lattice. The smallest post-plus language
containing the language L is called the post-plus language spanned by L. Some ba-
sic properties of post-plus languages spanned by languages are studied in Section 3.
Section 4 is devoted to the investigation of the decompositions of post-plus languages
into disjoint unions of post-plus subsets. This is somewhat similar to the concept of
the decomposition of a vector space into a direct sum of subspaces studied in linear
algebra [3].
Same as the concept of the irreducible generating set of a semigroup, we de.ne

the generating set of a post-plus language L as the set of words in L which are not
contained in the post-plus language spanned by any other word in L. Some properties
of generating sets of post-plus languages are studied in Sections 4 and 5. The concept
of generating sets is used in the studying of post-plus languages spanned by words
or languages in Sections 5 and 6. A non-empty word is called max-cyclic if it is not
contained in the post-plus language spanned by any other non-empty word. The set of
all max-cyclic words is exactly the generating set of the largest post-plus language X+.
The max-cyclic words are characterized in Section 5. We show that a non-empty word
w is max-cyclic if and only if w �= uv2 for any two non-empty words u and v. Thus a
word w �= vk for any word v and k¿3 implies that there is a cyclic permutation of w
being a max-cyclic word. In Section 6, we also investigate the case that the catenation
of a word with a post-plus language forms a post-plus language. Section 7 deals with
post-plus languages being su0x codes or dense languages.
According to the Chomsky hierarchy of formal languages, there are regular lan-

guages, context-free languages, context-sensitive languages and type-0 languages. In
application, when we design a compiler to compile a language, it is very important
to know what kind of grammars can be used. In Sections 5 and 6, we investigate
the regular, context-free and context-sensitive post-plus languages. For de.nitions and
properties of context-free and context-sensitive languages, the reader is referred to the
book [4].
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2. De�nitions

Let X be a .nite alphabet with more than one letter and let X ∗ be the free monoid
generated by X . Elements of X ∗ are called words. Any subset of X ∗ is said to be
a language. For u∈X ∗ and L⊆X ∗, let |u| denote the length of the word u and
let |L| denote the cardinality of the language L. Let X+ =X ∗\{1}, where 1 is the
empty word. For L; L′ ⊆X ∗, let the catenation of L and L′ be the set LL′ de.ned by
LL′ = {uv | u∈L; v∈L′}. Let L1 =L and Ln =Ln−1L for n¿2.
Recall that a language L⊆X+ is a post-plus language if uv∈L; u∈X+; v∈X+,

implies that uv2 ∈L. In this case, the empty set and languages {a} for a∈X are also
considered as post-plus languages. For u; v∈X ∗, the partial order 6d is de.ned as:

v6du ⇔ u= xv= vy for some x; y∈X ∗ [12]:

A word u∈X+ is said to be d-primitive if for v∈X ∗; v �= u; v6du⇒ v=1 [12]. Let
D(1) be the set of all d-primitive words over X . A word u∈X+ is a primitive word
if u= vn for some v∈X+ implies that n=1. Let Q be the set of all primitive words
over X . It is known that every word u∈X+ is a power of a unique primitive word
(see [12]).
Beside the partial order 6d, we still need the following two partial orders. For

u; v∈X ∗, the partial orders 6p and 6s are de.ned as

v6pu ⇔ u= vw for some w∈X ∗;

v6su ⇔ u=wv for some w∈X ∗:

For a word u∈X+, we de.ne the following sets:

Per(u)= {vw∈X+ | u=wv};
Pre(u)= {v∈X+ | v �= u; v6pu};
Suf (u)= {v∈X+ | v �= u; v6su}:

For L⊆X+, let

Suf (L)= {u∈Suf (w) |w∈L}= ⋃

w∈L
Suf (w):

For u∈X ∗, a word v∈X ∗ is said to be a pre/x (su1x) of u if v6pu (v6su). A
su0x v of a word u is called a proper su1x if v �=1 and v �= u. A non-empty language
L⊆X+ is called a pre/x code (su1x code) if LX+ ∩L= ∅ (X+L∩L= ∅). A pre.x
code (su0x code) L is said to be maximal if L∪{w} is no more a pre.x code (su0x
code) for every w �∈L.
In this note, we still need the following de.nition: For L⊆X ∗, the equivalence

relation PL is de.ned by

u≡ v(PL) if and only if (xuy∈L⇔ xvy∈L for all x; y∈X ∗):
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We call a language L⊆X ∗ regular if the index of PL is .nite.
Items not de.ned in this section or in the rest of this paper can be found in books

[4, 12] which are used as standard references.

3. Some basic properties of post-plus languages

This section is devoted to the investigation of the properties of post-plus languages.
Moreover, properties of generating functions, generating sets and the post-plus lan-
guages spanned by given languages are studied too. From the de.nition, the following
properties can be obtained immediately.

Lemma 1. A language L⊆X+ is a post-plus language if and only if for u; v∈X+;
uv∈L implies uv+ ⊆L.

Proposition 2. Let P be the family of all post-plus languages. Then; for A; B∈P;
A∪B∈P and A∩B∈P. That is; (P; ⊆ ;∩;∪) forms a distributive lattice.

If {Li | i∈�} is a family of post-plus languages, where � is an index set, then the
intersection

⋂
i∈� Li is a post-plus language. With this fact we see that for any subset

L⊆X+, the smallest post-plus language containing the set L exists. Thus for any set
L⊆X+, we let ◦(L) be the smallest post-plus language containing the set L, called the
post-plus language spanned by L. If L is a sigleton set {w}; then we call ◦(w) the
post-plus language spanned by the word w. If w= a∈X , then we de.ne ◦(w)= {a}.
Note that for any languages A and B, A⊆◦(B) if and only if ◦(A)⊆◦(B). It is clear
that for L⊆X+; ◦(L)= ⋃

w∈L ◦(w). It is also clear that ◦(◦(L))= ◦(L); for any L⊆X+.
These observations yield:

Remark 3. Let L⊆X+. Then the following statements are equivalent:
(1) L is a post-plus language;
(2) ◦(L)=L;
(3) ◦(w)⊆L for every w∈L.

Next, we investigate the relations between the post-plus language spanned by a word
and its subsets, and between two languages and the post-plus languages spanned by
them.

Proposition 4. Let u; w∈X+ and let A; B⊆X+. Then the following statements hold
true:
(1) u∈ ◦(w) if and only if ◦(u)⊆ ◦(w);
(2) If A⊆B; then ◦(A)⊆ ◦(B);
(3) ◦(A∪B)= ◦(A)∪ ◦(B);
(4) ◦(A∩B)⊆◦(A)∩ ◦(B).
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Proof. As A⊆ ◦(B) if and only if ◦(A)⊆ ◦(B), statements (1), (2) and (4) are true.
By ◦(A∪B)=

⋃
w∈A∪B ◦(w)= (

⋃
w∈A ◦(w))∪ (

⋃
w∈B ◦(w))= ◦ (A)∪ ◦ (B), statement

(3) holds true.

There exist A; B⊆X+ such that ◦(A∩B) �= ◦(A)∩ ◦(B). For example, let X = {a; b};
A= {ab; ba} and B= {abb; ba}. Then ◦(A∩B)= ◦(ba) �= ◦(B)= ◦(A)∩ ◦(B).

In the rest of this section, we characterize the language L such that LX+ or X+L is
a post-plus language.

Proposition 5. For any language L⊆X+; LX+ is a post-plus language.

Proof. As LX+X+ ⊆LX+; LX+ is a post-plus language.

By Proposition 5, LX+ is a post-plus language for every L⊆X+. But X+L is
not a post-plus language for some L⊆X+. For example, let L= {ab}. As aab∈
X+{ab} and aabb �∈X+{ab}; X+L is not a post-plus language. The following propo-
sition characterizes the language L being such that X+L forms a post-plus
language.

Proposition 6. Let L⊆X+. Then the following three statements are equivalent:
(1) X+L is a post-plus language;
(2) X+(◦(L))=X+L;
(3) If w∈ ◦ (L); then there exists u∈L such that u6sw.

Proof. (1)⇒ (2): Let X+L be a post-plus language. Since L⊆ ◦(L), it is clear that
X+L⊆X+(◦(L)). Suppose there exists w∈X+(◦(L))\X+L. Then w= xu1u2 for some
x∈X+, u1 ∈L and u2 ∈X ∗ with u1u2 ∈ ◦ (u1). One must have that w= xu1u2 ∈
◦ (xu1) �⊆X+L. From Remark 3, we have that X+L is not a post-plus language, a
contradiction! Thus X+(◦(L))⊆X+L.
(2)⇒ (3): For every w∈◦(L); aw∈X+(◦(L)) for any a∈X . Since X+(◦(L))=X+L,

there exist x∈X+ and u∈L such that aw= xu. Thus u6sw.
(3)⇒ (1): Assume that for every w∈ ◦ (L), there is u∈L such that u6sw. Let

x; y∈X+ be such that xy∈X+L. Then xy= v1v2 for some v1 ∈X+ and v2 ∈L. If
y6sv2, then there exist x1 ∈X+ and x2 ∈X ∗ such that xy= x1v2 and v2 = x2y. Let
w= x2y2. Then w= x2y2 ∈ ◦(v2)⊆ ◦(L). By the assumption, there exists u∈L such
that u6s x2y2, i.e., xy2 = x1x2y2 = x3u for some x3 ∈X+. This implies that xy2 ∈X+L.
Now, if v26sy, then there exists x4 ∈X+ such that xy2 = x4v2 ∈X+L. Therefore, X+L
is a post-plus language.

From Proposition 6, we have the following corollaries:

Corollary 7. If a language L⊆X+ is a post-plus language; then X+L is also a post-
plus language.
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Corollary 8. Let L⊆X+ and let m(L)= min{|x| | x∈L}. If L contains the set Xm(L);
then X+L is a post-plus language.

Proof. It is obtained from the fact that Suf (◦(L))∩Xm(L) ⊆Xm(L) ⊆L directly.

Xm(L), given in Corollary 8, is a maximal su0x code for every L⊆X+ with L �= ∅.
The following example shows that there is a maximal su0x code L such that X+L
is not a post-plus language. Let X = {a; b} and let L= {a; ab; a2b2; bab2; b3}. Then L
is a maximal su0x code. Since a2b∈X+L and a2b2 �∈X+L; X+L is not a post-plus
language.

4. The decomposition of post-plus languages

In this section, we are going to investigate decompositions of post-plus languages
into disjoint unions of post-plus languages. First, we decompose the largest post-plus
language X+ into disjoint union of two post-plus languages. For L⊆X+, the com-
plement ML of L is de.ned by ML=X+\L. To investigate post-plus languages L having
post-plus complements ML, we give the following de.nition: a post-plus language L⊆X+

is full if for any w �∈L; ◦(w)∩L= ∅. For example, the post-plus language ◦(ab)= ab+

is full while ◦(ab2)= abb+ is not.

Lemma 9. Let L⊆X+ be a post-plus language. Then ML is a post-plus language if
and only if L is full; where ML=X+\L.

Proof. ML is a post-plus language if and only if ML=
⋃

w∈ ML ◦(w). That is, ◦(w)∩L= ∅
for every w �∈L. Therefore, ML is a post-plus language if and only if L is full.

There are languages which can be expressed as disjoint unions of full languages.
For example, let X = {a; b}: Then the language

L= aX ∗ ∪ baX ∗ ∪ b2X ∗

is a disjoint union and each component is full. Similarly,

L= a2X ∗ ∪ abX ∗ ∪ baX ∗ ∪ b2X ∗

is also a disjoint union of full languages. Here we give another two de.nitions concern-
ing full languages. Let L⊆X+ be a post-plus language. A post-plus subset A⊆L is full
in L if for any w∈L\A; ◦(w)∩A= ∅. Similar to Lemma 9, a post-plus subset A is full
in a post-plus language L if and only if L\A is a post-plus language. For a language
L⊆X+, we de.ne the set G(L) as G(L)= {w∈L | for u∈L; if w∈ ◦(u); then u=w}.
Then clearly, G(L)⊆L and L⊆ ◦(G(L)) for every L⊆X+. If L is a post-plus language,
then G(L) is said to be a generating set for the post-plus language L. Clearly, for a
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language L, the set G(L) is unique. And, L= ◦ (G(L)) if and only if L is a post-plus
language.

Lemma 10. Let L⊆X+ be a post-plus language. For any subset A⊆L; G(L)⊆G(A)
∪G(L \A).

Proof. Let w∈G(L). Then w∈A or w∈L \A. If w∈A and w =∈G(A); then there exists
u∈A⊆L such that w∈ ◦(u) and w �= u. This implies that w =∈G(L); a contradiction.
Thus if w∈A; then w∈G(A). Similarly, if w∈L \A; then w∈ ◦ (L \A). Therefore,
G(L)⊆G(A)∪G(L \A).

For any post-plus language L; there are subsets A of L such that G(L) �=G(A)∪
G(L \A). For example: let X = {a; b}; L= ab+ and A= ab2. Thus G(L)= {ab};
G(A)= {ab2} and G(L \A)= {ab}. It is clear that G(L) �=G(A)∪G(L \A). The fol-
lowing lemma is concerned with the case G(L)=G(A)∪G(L \A).

Proposition 11. Let L⊆X+ be a post-plus language and let A⊆L be a post-plus
subset of L. Then the following statements are equivalent:
(1) A is full in L;
(2) G(L)=G(A)∪G(L \A) and ◦(G(A))∩ ◦ (G(L \A))= ∅.

Proof. First, A is full in L if and only if A and L \A are post-plus languages. That is, A
is full if and only if for every x∈L \A and y∈A; ◦(x)∩A= ∅ and ◦(y)∩ (L \A)= ∅.

(1)⇒ (2): Let A be full in L. Consider w∈G(A). If w =∈G(L); then there is u∈L
such that w∈ ◦(u) and w �= u. By the de.nition of G(A); u =∈A. Thus u∈L \A and
w∈ ◦ (u)∩A; a contradiction. Therefore, w∈G(A) implies that w∈G(L). That is,
G(A)⊆G(L). Similarly, G(L \A)⊆G(L). By Lemma 10, G(L)⊆G(A)∪G(L \A).
Thus G(L)=G(A)∪G(L \A). Now, assume that w∈◦(G(A))∩◦(G(L \A)). Then there
exist u∈G(A) and v∈G(L \A) such that w∈ ◦(u)∩ ◦(v). If w∈A; then ◦(v)*L \A
and L \A is not a post-plus language, a contradiction. Similarly, w∈L \A implies that
A is not a post-plus language, a contradiction! Thus ◦(G(A))∩ ◦(G(L \A))= ∅.
(2)⇒ (1): Let G(L)=G(A)∪G(L \A) and let ◦(G(A))∩ ◦(G(L \A))= ∅. We are

going to show that L \A is a post-plus language. Let u∈G(L \A). Then u =∈A and
u∈G(L). If there exists w∈◦(u)∩A; then there is v∈G(A) such that w∈◦(v).
This implies that w∈◦(G(A))∩◦(G(L \A)); a contradiction. Thus ◦(u)∩A= ∅ and
◦(u)⊆L \A. Therefore, ◦(G(L \A))⊆ (L \A) and then, L \A is a post-plus language.

Now, it su0ces to show some properties of the post-plus languages which can be
decomposed into disjoint unions of post-plus languages.

Corollary 12. Let L⊆X+ be a post-plus language and let L=
⋃

i∈� Ai be a disjoint
union. Then; Ai is a post-plus language for every i∈� if and only if Ai is full in L
for every i∈�.



92 S.S. Yu / Theoretical Computer Science 255 (2001) 85–105

Proof. Since L is a post-plus language, ◦(L)=L. If for every i∈�; Ai is full in L; then
clearly, Ai is a post-plus language. Now let every Ai be a post-plus language, that is,
◦(Ai)=Ai. Since Ai =◦(Ai) and Ai ∩ (L \Ai)= ∅; ◦(L \Ai)=

⋃
j∈�; j �=i ◦(Aj)=

⋃
j∈�; j �=i

Aj =L \Ai. Thus L \Ai is a post-plus language and hence, Ai is full in L for every
i∈�.

Corollary 13. Let A⊆X+ be a pre/x code and let L⊆X ∗. If AL is a post-plus
language; then AL is a disjoint union of post-plus subsets wL; where w∈A.

Proof. Let A⊆X+ be a pre.x code. Clearly, AL=
⋃

w∈A wL is a disjoint union. Let AL
be a post-plus language. Then AL= ◦(AL). For every w∈A; we want to show that wL
is a post-plus language. For u∈L; if ◦(wu)∩ (AL \wL) �= ∅; then there exist x∈A \ {w}
and v; y∈L such that wv= xy∈ ◦(wu)∩ (AL \wL). Thus x6pw or w6p x and x �=w.
This implies that A is not a pre.x code, a contradiction. Hence, ◦(wL)∩ (AL \wL)= ∅.
As ◦(wL) ⊆ ◦(AL)=AL; ◦(wL)⊆wL. Since wL ⊆◦(wL); ◦(wL)=wL. Therefore, wL
is a post-plus language.

By Corollaries 12 and 13, a pre.x code A such that AL is a post-plus language
for a language L⊆X ∗ if and only if wL is full in AL for every w∈A. For a post-
plus language L; the following proposition shows that the decomposibility of L into a
disjoint union of post-plus languages is related to the set G(L).

Proposition 14. Let L⊆X+ be a post-plus language and let G(L) be /nite. Then L
can be expressed as a disjoint union of at most |G(L)| post-plus subsets.

Proof. Let L⊆X+ be a post-plus language. Then ◦(G(L))=L. Assume that L can be
expressed as a disjoint union L=

⋃m
i=1 Ai of m post-plus languages Ai with m¿|G(L)|.

Then by Corollary 12, ◦(Ai)=Ai for every 16i6m. By m¿|G(L)| and the equation
L=◦(G(L))=

⋃
w∈G(L) ◦(w)=

⋃m
i=1 Ai; there exist w∈G(L) and 16i �= j6m such that

w∈Ai and ◦(w)∩Aj �= ∅. Thus, there exists u∈◦(w)∩Aj ⊆ ◦(Ai)∩ ◦(Aj)=Ai ∩Aj.
This contradicts that Ai and Aj are disjoint for i �= j.

Consider a post-plus language L. If ◦(w)∩ ◦(G(L) \ {w})= ∅ for every w∈G(L);
then by Corollary 12, L=

⋃
w∈G(L) ◦(w) is a disjoint union of |G(L)| post-plus lan-

guages. Now, let X = {a; b} and let L= ◦(aba)∪ ◦(aba2ba). Then G(L)= {aba; aba2
ba} and aba2ba2 ∈ ◦(aba)∩ ◦(aba2ba). From the proof of Proposition 14, it follows
that L cannot be decomposed as a disjoint union of two or more post-plus languages.

5. Post-plus languages spanned by a word

Words w∈X+ such that ◦(w) are regular or context-free are investigated in this
section. Languages ◦(ab)= ab+ and ◦(abn)= abnb+ for some n¿2 are examples of
post-plus languages being regular. The case of post-plus languages ◦(w) being full are
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also studied. Moreover, the case that ◦(u)∩◦(w) �= ∅ with ◦(u)*◦(w) and ◦(w)*◦(u)
will be further discussed in this section.

Lemma 15. Let a �= b∈X and let w= bm0an1bm1an2bm2 · · · anr bmr where m0¿0; ni; mi

¿1; 16i6r for some r¿1. Let m¿|aw|. Then
(1) awab4mab4m−s1−m0−mrwabk1abk2 =∈ ◦(aw) for every 0¡s16m and k1; k2¿0;
(2) awab4mab4m−s0−m0−mrwab4m−s1ab4m−s2−mr =∈◦(aw) for s0; s1; s2¿0 with s06m and

0¡s1 + s26m;
(3) awab4m−s1ab4m−s2−m0−mrwab4mab4m−mr =∈ ◦(aw) for s1; s2¿0 with 0¡s1 + s26m.

Proof. (1) Let w1 = awab4mab4m−s1−m0−mrwabk1abk2 for 0¡s16m and k1; k2¿0. Sup-
pose w1 ∈◦(aw). Then there exist u1v1; u2v2; : : : ; unvn ∈◦(aw) such that u1v1 = aw; uivi
= ui−1v2i−1 for i=2; 3; : : : ; n and unvn =w1. From the de.nition of post-plus languages
and Remark 3, it follows that unvn ∈ ◦(uivi); 16i¡n. Since 4m¿|aw| and 4m− s1 −
m0−mr¿2m¿|wa|; there exists 16i1¡n such that ui1vi1 = awabj1 and ui1v

2
i1 = awab4m

abj1 for some j1¿0. By the observation of ui1vi1=awabj1abm0an1bm1an2bm2 · · · anr bmrabj1 ;
one must have that j1¿4m− mr . Since unvn ∈ ◦(ui1v

2
i1 );

unvn = awab4mab4m−s1−m0−mrwabk1abk2 = awab4mabj2wabk3abk4

for some j2¿j1 −m0¿4m−m0 −mr¿4m− s1 −m0 −mr and k3; k4¿0. This implies
that 4m − s1 − m0 − mr = j2¿4m − m0 − mr with s1¿0; a contradiction! Therefore,
w1 =∈ ◦(aw).
(2) Let w2 = awab4mab4m−s0−m0−mrwab4m−s1ab4m−s2−mr for s0; s1; s2¿0 with 0¡s1 +

s26m. By (1), s0 = 0. Suppose w2 ∈◦(aw). Then same as (1), there exist u1v1; u2v2; : : : ;
unvn ∈◦(aw) such that u1v1 = aw; uivi = ui−1v2i−1 for i=2; 3; : : : ; n and unvn =w2.
And, there exists 16i1¡n such that ui1vi1 = awabj1 and ui1v

2
i1 = awab4mabj1 with

j1¿4m − mr . As unvn ∈◦(ui1v
2
i1 ); by the observation of unvn = awab4mab4m−m0−mr

wab4m−s1ab4m−s2−mr ; j1 = 4m − mr and vi1+1 = an1bm1an2bm2 · · · anr bmrab4mabj1 . That is,
ui1+1v2i1+1 = awab4mab4m−m0−mrwab4mab4m−mr . Since unvn ∈ ◦(ui1+1v2i1+1);

unvn = awab4mab4m−s0−m0−mrwab4m−s1ab4m−s2−mr

= awab4mab4m−m0−mrwab4mabj2

for some j2¿j1 = 4m−mr . This implies that 4m− s1 = 4m and j2 = 4m− s2 −mr . By
s1 + s2¿0; either 4m − s1 �=4m if s1¿0 or j2¿4m − mr¿4m − s2 − mr if s2¿0; a
contradiction! Therefore, w2 =∈ ◦(aw).
(3) Let w3 = awab4m−s1ab4m−s2−m0−mrwab4mab4m−mr for s1; s2¿0 with 0¡s1+s26m.

By (1), s1¿0. Suppose w3 ∈◦(aw). Then same as (1), there exist u1v1; u2v2; : : : ; unvn ∈
◦(aw) such that u1v1 = aw; uivi = ui−1v2i−1 for i=2; 3; : : : ; n and unvn =w3. Since 4m−
s1¿3m and 4m−s2¿3m; there exists 16i1¡n such that ui1vi1 = awabj1 and ui1v

2
i1 = aw

ab4m−s1abj1 with j1¿4m − s1 − mr . As j1¿4m − s1 − mr¿2m¿|wa|; there exists
i16i26n such that ui2vi2 = awab4m−s1abj2 for some j2¿j1 and |ui2v

2
i2 |¿|awab4m−s1

ab4m−s2−mr |. Thus vi2 ∈X ∗aX ∗. From vi26sawab4m−s1abj2 ; it follows that |vi2 |¿|abj2 |
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and hence, |ui2v
2
i2 |¿|awab4m−s1ab4m−s2−m0−mrwa|. By the observation of ui2vi2 = aw

ab4m−s1abj2 ; vi2 = b4m−s2−mr−j2an1bm1an2bm2 · · · anr bmrab4m−s1abj2 . That is,

ui2v
2
i2 = awab4m−s1ab4m−s2−m0−mrwab4m−s1abj2 :

Since unvn ∈ ◦(ui2v
2
i2 );

unvn = awab4m−s1ab4m−s2−m0−mrwab4mab4m−mr

= awab4m−s1ab4m−s2−m0−mrwab4m−s1abj3

for some j3¿j2. This implies that 4m−s1 = 4m with s1¿0; a contradiction! Therefore,
w3 =∈ ◦(aw).

For u∈X+; if w∈X ∗uX ∗; then u is said to be an in/x of w. From Lemma 15, we
now investigate the word w∈{a; b}+ such that the post-plus language ◦(w) spanned
by w is not context-free.

Proposition 16. For any w∈ a{a; b}+ \ (a+ ∪ ab+); ◦(w) is not a context-free lan-
guage.

Proof. Suppose w= abm0an1bm1an2bm2 · · · anr bmr for m0¿0 and ni; mi¿1; 16i6r. Let
w′ = bm0an1bm1 · · · anr bmr . Let L= ◦(w)∩wab+ab+w′ab+ab+. Then L is a context-free
language if ◦(w) is a context-free language. For any k¿1; let m¿k |w|. Consider
w1 =wab4mab4m−m0−mrw′ab4mab4m−mr . Then w1 ∈L. Let w1 = uvxyz with |vxy|6k; |vy|
¿1. If uxz ∈L⊆wab+ab+w′ab+ab+; then v; y∈ b∗ and v; y must be in.xes of some
of those segments b4m; b4m−m0−mr or b4m−mr in the word w1. Since |vxy|6k6m; we
have the following three cases:
(1) uxz=wab4m−s1ab4m−s2−m0−mrw′ab4mab4m−mr ; for s1; s2¿0 with 0¡s1 + s26m;
(2) uxz= awab4mab4m−s1−m0−mrwab4m−s2ab4m−mr for s1; s2¿0 with s1 + s26m; or
(3) uxz=wab4mab4m−m0−mrw′ab4m−s1ab4m−s2−mr for s1; s2¿0 with 0¡s1 + s26m.
By Lemma 15, uxz =∈ ◦(w). From the Pumping lemma of context-free languages,

L is not context-free. Thus ◦(w) is not context-free either.
If w is obtained by exchanging a and b of w′ mentioned above, then we have

w= aam0bn1am1bn2am2 · · · bnr amr ; where m0¿0 and ni; mi¿1; 16i6r. Since the above
proof is independent from the .rst letter used in w; by an analogous argument, ◦(w)
is not context-free.

By exchanging a and b; it is also true that ◦(w) is not a context-free language for
every w∈ b{a; b}+ \ (b+ ∪ ba+). This yields the following theorem.

Theorem 17. Let w∈{a; b}+. Then the following are equivalent:
(1) ◦(w) is context-free;
(2) w∈ (a+ ∪ ab+ ∪ b+ ∪ ba+);
(3) ◦(w) is regular.
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Proof. (1)⇒ (2): Let ◦(w) be context-free. By Proposition 16, if w =∈ (a+ ∪ ab+ ∪ b+ ∪
ba+); then ◦(w) is not a context-free language, a contradiction. Thus w∈ (a+ ∪ ab+ ∪ b+

∪ ba+).
(2)⇒ (3): Let w∈ (a+ ∪ ab+ ∪ b+ ∪ ba+). Then ◦(w) must be one of {a}; {b};

aaia+; bbib+; abib+ or baia+; where i¿0. Thus ◦(w) is a regular language.
(3)⇒ (1): Immediate.

There are many other regular post-plus languages if we consider the post-plus lan-
guages spanned by languages. For example, consider the language L=(a+b+)+. Then
◦(L)=L and L is a regular language. Thus ◦(L) is a regular post-plus language. X+

is also a regular post-plus language.
A post-plus language ◦(w) is maximal if there is no word u∈X+ such that ◦(w)⊂

◦(u): A word w∈X+ is said to be a max-cyclic word if ◦(w) is maximal. For example,
the post-plus language ◦(ab)= ab+ is maximal. Likewise ◦(aba) and ◦((ab)2) are
also maximals. From the de.nition of G(X+); one must have that G(X+) is the set
consisting of max-cyclic words in X+.

Proposition 18. Let w∈X+. Then w is max-cyclic if and only if w �= uv2 for any
u; v∈X+.

Proof. (⇒) If w= uv2 for some u; v∈X+; then w= uv2 ∈ ◦(uv). By (1) of Proposi-
tion 4, ◦(w)⊂ ◦(uv). We have then ◦(w) is not maximal, a contradiction.
(⇐) Assume that w �= uv2 for any u; v∈X+. Suppose ◦(w) is not maximal and

◦(w)⊂ ◦(z) for some z ∈X+; z �=w. Then w∈ ◦(z) and by de.nition of the set ◦(z);
w= uv2 for some uv∈ ◦(z) with u; v∈X+. This contradicts our assumption.

A word w∈X+ is called square-free if w =∈X ∗u2X ∗ for every u∈X+ [12], and is
called post-square free if there exist no u; v∈X+ such that w= uv2. It is clear that
every square-free word in X+ is a post-square free word. Proposition 18 means that a
word w∈X+ is max-cyclic if and only if w is post-square free. This yields:

Corollary 19. If the word w∈X+ is a square-free word; then w is a max-cyclic word.

In the following, we investigate properties of the set G(X+) of all max-cyclic words
over X .

Proposition 20. Let u∈X+ and let a �= b∈X . Then for every k¿|u|; ubkab∈G(X+).

Proof. Suppose ubkab =∈G(X+) for some k¿|u|. Then by Proposition 18, ubkab= u1u22
for some u1; u2 ∈X+. Since a �= b; |u2|¿|ab|. As k¿|u|; |ubkab|¿2|u|+2. By u1 ∈X+;
|u1u2|¿|u|+1. Then u1u2 = ubi for some i¿2. This implies that bb6s u2 and ab6s u2.
Thus a= b, a contradiction! Therefore, ubkab∈G(X+) for every k¿|u|.
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By a dense language L we mean that L⊆X ∗ and for any u∈X+, there exist two
words x and y in X ∗ such that xuy∈L, that is, L∩X ∗uX ∗ �= ∅ for every u∈X+.
Proposition 20 yields the following result directly.

Corollary 21. G(X+) is dense.

Next, we characterize the max-cyclic words being primitive.

Proposition 22. G(X+)∩Q=Suf (G(X+)).

Proof. For v∈Suf (G(X+)), there exists u∈X+ such that uv∈G(X+). By
Proposition 18, uv is post-square free; and then, v is a primitive post-square free
word. Again by Proposition 18, v∈G(X+). Thus Suf (G(X+))⊆G(X+)∩Q. Now,
we show that G(X+)∩Q⊆Suf (G(X+)). Let v∈G(X+)∩Q. Suppose av =∈
G(X+) for some a∈X . Then, by Proposition 18, av is not a post-square free
word. Since v is a post-square free word, the only case which can hold is that
v=p2 for some p∈Q. Thus v =∈Q, a contradiction! Therefore, av∈G(X+), i.e.,
v∈Suf(G(X+)).

A word w∈X+ being a max-cyclic word does not imply that ◦(w) is full in X+.
For example, let a �= b∈X . The word aba is a max-cyclic word while X+\◦(w), the
complement of ◦(aba), is not a post-plus language. This can be seen from the fact that
the word aba2ba2 is in X+\◦(aba), while aba2ba2 is in ◦(aba). In the following, we
investigate the case of intersections of post-plus languages spanned by distinct words
in X+ being empty or in.nite.

Proposition 23. For any distinct words w; v∈X+; either ◦(w)∩◦(v)= ∅ or |◦(w)∩
◦(v)|=∞:

Proof. Suppose ◦(w)∩◦(v) �= ∅ for some w �= v∈X+. Let u∈◦(w)∩◦(v). Then u∈
◦(w) and u∈◦(v). By (1) of Proposition 4, ◦(u)⊆◦(w) and ◦(u)⊆◦(v). Since w �= v,
u =∈X . Thus ◦(u) is in.nite. This shows that ◦(w)∩◦(v) �= ∅ implies |◦(w)∩◦(v)|=∞.

Proposition 24. For u; v∈X+; if ◦(u)∩◦(v) �= ∅; then u6p v or v6p u.

Proof. Suppose ◦(u)∩◦(v) �= ∅. Then there exists w∈◦(u)∩◦(v). It is clear that
u6pw and v6p w. Therefore, u6p v or v6p u.

Now, we consider words w such that the post-plus languages ◦(w) are full.

Lemma 25. If w∈X ∪X 2; then ◦(w) is full.
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Proof. For w∈X ∪X 2, clearly, ◦(w) is a post-plus language. Since ◦(a)= {a} for
every a∈X; ◦(a)=X+\{a}= ◦(X+\{a}) is a post-plus language. Thus ◦(a) is full
for every a∈X .
Now, let w∈X 2. Then w= a1a2 for some a1; a2 ∈X . It follows that ◦(w)= a1a+2 .

If u∈◦(w), then u= a3u1 or u= a1u2, where a3 �= a1 ∈X; u1 ∈X ∗ and u2 ∈X ∗\a+2 .
Clearly, ◦(u)∩◦(w)= ◦(u)∩ a1a+2 = ∅. Thus, ◦(◦(w))∩◦(w)= ⋃

u∈◦(w) ◦(u)∩◦(w)=
∅. That is, ◦(◦(w))⊆◦(w). As ◦(w)⊆◦(◦(w)), one must have that ◦(◦(w))= ◦(w).
Therefore, ◦(w) is a post-plus language too.

Let a �= b∈X and let u= aaba. Then u∈G(X ). But by Proposition 18, u(ba)4aba
= u(ba)2b(aba)2 =∈G(X+). In the following proposition, we consider the case of distinct
max-cyclic words u; v being such that ◦(v)∩◦(u) �= ∅.

Proposition 26. Let u= u1u2u3 ∈G(X+) for some u1; u2; u3 ∈X+ and let v= uuk
3u2u3

∈G(X+) for some k¿1. Then v =∈◦(u) and ◦(v)∩◦(u) �= ∅.

Proof. Let u= u1u2u3 ∈G(X+) for some u1; u2; u3 ∈X+ and let v= uuk
3u2u3 ∈G(X+)

for some k¿1. Since v �= u and u; v∈G(X+), by the de.nition of G(X+), v =∈◦(u). As
uuk

3u2u
k+1
3 ∈◦(v)∩◦(u), ◦(v)∩◦(u) �= ∅.

From Propositions 20 and 26, we have the following corollary:

Corollary 27. For every u∈G(X+)\(X ∪X 2); there are in/nitely many v∈G(X+)
such that ◦(v)∩◦(u) �= ∅.

Proof. Let u∈G(X+)\(X ∪X 2). Then by Proposition 18, u is post-square free. Thus
there are a �= b∈X such that u= u′ab for some u′ ∈X+. By Proposition 20, ubkab∈
G(X+) for every k¿|u|. From Proposition 26, it follows that ◦(ubkab)∩◦(u) �= ∅ for
every k¿|u|.

There are many other cases except the case proposed in Proposition 26 such that
◦(u)∩◦(v) �= ∅ for two words u; v∈G(X+). For example, let X = {a; b; c}, let u=
abcaaca and let v= abcaacaaabca: u; v∈G(X+). Then a(bca2ca3)2 ∈◦(u)∩◦(v). Let
w= aabca. Then bca6s w and bca �s v. Clearly, v �= uuk

3u2u3 for every u2; u3 ∈X+

and k¿1 with u= u1u2u3 for some u1 ∈X+.

Theorem 28. Let u∈X+. Then ◦(u) is full if and only if |u|62.

Proof. If u =∈G(X+), then there exists w∈G(X+) such that ◦(u)⊆◦(w). By the def-
inition of G(X+); w �= u and w∈◦(u). This implies that ◦(u)∩◦(◦(u)) �= ∅. Thus
◦(◦(u)) �= ◦(u) and ◦(u) is not full. For u∈G(X+), if u =∈X ∪X 2, then, by Corol-
lary 27, ◦(u) is not full. Thus ◦(u) is full implies that |u|62.
Conversely, if u∈X+ with |u|62, then, by Lemma 25, ◦(u) is full.
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6. Some more properties of post-plus languages

By Theorem 17, a post-plus language spanned by a word is regular if and only if it is
context-free. This is not true for the post-plus languages spanned by a language which
is not a singleton set. For example, the language L= {anbna | n¿1}X ∗ where a �= b∈X
is a context-free post-plus language which is not a regular language. Post-plus languages
being context-sensitive and catenations of words with post-plus languages spanned by
words will be investigated in this section. To progress our investigation step by step,
we give the following de.nition.
For a language L⊆X+, the post-power set P(L) of L is de.ned to be P(L)= {uv2 | uv

∈L; u∈X+; v∈X+}. If L= ∅ or L⊆X , then let P(L)= ∅. Here, we also consider P(L)
as the set obtained by applying an operation P on the language L. Let P0(L)=L; P1(L)
=P(L), and let Pn(L)=P(Pn−1(L)) for n¿2. By the de.nition of post-plus lan-
guages, L⊆X+ is a post-plus language if and only if P(L)⊆L. For w∈X+ and
L= {w}, let Pm(w) denote Pm(L) for m¿0. For example, P(aba)= {abaa; ababa}. Let
L= ab+ ⊆{a; b}+. Since P(L)⊆L; L is a post-plus language. Usually Pm(L)∩Pn(L)
�= ∅ for m �= n. For example, aba4 ∈P3(aba)∩P2(aba).
This operation P is an insertion generating function de.ned on languages and is

similar to the generating function for L-languages (see [11]). Both of them ope-
rate directly on some given words and all the generated words are in the language
generated.

Lemma 29. Let L; L′ ⊆X+. Then the following statements hold true for every k¿1:
(1) If L⊆L′; then Pk(L)⊆Pk(L′).
(2) Pk(L∪L′)=Pk(L)∪Pk(L′).
(3) Pk(L∩L′)⊆Pk(L)∩Pk(L′).

Proof. Let L; L′ ⊆X+. Consider the following three steps:
(a) Assume that L⊆L′. If L= ∅, then P(L)= ∅. Clearly, P(L)⊆P(L′). Now, let

L �= ∅. Then, for every w∈P(L), there must exist u; v∈X+ such that uv∈L and uv2 =w.
As L⊆L′, uv∈L′ and then uv2 ∈P(L′). Statement (1) holds true when k =1.
(b) Next, as L⊆L∪L′ and L′ ⊆L∪L′, by step (a), P(L)⊆P(L∪L′) and P(L′)⊆P

(L∪L′), that is, P(L)∪P(L′)⊆P(L∪L′). If w∈P(L∪L′), there must exist u; v∈X+

such that uv∈L∪L′ and uv2 =w. Thus uv∈L or uv∈L′. This implies that w= uv2 ∈
P(L) or uv2 ∈P(L′). Hence, P(L∪L′)⊆P(L)∪P(L′). Statement (2) holds true for
k =1.
(c) As L∩L′ ⊆L and L∩L′ ⊆L′, by statement (1), P(L∩L′)⊆P(L) and P(L∩L′) ⊆

P(L′). Thus P(L∩L′)⊆P(L)∩P(L′). Statement (3) holds true when k =1.
By applying the operation P to L k times, from the de.nition of Pk , it follows that

statements (1)–(3) hold true for every k¿1.

There exist languages L; L′ ⊆X+ such that P(L∩L′) �=P(L)∩P(L′). For example,
let L= {ab3} and let L′ = {ab4}. Then L∩L′ = ∅. But ab5 ∈P(L)∩P(L′).
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The following proposition concerns the relations between the operation P and post-
plus languages.

Proposition 30. For a language L⊆X+; the following two statements hold true:
(1) P(L)⊆L if and only if ◦(L)=L;
(2) ◦(L)= ⋃

k¿0 P
k(L).

Proof. (1) P(L)= {uv2 | uv∈L; u; v∈X+}⊆L if and only if L is a post-plus language.
By Remark 3, L is a post-plus language if and only ◦(L)=L.
(2) Clearly, L=P0(L)⊆ ⋃

k¿0 P
k(L). If uv∈ ⋃

k¿0 P
k(L), u; v∈X+, then uv∈Pi(L)

for some i. Thus uv2 ∈Pi+1(L)⊆ ⋃
k¿0 P

(k)(L). That is,
⋃

k¿0 P
k(L) is a post-plus

language containing L. From the de.nition of ◦(L), we have that ◦(L)⊆ ⋃
k¿0 P

k(L).
Now show that

⋃
k¿0 P

k(L)⊆◦(L). Since ◦(L) is a post-plus language, if uv∈◦(L),
u; v∈X+, then uv2 ∈◦(L). As L=P0(L)⊆◦(L), by the de.nition of Pk(L) and by
mathematical induction, Pk(L)⊆◦(L) for every k¿0.

For a language L⊆X+, de.ne m(L) to be m(L)= min{|x| | x∈L}. Consider a word
x∈X+. If |x|=1, then P(x)= ∅. If |x|¿1, then x =∈P(x)= {uv2 | x= uv; u; v∈X+} and
|x|¡m(P(x)). Now, we show the following theorem concerning context-sensitive post-
plus languages.

Theorem 31. Let L⊆X+ be a context-sensitive language. Then ◦(L) is a context-
sensitive language.

Proof. Let L⊆X+ be a context-sensitive language. Then, there is a linear-bounded
automaton M1 which puts u in tape T1 for any given u∈X+, checks whether there is
any pre.x w of u in L and puts w on tape T2 if w is in L. For any given word u, the
length of u is .nite and then, there are only .nitely many words on tape T2.

Let M2 be a Turing machine which checks whether there is any word on tape T2.
If there is no word on tape T2, then M2 enters a state ‘No’ and halts. Otherwise, M2

checks whether the .rst word x on tape T2 is the word u. M2 halts in a .nal state
‘Yes’ if x= u. When x �= u, M2 generates P(x), puts all words y∈P(x) with |y|6|u|
on tape T2 and deletes x from tape T2. Then M2 goes back to check whether tape T2 is
empty again. Since |x|¡m(P(x)) and every word generated is bounded by the length
of u, M2 will always .nish checking a word x and all the possible words generated
from x and either .nd a word equal to u or tern to the next word on tape T2.

As |X ||u| is .nite for every u∈X+, one needs only a bounded space for each u∈X+

and M2 will always halt in a .nal state ‘Yes’ or a state ‘No’. That is, u∈◦(L) or
u =∈◦(L). And, M2 is a linear-bounded automaton. If we construct a linear-bounded au-
tomaton M which simulates M1 followed by M2, then ◦(L) is accepted by M . Therefore,
◦(L) is a context-sensitive language.

Theorems 17 and 31 yield:
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Corollary 32. If w∈X+\(a+ ∪ ab+ ∪ b+ ∪ ba+); then the language ◦(w) is context-
sensitive but not context-free.

The following lemma concerning the basic property of decompositions of words will
be needed in the sequel.

Lemma 33 (Lyndon and Schutzenberger [10]). If uv= vw; u; v; w∈X ∗ and u �=1; then
u= xy; v=(xy)kx; w=yx for some x; y∈X ∗ and k¿0.

For u; v∈X+; v¡s u (v¡p u; v¡d u) means v6s u (v6p u; v6d u) and v �= u. The
rest of this section deals with properties of catenations of words with post-plus lan-
guages spanned by words. First, we consider the following lemma:

Lemma 34. Let a �= b∈X and let w∈Xw′ for some w′ ∈X ∗aX ∗b. Then wbkubk =∈
◦(w) for every u∈X+ and k¿|wu| with w′¡s u.

Proof. Suppose there is wbkubk ∈◦(w) for some u∈X+ and k¿|wu| with w′¡su.
Then there exist u1v1; u2v2; : : : ; unvn ∈◦(w) such that u1v1 =w; uivi = ui−1v2i−1;
i=2; 3; : : : ; n; unvn =wbkubk . As k¿|wu| and w; u∈X+aX ∗b, by the observation of
unvn =wbkubk , there exists 16i1¡n such that ui1vi1 =wbj1 ; j1¿|u|. Since unvn =wbk

ubk , there exists i16i2¡n such that |ui2vi2 |¡|wbku| and |ui2v
2
i2 |¿|wbku|. By the de.ni-

tion of post-plus languages, bj16s v for every v∈◦(ui1vi1 ). As u∈X+aX ∗b and j1¿|u|,
bj1 �s u. One must have that ui2vi2 =wbj2 for some j2¿j1 and vi2 =w1bj2 for some
w1; w2 ∈X+ such that w=w2w1. Thus ui2v

2
i2 =wbj2w1bj2 =wbkubj3 for some j3¿0.

As k¿|wu|, if j3¡j2, then bj2−kw1bj2−j3 = u when j2¿k or w1bj2−j3 = bk−j2u when
k¿j2. Since w16s w′¡su, w1¡sw1bj2−j3 . Thus w1bj2−j3 = xw1 for some x∈X+. By
Lemma 33 and bj2−j3 ∈ b+, w1 ∈ b+ and u∈ b+. This contradicts the fact that w′¡su
and w′ ∈X ∗aX ∗b. Hence, j3¿j2. Since |u|¿|w|¿|w1|, k¡j26j3. As unvn ∈◦(ui2vi2 ),
unvn =wbkubj4 for some j4¿j3¿k. This contradicts the fact that unvn =wbkubk . There-
fore, wbkubk =∈◦(w).

Proposition 35. Let w∈X+ab+ where a �= b∈X . Then for every u∈X+; ◦(w)u and
w(◦(u)) are not post-plus languages.

Proof. First, we show that ◦(w)u is not a post-plus language. Suppose w∈Xw′abk for
some w′ ∈X ∗, a �= b∈X and k¿1. Let u∈X+. Then wb|wu|u∈◦(w)u and wb|wu|uw′abk

b|wu|u∈P(◦(w)u). By Lemma 34, wb|wu|uw′abkb|wu| =∈◦(w), i.e., wb|wu|uw′abkb|wu|u =∈
◦(w)u. By Proposition 30 and Remark 3, ◦(w)u is not a post-plus language.
Now, we show that w(◦(u)) is not a post-plus language. Let w=w′abk for some

w′ ∈X+, a �= b∈X and k¿1. We consider the following three cases: (a) If u= bm

for some m¿1, then ◦(u)⊆ b+. Thus wuabku=w′abkuabku∈◦(wu)\w(◦(u)). Suppose
u= u′abm for some u′ ∈X ∗, m¿0. (b) If m=0, then wua|wu|bkua|wu| ∈◦(wu). By
Lemma 34, ua|wu|bkua|wu| =∈◦(u). Thus wua|wu|bkua|wu| =∈w(◦(u)). (c) If m¿1, then
wub|wu|abkub|wu| ∈◦(wu). By Lemma 34, ub|wu|abkub|wu| =∈◦(u). That is, wub|wu|abku
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b|wu| =∈w(◦(u)). Each of the above three cases implies that ◦(w◦(u)) �=w(◦(u)). By
Remark 3, w(◦(u)) is not a post-plus language.

For words w; u∈X+, we now consider the case ◦(w)u⊆◦(w).

Lemma 36. Let w∈X+b where b∈X . For u∈X+; ◦(w)u⊆◦(w) if and only if u= bm

for some m¿1.

Proof. Let w∈X+b and let u∈X+. Then clearly ◦(w)⊆X+b. Assume that ◦(w)u ⊆
◦(w). Consider u= vabm for some m¿0; v∈X ∗ and a �= b∈X . If m=0, then wu=wva
∈◦(w)u\◦(w), a contradiction! Now, let m¿1. Suppose wb2|wu|u∈◦(w). Then there
exist u1v1; u2v2; : : : ; unvn ∈◦(w) such that u1v1 =w; uivi = ui−1v2i−1; i=2; 3; : : : ; n;
unvn =wb2|wu|u. As the power of b is 2|wu|, there exists 16i1¡n such that ui1vi1 =wbj1 ;
j1¿|wu|. By the de.nition of ◦(ui1vi1 ), for every x∈◦(ui1vi1 ); b j16s x. Since unvn =w
b2|wu|vabm ∈◦(ui1vi1 ), m¿j1¿|u|. This contradicts that |u|= |v| + m + 1¿m. Thus
wb2|wu|u=wb2|wu|vabm ∈◦(w)u\◦(w), a contradiction! Hence, ◦(w)u⊆◦(w) implies
that u∈ b+.

Conversely, let u= bm for some m¿1. For every w′ ∈◦(w), w′ ∈X+b. Thus w′u
=w′bm ∈Pm(w′). By (2) of Proposition 30, ◦(w)= ⋃

k¿0 P
k(w). Since w′ ∈◦(w), there

exists k¿0 such that w′ ∈Pk(w). By (1) of Lemma 29, w′u∈Pm(w′)⊆Pm(Pk(w))
⊆ ◦(w). Therefore, ◦(w)u⊆◦(w).

From Lemma 36, we have the following property:

Corollary 37. Let w∈X+b where b∈X . For L⊆X+; ◦(w)L⊆◦(w) if and only if
L⊆ b+.

Lemma 38. Let w∈Xb+ and let u∈X+. Then ◦(w)u is a post-plus language if and
only if u∈ b+.

Proof. Let w∈Xb+ and let u∈X+. It is clear that ◦(w)⊆Xb+.
Suppose u∈X+\b+. Say u= u′abk for some k¿0, u′ ∈X ∗ and a �= b∈X .
Case (1): If k =0, then, for any v∈◦(w); vu= vu′a =∈◦(w)⊆Xb+, i.e., vu2 ∈◦(vu)\◦

(w)u.
Case (2): If k¿1 and u6s ub, then by Lemma 33, u∈ b+, a contradiction! Thus,

if k¿1, then u�s ub. This implies that vub∈◦(vu)\◦(w)u. By Remark 3, languages
◦(w)u in both of the above two cases are not post-plus languages.
Conversely, suppose that u= bk for some k¿1. Since every v∈◦(w) is in this form

v= abi for some i¿1 and a∈X; vu= abi+k . It is clear that ◦(vu)= abi+kb∗ =(abib∗)
bk = ◦(v)u⊆◦(w)u. From Remark 3, we have that ◦(w)u is a post-plus language.

Before we consider the case of w(◦ (u)) being a post-plus language for w; u∈X+,
we show the following lemma.
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Lemma 39. For u∈X ∗b with b∈X; ub2|u|ub2|u| ∈◦(u) if and only if u∈ bb+.

Proof. Let (ub2|u|)2 ∈◦(u). Then, clearly, u �= b. Assume that u∈X ∗abj for some j¿1
and a �= b∈X . If u= abj, then ◦(u)= abjb∗. This implies that (ub2|u|)2 = (ab2|u|+ j)2 =∈
◦(u), a contradiction! If u∈X+abj, then by Lemma 34, ub2|u|ub2|u| =∈◦(u), a contra-
diction! Thus u∈ bb+.
Conversely, suppose u= bm for some m¿2. Then (ub2|u|)2 = b6m ∈ bmb∗= ◦(u).

Proposition 40. Let w∈Xb+ and let u∈X+. Then w(◦(u)) is a post-plus language if
and only if u∈ bb+.

Proof. Let w∈Xb+ and let u∈X+. Then w=w′b for some w′ ∈X+. From
Proposition 4, it follows that ◦(wu)⊆◦(w ◦(u)). Suppose w(◦(u)) is a post-plus lan-
guage. Then ◦(w◦(u))=w(◦(u)). Since w(◦(u)) is a post-plus language, u∈XX+,
that is, u= u′a for some u′ ∈X+ and a∈X . As wua2|u|ua2|u| ⊆◦(wu)⊆◦(w ◦(u))=
w(◦(u)); ua|2u|ua|2u| ∈◦(u). By Lemma 39, u∈ aa+. Say, u= ak for some
k¿2. Clearly, ◦(u)⊆ a+. If a �= b, then wu=w′bak . This implies that wubak =
w′bakbak ∈◦(wu)⊆w(◦(u)). Thus ubak ∈◦(u)⊆ a+, a contradiction. Hence, a= b, that
is, u∈ bb+.
Conversely, suppose w= abi and u= bk for some a∈X; i¿1 and k¿2. Then,

clearly, w(◦(u))= abi(bkb∗)= abi+kb∗= ◦(w ◦(u)). That is, w(◦(u)) is a post-plus lan-
guage.

We conclude the results obtained in Propositions 35 and 40, Lemmas 36 and 38 as
follows:

Theorem 41. Let w∈X+b with b∈X . Then for u∈XX+; the following statements
are equivalent:
(1) ◦(w)u is a post-plus language;
(2) w∈Xb+ and u∈ bb+;
(3) w∈Xb+ and ◦(w)u⊆◦(w);
(4) w∈Xb+ and w(◦(u)) is a post-plus language.

7. Post-plus languages, codes and dense languages

This section is devoted to the study of relations between post-plus codes, dense
languages and the post-plus languages with .nite generating sets. Recall that D(1) is
the set of all d-primitive (i.e., non-overlapping) words over X . From [5], we have the
following property concerning overlapping words.

Lemma 42 (Hsu et al. [5]). Let w∈X+. Then w =∈D(1) if and only if there exists
a unique word z ∈D(1) with |z|6 1

2 |w| such that w= zw′z for some w′ ∈X ∗.
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The following proposition characterizes the word w which is such that ◦(w) forms
a su0x code.

Proposition 43. Let w∈X+. Then ◦(w) is a su1x code if and only if there exist no
u∈X+ and v∈X ∗ such that w= uvu.

Proof. Let w∈X+ and let ◦(w) be a su0x code. Suppose w= uvu for some u∈X+

and v∈X ∗. Then {w; uvuvu; (uvuvu)(uvu)}⊆◦(w) which is not a su0x code, a con-
tradiction!
For the converse, assume that w �= uvu for every u∈X+ and v∈X ∗. Suppose ◦(w)

is not a su0x code. Then w =∈X and there are x; y∈◦(w) such that x¡s y. Let x=wx1
and let y=wy1 for some x1; y1 ∈X ∗. Then x¡s y implies that there exists y2 ∈X+

such that y=y2x=y2wx1. That is, wy1 =y=y2wx1. Thus there exist y3 ∈X+ such
that wy3 =y2w. By Lemma 33, there are u∈X+ and v∈X ∗ such that y2 = uv and
w= u(vu)k for some k¿0. If k¿0, then w= u(vu)k−1vu, a contradiction! Let k =0.
Then y=y2wx1 = uvux1 =wvwx1 ∈◦(w). There exist u1v1; u2v2; : : : ; unvn ∈◦(w) such
that u1v1 =w; uivi = ui−1v2i−1; i=2; 3; : : : ; n, unvn =y. This implies that there exists
16i¡n such that |uivi|6|wv| and |uiv2i | ¿ |wv|. It is clear that every vi is a cate-
nation of proper su0xes of w. Thus vi = z1z2 · · · zm for some m¿1 and zj ∈X+ with
zj ¡s w; 16j6m. Since |uivi|6|wv| and |uiv2i |¿|wv|, there is 16i′6m such that
|uiviz1z2 · · · zi′−1|6|wv| and |uiviz1z2 · · · zi′ | ¿ |wv|. Thus, either zi′ ¡d w or there ex-
ists z′ ∈X+ such that z′ ¡s zi′ ¡s w and z′ ¡p w. Both cases imply the same result
that w =∈D(1). By Lemma 42, there is z ∈D(1) such that w= zw′z for some w′ ∈X ∗,
a contradiction!

Example 44. ◦(abab2) is a su0x code. For if there exist u; v∈◦(abab2) such that
u¡s v, then there exist x; y∈X+ such that u= xabay. This contradicts the fact that
every word in ◦(abab2) can have subword aba only as a pre.x.

A language L⊆X+ is said to be a solid code if L is an in.x code, every word in L
is d-primitive and Pre(u)∩Suf (v)= ∅ for every two words u; v∈L. Properties of solid
codes can be found in [7] and [12]. There exists a language L which is not a solid
code such that ◦(L) forms a su0x code. For example: let L= {aba2b2; a2b2a3b3}.
By Proposition 43, ◦(aba2b2) and ◦(a2b2a3b3) are su0x codes. Since every word in
◦(aba2b2) can not have the subword a3 and every word in ◦(a2b2a3b3) cannot have
the subword aba; ◦(L) is a su0x code. However, when we consider the post-plus
languages spanned by a solid code, we have the following property:

Proposition 45. Let L⊆X+ be a solid code. Then the language ◦(L) is a su1x code.

Proof. Let L⊆X+ be a solid code. Then, by Proposition 43, ◦(u) is a su0x code
for every u∈L. Suppose that ◦(L) is not a su0x code. Then there exist two dis-
tinct words u; v∈L such that there are u1 ∈◦(u) and v1 ∈◦(v) with u1 ¡s v1. As
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u1 ∈◦(u); u6pu1. Thus u is a subword of v1. It implies that either u is a subword
of v or Pre(u)∩Suf (v) �= ∅. This contradicts the fact that L is a solid code. Therefore,
◦(L) is a su0x code.

For a∈X and w∈X ∗, the number M Ma(w) is de.ned by M Ma(w)=max{|y| |w∈X ∗
yX ∗ and y =∈X ∗aX ∗}, that is, M Ma(w) is the maximal length of subwords of w which
do not contain the letter a.
Now, we are going to investigate the case of post-plus languages being not dense.

Lemma 46. Let w∈X ∗ and let a; b∈X with a �= b. Then X ∗b|wa|X ∗ ∩ ◦(wa)= ∅.

Proof. Let a; b∈X with a �= b and let w∈X ∗. Then clearly, M Ma(wa)¡|wa|. For y∈
◦(wa), there exist u1; v1; u2; v2; : : : ; un; vn ∈X+ such that u1v1; u2v2; : : : ; unvn ∈◦(wa);
u1v1 =wa; uivi = ui−1v2i−1; i=2; 3; : : : ; n, and unvn =y. Clearly M Ma(v1)6M Ma(wa). Since
v1 ends by the letter a and u1v21 =wav1; M Ma(u2v2)=M Ma(u1v21)=M Ma(wa). Similarly,
M Ma(uivi)=M Ma(ui−1vi−1); i=2; 3; : : : ; n. Thus M Ma(y)=M Ma(wa). As M Ma(wa)¡|wa|;
X ∗b|wa|X ∗ ∩ ◦(wa)= ∅.

Proposition 47. For any /nite language L⊆X+; the language ◦(L) is not dense.

Proof. Suppose that L⊆X+ is a .nite language. Let m=max{|w| |w∈L}. Consider
the word v= a2mb2m for a �= b∈X . From Lemma 46, we have that X ∗vX ∗ ∩ ◦(w)= ∅
for every w∈L. That is, X ∗vX ∗ ∩ ◦(L)= ∅. Thus ◦(L) is not dense.

Clearly, if L is dense, then ◦(L) is dense. We conjecture that ◦(L) being dense
implies that L is dense, which we do not intend to prove in this paper.
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