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Abstract

This paper presents extensions to traditional calculus of variations for systems con-
taining fractional derivatives. The fractional derivative is described in the Riemann–
Liouville sense. Specifically, we consider two problems, the simplest fractional variational
problem and the fractional variational problem of Lagrange. Results of the first problem are
extended to problems containing multiple fractional derivatives and unknown functions.
For the second problem, we also present a Lagrange type multiplier rule. For both
problems, we develop the Euler–Lagrange type necessary conditions which must be sat-
isfied for the given functional to be extremum. Two problems are considered to demonstrate
the application of the formulation. The formulation presented and the resulting equations
are very similar to those that appear in the field of classical calculus of variations.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The field of calculus of variations is of significant importance in various dis-
ciplines such as science, engineering, and pure and applied mathematics (see, for
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example, [1–6]. Reference [7] presents a Bliss-type multiplier rule for constrained
variational problems with delay. Calculus of variations has been the starting point
for various approximate numerical schemes such as Ritz, finite difference, and
finite element methods (see [2,8]).

Functional minimization problems naturally occur in engineering and science
where minimization of functionals, such as, Lagrangian, strain, potential, and
total energy, etc. give the laws governing the systems behavior. In optimal control
theory, minimization of certain functionals give control functions for optimum
performance of the system.

Although many laws of the nature can be obtained using certain functionals
and the theory of calculus of variations, not all laws can be obtained this way.
For example, almost all systems contain internal damping, yet the traditional
energy based approach cannot be used to obtain equations describing the behavior
of a nonconservative system (see [9,10]). Recently, Refs. [9,10] presented a
new approach to mechanics that allows one to obtain the equations for a
nonconservative system using certain functionals. In these references, fractional
derivative terms were introduced in functionals to obtain nonconservative terms
in the desired differential equations.

Fractional derivatives, or more precisely derivatives of arbitrary orders, have
played a significant role in engineering, science, and pure and applied mathe-
matics in recent years. As [11] point out, there is hardly a field or science or
engineering that has remained untouched by this field. Reference [12] provide an
encyclopedic treatment of this subject. Additional background, survey, and appli-
cation of this field in science, engineering, and mathematics can be found, among
others, in [11–17].

Recent investigations have shown that many physical systems can be repre-
sented more accurately using fractional derivative formulations (see, for example,
[15,18]). Given this, one can imagine obtaining these formulations by minimizing
certain functionals. These functionals will naturally contain fractional derivative
terms, and mathematical tools analogous to calculus of variations will be needed
to minimize these functional. However, very little work has been done in the area
of fractional calculus of variations [9,10].

This paper provides some new results in the area of fractional calculus of
variations. A fractional calculus of variations problemis a problem in which
either the objective functional or the constraint equations or both contain at least
one fractional derivative term. In this paper we will develop necessary conditions
for two problems from this field, first, minimization of a functional subjected
to specified boundary conditions, and second, minimization of a functional
subjected to constrains and specified boundary conditions. Both functional and
the constraints will be allowed to have fractional derivative terms.
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2. The simplest fractional variational problem

Several definitions of a fractional derivative have been proposed. These defini-
tions include Riemann–Liouville, Grunwald–Letnikov, Weyl, Caputo, Marchaud,
and Riesz fractional derivatives [11,13,16,17]. Here, we formulate the problem in
terms of the left and the right Riemann–Liouville fractional derivatives, which are
defined as [16]

The left Riemann–Liouville fractional derivative

aD
α
x f (x) = 1

Γ (n − α)

(
d

dx

)n
x∫

a

(x − τ )n−α−1f (τ) dτ, (1)

and

The right Riemann–Liouville fractional derivative

xD
α
b f (x) = 1

Γ (n − α)

(
− d

dx

)n
b∫

x

(x − τ )n−α−1f (τ) dτ, (2)

whereα is the order of the derivative such thatn − 1 � α < n. If α is an integer,
these derivatives are defined in the usual sense, i.e.,

aD
α
x f (x) =

(
d

dx

)α

, xD
α
b f (x) =

(
− d

dx

)α

, α = 1,2, . . . . (3)

These derivatives will be denoted as the LRLFD and the RRLFD, respectively.
Note that in the literature the Riemann–Liouville fractional derivative generally
means the LRLFD. From physical point of view, ifx is considered as a time scale,
the RRLFD represents an operation performed on the future state of the process
f (x). This derivative has generally been neglected with the assumption that the
present state of a process does not depend on the results of its future development.
However, the derivations to follow will show that both derivatives naturally occur
in a problem of fractional calculus of variations.

Using the above definitions, the first simplest fractional calculus of variations
problem can be defined as follows:LetF(x, y,u, v) be a function with continuous
first and second( partial) derivatives with respect to all its arguments. Then,
among all functionsy(x) which have continuous LRLFD of orderα and RRLFD
of orderβ for a � x � b and satisfy the boundary conditions

y(a) = ya, y(b) = yb (4)

find the function for which the functional

J [y] =
b∫

a

F
(
x, y, aD

α
x y, xD

β
b y

)
dx (5)
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is an extremum, where0 < α,β � 1. The continuity requirement onF can be
given more precisely. However, these assumptions are made for simplicity. Note
that (1) we have included both the LRLFD and the RRLFD for generality. (2) We
first consider 0< α,β � 1. The case ofα,β ∈ R+ will be consider shortly.
(3) When α = β = 1, the above problem reduces to the simplest variational
problem.

To develop the necessary conditions for the extremum, assume thaty∗(x) is
the desired function. Letε ∈ R, and define a family of curve

y(x) = y∗(x) + εη(x) (6)

which satisfy the boundary conditions; i.e., we require that

η(a) = η(b) = 0. (7)

SinceaD
α
x andxD

β
b are linear operators, it follows that

aD
α
x y(x) = aD

α
x y∗(x) + εaD

α
x η(x), (8a)

xD
β
b y(x) = xD

β
b y∗(x) + εxD

β
b η(x) (8b)

Substituting Eqs. (6) and (8) into Eq. (5), we find that for eachη(x)

J = J [ε] =
b∫

a

F
(
x, y∗ + εη, aD

α
x y

∗ + εaD
α
x η, xD

β
b y∗ + εxD

β
b η

)
dx (9)

is a function ofε only. Note thatJ [ε] is extremum atε = 0. Differentiating Eq. (9)
with respect toε, we obtain

dJ

dε
=

b∫
a

[
∂F

∂y
η + ∂F

∂aDα
x y

aD
α
x η + ∂F

∂xD
β
b y

xD
β
b η

]
dx. (10)

Equation (10) is also called the variations ofJ [y] aty(x) alongη(x). A necessary
condition forJ [ε] to have an extremum is thatdJ/dε must be zero, and this
should be true for all admissibleη(x). This leads to the condition that forJ [y] to
have an extremum fory = y∗(x) is that

b∫
a

[
∂F

∂y
η + ∂F

∂aDα
x y

aD
α
x η + ∂F

∂xD
β
b y

xD
β
b η

]
dx = 0 (11)

for all admissibleη(x). Using the formula for fractional integration by parts, the
second integral in Eq. (11) can be written as [9,12]

b∫
a

∂F

∂aDα
x y

aD
α
x η dx =

b∫
a

xD
α
b

(
∂F

∂aDα
x y

)
η dx (12)
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provided that∂F/∂aD
α
x y or η is zero atx = a andx = b. Using Eq. (7), this

condition is satisfied, and it follows that Eq. (12) is valid. Similarly, the third
integral in Eq. (11) can be written as

b∫
a

∂F

∂xD
β
b y

xD
α
b η dx =

b∫
a

aD
β
x

(
∂F

∂xD
α
b y

)
η dx. (13)

Substituting Eqs. (12) and (13) into Eq. (11), we get

b∫
a

[
∂F

∂y
+ xD

α
b

∂F

∂aDα
x y

+ aD
β
x

∂F

∂xD
β

b y

]
η dx = 0. (14)

Sinceη(x) is arbitrary, it follows from a well established result in calculus of
variations that [2]

∂F

∂y
+ xD

α
b

∂F

∂aDα
x y

+ aD
β
x

∂F

∂xD
β
b y

= 0. (15)

Equation (15) is the Euler–Lagrange equation for the fractional calculus of var-
iations problem. Thus, we have

Theorem 1. LetJ [y] be a functional of the form

b∫
a

F
(
x, y, aD

α
x y, xD

β
b y

)
dx,

defined on the set of functionsy(x) which have continuous LRLFD of orderα and
RRLFD of orderβ in [a, b] and satisfy the boundary conditionsy(a) = ya and
y(b) = yb. Then a necessary condition forJ [y] to have an extremum for a given
functiony(x) is thaty(x) satisfy following Euler–Lagrange equation:

∂F

∂y
+ xD

α
b

∂F

∂aDα
x y

+ aD
β
x

∂F

∂xD
β
b y

= 0.

Note that for fractional calculus of variation problems the resulting Euler–
Lagrange equation contains both the LRLFD and the RRLFD. This is expected
since the optimum function must satisfy both terminal conditions. Further, for
α = β = 1, we haveaDα

x = d/dx andxD
β
b = −d/dx, and Eq. (15) reduces to the

standard Euler–Lagrange equation

∂F

∂y
− d

dx

∂F

∂y(1)
= 0, (16)

wherey(1) = dy/dx.
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3. The case of α,β ∈ R+ and several functions

We now consider further generalization of the above problem. Specifically, we
consider two different cases, first, in whichαj ,βj ∈ R+ (j = 1, . . .), i.e., one
can have multiple positiveα andβ , and second, in which one has more than one
function. In both cases, we consider the end points fixed.

Case 1.Fixed end points andαj ,βj ∈ R+ (j = 1, . . .).
Assume thatαj (j = 1, . . . , n) and βk (k = 1, . . . ,m) are two sets of real

numbers all greater than zero,

αmax= max(α1, . . . , αn,β1, . . . , βm) (17)

is the maximum of all these numbers, andM is an integer such thatM − 1 �
αmax< M. Assume thatF(x, y, z1, . . . , zm+n) is a function with continuous first
and second (partial) derivatives with respect to all its arguments, and consider a
functional of the form

J [y] =
b∫

a

F
(
x, y, aD

α1
x y, . . . , aD

αn
x y, xD

β1
b y, . . . , xD

βm

b y
)
dx. (18)

The problem can now be defined as follows:Among all functionsy(x) satisfying
the conditions

y(a) = ya0, y(1)(a) = ya1, . . . , y(M−1)(a) = ya(M−1), (19a)

y(b) = yb0, y(1)(b) = yb1, . . . , y(M−1)(b) = yb(M−1), (19b)

find the function for which Eq.(18)has an extremum. Here it is implicitly assumed
thaty(x) meets all the differentiability requirements.

The necessary condition for this problem can be found following the approach
presented above. This leads to

Theorem 2. Let J [y] be a functional of the form given by Eq.(18) defined on
the set of functions satisfying the boundary conditions given by Eq.(19). Then a
necessary condition forJ [y] to have an extremum for a given functiony(x) is
thaty(x) satisfy the Euler–Lagrange equation

∂F

∂y
+

n∑
j=1

xD
αj

b

∂F

∂aD
αj
x y

+
m∑

k=1

aD
βk
x

∂F

∂xD
βk

b y
= 0. (20)

As a special case, consider thatαj = j (j = 1, . . . , n), and thatF does not

contain thexD
βk

b y (k = 1, . . . ,m) terms. In this case, using Eq. (3), we have

∂F

∂y
+

n∑
j=1

(
− d

dx

)j
∂F

∂y(j)
= 0. (21)
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Thus, for integral order derivatives, the necessary conditions obtained using
fractional calculus of variations approach reduces to that obtained using standard
calculus of variations approach.

Case 2.Fixed end points and several functions.
The simplest fractional variational problem discussed in Section 2 can be

generalized in a straight forward manner to problems containing several unknown
functions. This problem can be defined as follows: LetF(x, y1, . . . , yn, z1,

. . . , z2n) be a function with continuous first and second (partial) derivatives with
respect to all its arguments. For 0< α,β � 1, consider the problem of finding
necessary conditions for an extremum of a functional of the form

J [y1, . . . , yn] =
b∫

a

F
(
x, y1, . . . , yn, aD

α
x y1, . . . , aD

α
x yn,

xD
β
b y1, . . . , xD

β
b yn

)
dx, (22)

which depends onn continuously differentiable functionsy1(x), . . . , yn(x) sat-
isfying the boundary conditions

yj (a) = yja, yj (b) = yjb (j = 1, . . . , n). (23)

Note that no relationship exists among the functionsyj (x) (j = 1, . . . , n).
Therefore, the necessary condition for the functional in Eq. (22) to have an ex-
tremum can be found by considering the variations of each function one at a time.
Thus we have

Theorem 3. A necessary condition for the curve

yj = yj (x) (j = 1, . . . , n), (24)

which satisfies the boundary conditions given by Eq.(23) to be an extremal of
the functional given by Eq.(22) is that the functionsyj (x) satisfy the following
Euler–Lagrange equation:

∂F

∂yj

+ xD
α
b

∂F

∂aDα
x yj

+ aD
β
x

∂F

∂xD
β
b yj

= 0 (j = 1, . . . , n). (25)

In vector notation, the above condition can be written as

∂F

∂y
+ xD

α
b

∂F

∂aDα
x y

+ aD
β
x

∂F

∂xD
β
b y

= 0, (26)

wherey ∈ Rn.
The above problem considers several functions but only one LRLFD of order

α � 1 and one RRLFD of orderβ � 1. The problem of finding extremum of a
functional consisting of multiple functions and multiple LRLFD and RRLFD of
order greater than zero can be developed using the discussion presented in cases 1
and 2 above.
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4. The problem of Lagrange and the multiplier rule

In this section we consider the following problem: Find the extremum of the
functional

J [y] =
b∫

a

F
(
x,y, aD

α
x y, xD

β
b y

)
dx (27)

such that

�(x,y) = 0 (28)

and

ys1(j)(a) = ys1(j)a, ys2(j)(b) = ys2(j)b (j = 1, . . . , n − m), (29)

wherey ∈ Rn, � ∈ Rm, m < n, ands1 ands2 are two sets ofn numbers obtained
by reordering the numbers 1 ton. It is assumed that the constrained functions
φj (x,y) = 0 (j = 1, . . . ,m) are all independent. This problem is essentially the
same as that of Lagrange except that in this case the functional contains the
LRLFD and the RRLFD. For this reason, we will call this problem as the problem
of Lagrange containing fractional derivatives or simply a fractional Lagrange
problem. This is a special case, and in a general fractional Lagrange problem,
� may also contain the left and the right fractional derivatives.

To develop the necessary conditions for the problem, note thaty at the two ends
are completely known. This follows from the fact that the constraintsφj (x,y) = 0
(j = 1, . . . ,m) are all independent and the values ofn − m functionsyj (x)

(j = 1, . . . , n) are specified at both ends. Therefore, the values of the rest of the
functions at the two ends can be determined using a technique such as Newton–
Raphson.

Supposey∗(x) is the solution to the above problem, and define

y(x) = y∗(x) + εη(x), (30)

where ε is a sufficiently small number, andη(x) ∈ Rn is a variation ofy(x)
consistent with the constraints, i.e.,y(x) satisfies Eq. (28). From the above dis-
cussion, it follows that

η(a) = η(b) = 0. (31)

Substituting Eq. (31) into Eq. (28), expanding the resulting vector into Taylor
series, and neglecting second and higher order terms inε, we get

∂�

∂y
η(x) = 0. (32)

Equation (32) clearly indicates that not all functionsηj (x) (j = 1, . . . , n) can
be independent. Substituting Eq. (30) into Eq. (27), we get a function that is only
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dependent onε. Extremum of this function requires that its derivative with respect
to ε must be zero. This leads to

b∫
a

[
∂F

∂y
η + ∂F

∂aDα
x y aD

α
x η + ∂F

∂xD
β

b y
xD

β
b η

]
dx = 0. (33)

The left-hand side of Eq. (33) is the directional derivative ofJ at y(x) in the
directionη(x). Using the formula for fractional integration by parts and Eq. (31),
it follows that

b∫
a

[
∂F

∂y
+ xD

α
b

∂F

∂aDα
x y

+ aD
β
x

∂F

∂xD
β
b y

]
η dx = 0. (34)

Here the elements ofη(x) are not all independent, and therefore its coefficients
cannot be set to zero. Equation (15) motivates the following

Definition. An admissible arcy∗(x) is said to satisfy themultiplier rule if there
exists a vector of multipliersl(x) ∈ Rm continuous on[a, b], and a function

F̄
(
x,y, aD

α
x y, xD

β
b y, l

) = F
(
x,y, aD

α
x y, xD

β
b y

) + lT (x)�(x,y), (35)

such that

∂F̄

∂y
+ xD

α
b

∂F̄

∂aDα
x y

+ aD
β
x

∂F̄

∂xD
β
b y

= 0 (36)

is satisfied alongy∗(x).

Thus:

Theorem 4. Every minimizing arcy∗(x) must satisfy the multiplier rule.

Proof. To prove this, multiply Eq. (32) withlT (x) and add the results to Eq. (34)
to get

b∫
a

[
∂F

∂y
+ xD

α
b

∂F

∂aDα
x y

+ aD
β
x

∂F

∂xD
β
b y

+ lT (x)
∂�

∂y

]
η dx = 0. (37)

It can now be shown that

∂F

∂y
+ xD

α
b

∂F

∂aDα
x y

+ aD
β
x

∂F

∂xD
β

b y
+ lT (x)

∂�

∂y
= 0. (38)

This follows from the fact thatl(x) may be selected such thatm of then equations
in Eq. (38) are zero. This is true since∂�/∂y has a full rank. Rest of theη’s can be
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selected as independent and therefore the othern−m equations in (38) follows by
using Eq. (37) and applying a theorem in calculus of variations. Note that Eq. (36)
can now be obtained using Eqs. (35) and (38). Equation (38) will be called the
Euler–Lagrange equation for constrained fractional variational problems.✷

The multiplier rule is also applicable for the case when� is also a function of
the LRLFD and the RRLFD. This can be proved following the discussion given
in [1,7]. Multiplier rule for a system containing multiple fractional derivatives can
be developed in a similar manner.

5. Examples

In this section, we obtain the Euler–Lagrange equations for an unconstrained
and a constrained fractional variational problems.

Example 1. As the first example, consider the following unconstrained fractional
variational problem:

minimize J [y] = 1

2

1∫
0

(
0D

α
x y

)2
dx (39)

such that

y(0) = 0 and y(1) = 1. (40)

This example withα = 1, for which the solution isy(x) = x, is often considered
in textbooks on variational calculus. It can be shown that for this problem, the
Euler–Lagrange equation is

xD
α
1

(
0D

α
x y

) = 0. (41)

It can be shown that forα > 1/2, the solution is given as

y(x) = (2α − 1)

x∫
0

dt

[(1− t)(x − t)]1−α
. (42)

Example 2. As the second example, consider the following constrained fractional
variational problem:

minimize J [y] = 1

2

1∫
0

[
y2

1 + y2
2

]
dx (43)

such that
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0D
α
x y1 = −y1 + y2, (44)

y1(0) = 1. (45)

This example with integral order derivative is often considered in textbooks on op-
timal control. It can be shown that for this problem, the Euler–Lagrange equation
is

y1 + l + xD
α
1 l = 0, (46)

y2 − l = 0. (47)

Note that in both examples both the LRLFD and the RRLFD occur in
the resulting Euler–Lagrange equations even when the problems contain only
LRLFDs. Such differential equations have not been studied much in the literature.
A method to find solutions for such problems will be presented in a later work.

Remarks. In closing, we would like to make the following two remarks.
1. Here we have assumed that the terminal conditions are fixed and the

functions meet all the smoothness requirements. The case of unspecified end
conditions, unspecified end points, (the transversality conditions), and piecewise
smoothness (the corner conditions) will be considered in a future work.

2. The theorems and their proofs presented here are very similar to those
given in standard textbooks on calculus of variations. Thus, many of the concepts
of classical calculus of variations can be extended with minor modifications to
fractional calculus of variations. Given the fact that many systems are described
more accurately using fractional derivative models and that nature attempts to
minimize certain functionals, it is hoped that more research will continue in this
field.

6. Conclusions

Euler–Lagrange equations have been presented for unconstrained and con-
strained fractional variational problems. The approach presented and the resulting
equations are very similar to those for variational problems containing integral or-
der derivatives. In special cases, when the derivatives are of integral order only,
the results of fractional calculus of variations reduce to those obtained from classi-
cal calculus of variations. Given the fact that many systems can be modeled more
accurately using fractional derivative models, it is hoped that future research will
continue in this area.
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