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Langerhans cells of the epidermis and dermal dendri-
tic cells screen the skin for invading antigens. They
initiate primary immune responses after migrating
from sites of antigen uptake to lymphoid organs.
The skin is a feasible model to study the morphology
and regulation of dendritic cell migration. We there-
fore used murine skin explant cultures for tracking
the pathways of dendritic cell migration by electron
microscopy. Several novel observations are reported.
(i) In 48 h cultures of epidermal sheets numerous
Langerhans cells migrated out between keratinocytes
extending long and thin cytoplasmic processes
(``veils''). (ii) Langerhans cells in transition from epi-
dermis to dermis were observed by transmission
electron microscopy. Where Langerhans cells pene-
trated the basement membrane, the lamina densa
was focally absent. (iii) This was highlighted by scan-

ning electron microscopy, which presented the base-
ment membrane as a tightly packed and dense
network of ®brils. (iv) Scanning electron microscopy
of the dermis revealed dendritic cells extending their
cytoplasmic processes and clinging to collagen ®brils.
(v) Entry of dendritic cells into dermal lymphatics
was observed by transmission electron microscopy.
It occurred by transmigration through intercellular
spaces of adjacent endothelial cells. Entry through
wide gaps between endothelial cells also seemed to
take place. (vi) Dendritic cells inside the afferent
lymphatics frequently carried material such as mela-
nosomes and apoptotic bodies. These observations
visualize the cumbersome pathway that dendritic
cells have to take when they generate immunity. Key
words: electron microscope/Langerhans cells/migration. J
Invest Dermatol 118:117±125, 2002

D
endritic cells are highly motile antigen-presenting
cells. They have optimized the migratory capacity to
ful®ll their prime task, i.e., to initiate primary
immune responses (Banchereau and Steinman,
1998; Banchereau et al, 2000; Romani et al, 2001).

Like sentinels they scan peripheral compartments for invading
foreign particles and phagocytose (Inaba et al, 1998) or macro-
pinocytose (Sallusto et al, 1995) these antigens very effectively.
After uptake of antigens they start to mature and migrate to
draining lymph nodes to stimulate antigen-speci®c T cells there.
The gap between the sites of antigen uptake and the sites of clonal
T cell activation is ef®ciently bridged by these migratory dendritic
cells. They carry immunogenic complexes of major histocompat-
ibility complex and antigenic peptides on their cell surface and
possibly also antigenic proteins in antigen retention organelles (Lutz
et al, 1997) into the T cell areas of lymphoid organs (Austyn, 1996;
Steinman et al, 1997).

In¯ammatory stimuli, such as bacterial lipopolysaccharide, tumor
necrosis factor a, and interleukin-1 (Roake et al, 1995;
Cumberbatch et al, 1997), and chemotactic cytokines, like
macrophage in¯ammatory protein 3b (MIP-3b/CCL19), second-
ary lymphoid tissue chemokine (SLC/CCL21), and interleukin-16
(Saeki et al, 1999; Kellermann et al, 1999; Stoitzner et al, 2001),
trigger and guide the migration of dendritic cells from peripheral
tissues towards the draining lymphoid organs. As a ®rst step E-
cadherin, which mediates Langerhans cell±keratinocyte adhesion, is

downregulated by in¯ammatory cytokines so that Langerhans cells
are able to leave the epidermis (Jakob and Udey, 1998). By
secretion of matrix metalloproteinases (MMP) dendritic cells can
digest extracellular matrices (Kobayashi, 1997), which facilitates
their crossing of the basement membrane and migration through
the dermis. When they encounter lymphatic vessels they enter the
lumen and migration proceeds towards the lymph nodes. This was
demonstrated by immunohistochemistry and transmission electron
microscopy (TEM) in murine and human skin explant organ
culture models where dendritic-cell-®lled lymph vessels were
originally described as ``cords'' (Larsen et al, 1990; Lukas et al, 1996;
Weinlich et al, 1998). Skin in general and the skin explant model in
particular represent suitable tools to investigate morphologic and
regulatory aspects of dendritic cell migration. Contact hypersen-
sitivity is another widely used experimental model (Enk et al, 1993;
Cumberbatch et al, 1997). In order to learn more about the
requirements for ef®cient dendritic cell migration we were
interested in morphologic aspects of emigrating dendritic cells in
situ. Therefore, we analyzed in detail cultured murine skin explants,
primarily by scanning electron microscopy (SEM) but also by
TEM.

MATERIALS AND METHODS

Mice Mice of inbred strains BALB/c and C57BL/6 were purchased
from Charles River Germany (Sulzfeld, Germany) and used at 8±12 wk
of age.

Media and reagents Culture medium was RPMI 1640 supplemented
with 10% fetal bovine serum, L-glutamine (Sebac, Stuben, Austria),
gentamycin (all from PAA, Linz, Austria), and 2-mercaptoethanol (Sigma
Chemical, St. Louis, MO).
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Skin explant culture Mice were sacri®ced and ears were cut off at
the base. Ear skin was split in dorsal and ventral halves by means of
strong forceps and the dorsal halves (i.e., cartilage-free, thinner halves)
were cultured in 24-well tissue culture plates (one ear per well) as
described previously (Ortner et al, 1996; Romani et al, 1997; Weinlich et
al, 1998). Alternatively, epidermis and dermis were separated from each
other by means of the bacterial enzyme dispase (Kitano and Okado,
1983), and the epidermal sheets were placed in culture. In most
experiments whole skin or epidermis was cultured continuously for 48 h.
At the end of the cultures skin explants were further processed for
electron microscopy. All observations described are based on the
ultrastructural inspection of several explants from three to four separate
experiments.

SEM Tissue was ®xed immediately after termination of cultures with
half-strength Karnovsky's formaldehyde±glutaraldehyde ®xative
(Karnovsky, 1965), followed by three washes with 0.1 M cacodylate
buffer and post®xation in 3% OsO4 in water. After a short rinse in
0.1 M sodium cacodylate buffer specimens were dehydrated in ascending
concentrations of ethanol (50%±100%). Samples were then critical-point
dried (CP Dryer, Balzers, Liechtenstein), mounted on aluminum stubs
with collodial silver, and subsequently coated with a layer of 5±10 nm of
gold±palladium in a sputtering device (Balzers). Specimens were viewed
on a Zeiss Gemini 985 scanning electron microscope (Zeiss,
Oberkochen, Germany) at 5±8 kV.

TEM Skin organ cultures were minced into small blocks and ®xed by
submersion for 5 h in half-strength Karnovsky's formaldehyde±
glutaraldehyde reagent (Karnovsky, 1965). Further processing was as
described previously (StoÈssel et al, 1990). Brie¯y, specimens were
post®xed in 3% aqueous OsO4, en bloc contrasted with veronal-buffered

uranyl acetate, and dehydrated in a graded series of ethanols. After
dehydration specimens were in®ltrated in mixtures consisting of varying
proportions of propylene oxide as an apolar solvent and epoxy resin
(Epon 812; Serva Feinchemikalien, Heidelberg, Germany). The resin was
polymerized at 60°C for 24 h. Ultrathin sections were contrasted with
lead citrate and viewed with a Philips EM 400 electron microscope (Fei
Company, Eindhoven, The Netherlands) at a voltage of 80 kV.

RESULTS

Langerhans cells emigrate from epidermal sheets in a time-
dependent manner Langerhans cell emigration from the
epidermis has been repeatedly shown to occur in vivo as well as
in skin explant cultures (Larsen et al, 1990; Lukas et al, 1996;
Weinlich et al, 1998). Here we extend these observations in a
morphologic way. Emigration of Langerhans cells from the
epidermis occurs irrespective of the presence of the dermis
(Fig 1a). When the epidermis was separated from the dermis by
means of dispase before the onset of culture, Langerhans cells
emigrated into the culture medium cells equally well as in whole
skin cultures. SEM of epidermal sheets cultured for 0, 5, 10, or 48 h
revealed Langerhans cells coming out of the epidermis in a time-
dependent manner (data not shown). Already 5 h after the onset of
the explant cultures the ®rst Langerhans cells emigrating from the
epidermis could be observed. The numbers of emigrating
Langerhans cells increased with duration of the organ culture.
Langerhans cells detached from the surrounding keratinocytes.
Gaps and holes formed in the keratinocyte layer where the

Figure 1. Langerhans cells migrate from epidermal sheet cultures. In a time course experiment we observed Langerhans cells migrating out of
epidermal sheets during a 48 h culture. After 48 h (a) numerous Langerhans cells (arrows) crawled out of the epidermal sheets. The detachment of
keratinocytes from each other allowed the Langerhans cells to leave the epidermis through developing gaps (b, d). The Langerhans cells attached to
neighboring keratinocytes with the help of thin cytoplasmic extensions (arrows) (c). Scale bars: (a) 10 mm; (b) 5 mm; (c, d) 2.5 mm.
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emigrating Langerhans cells moved through (Fig 1b, d). The
emigrating Langerhans cells extended very thin and long
pseudopodia with which they seemed to be attached to
surrounding keratinocytes (Fig 1c). Langerhans cells displayed
pronounced cytoplasmic veils and may be considered ± at least
partially ± mature by this criterion. It should be noted that the
dermo-epidermal separation by means of dispase leaves the
collagenous part of the basement membrane (lamina densa) on
the dermal side. SEM of cultured epidermal sheets also emphasizes
that migration is an active process. Langerhans cells do not simply
fall out of a disintegrating epidermis. This point is underscored by
the fact that in populations of emigrant cells retrieved from the
culture medium Langerhans cells are highly enriched up to 70%.

The basement membrane is a major physical obstacle for
migrating Langerhans cells After leaving the epidermis
Langerhans cells encounter a complex barrier, the basement
membrane, which they have to passage on their way to the
dermis. By TEM we occasionally found the rare event of a
Langerhans cell in transit through the basement membrane (Fig 2).

We observed that the Langerhans cell extended a pseudopod
through the basement membrane. The electron-dense part of the
basement membrane (lamina densa) was absent only in the area of
physical contact with the emigrating Langerhans cells (Fig 2b±d).
The cells displayed ultrastructural features of mature dendritic cells,
i.e., few small and runted Birbeck granules or no Birbeck granules
at all and a large size. Unfortunately, this event is too rare on
ultrathin sections so that it is not possible to completely reconstruct
the movement of Langerhans cells through this obstacle, even
though this is attempted in Fig 2.

The lamina densa stays on the dermis after dermo-epidermal
separation by dispase (Kitano and Okado, 1983). We studied this
border structure between the skin compartments by SEM. As can
be appreciated from Fig 3(a) the collagen ®brils in the basement
membrane are very tightly packed. They form a dense network that
would not leave enough space for a transmigrating Langerhans cell.

The dermis does not allow unimpeded movement of
migrating Langerhans cells In the dermis the collagen
meshwork appears dense but less compact (Fig 3b) than in the

Figure 2. Langerhans cells in transit through the basement. Different sections of skin explants cultured for 48 h suggest a time sequence of
events (a)±(c). A Langerhans cell (LC), identi®ed by a Birbeck granule (box, enlarged in the inset), is located close to the still intact basement membrane
(dotted line) (a). In panel b a pseudopod of the Langerhans cell can be seen to penetrate the basement membrane. Enlargement of this scene in panel d
highlights the absence of the lamina densa only at the site of direct contact between Langerhans cell and basement membrane (arrows point at lamina
densa). In panel c migration of the Langerhans cell has proceeded further. A long pseudopodium (asterisk) has broken its way through the dermo-
epidermal junction. Scale bars: (a±c) 1 mm; (d) 0.5 mm.
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Figure 3. Visualization of the dense collagen meshwork of the basement membrane and the dermis. After enzymatic separation of the
epidermis, the basement membrane adherent to the dermal sheets was scanned by electron microscopy. The different packing density of the collagen
meshwork in the basement membrane (a) and the dermis (b) becomes evident in these pictures. Note that in the dermis a ®broblast (asterisk) is visible
in the collagen meshwork. Scale bar: 10 mm.

Figure 4. Migration of dendritic cells through the collagen meshwork of the dermis, i.e., after passage through the basement membrane
and before entry into lymph vessels. In the scanning electron microscope dendritic cells (indicated by arrows) can be observed migrating through the
dermal collagen meshwork after skin explant culture for 48 h (a). In (b) two emigrating dendritic cells, adjacent to a ®broblast (den gibt's ober nicht),
move through the dermis. Dendritic cells cling to bundles of collagen ®brils with their veils and pseudopodia (c, d). Scale bars: (a) 10 mm; (b) 5 mm; (c,
d) 2.5 mm.
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lamina densa. Yet, in relation to the size of migrating dendritic cells
this connective tissue appears to render movement of dendritic cells
dif®cult. Dendritic cells squeezing through between bundles of
collagen ®brils are readily visible (Fig 4a, b). Migrating dendritic
cells sometimes attached to individual bundles of collagen ®brils
with their pseudopodia (Fig 4c, d). These observations suggest that
the ability of dendritic cells to ¯exibly change their shape may be
essential for their successful movement through the dermis until
they encounter a lymphatic vessel.

Migrating dendritic cells enter lymphatic vessels As
reported previously for human (Lukas et al, 1996) and mouse
(Weinlich et al, 1998) skin explant cultures dendritic cells
accumulated in wide clefts that were lined by a thin
endothelium, did not possess a continuous basement membrane,
and thus quali®ed as lymphatic vessels. In immunohistochemistry
these structures were originally termed ``cords'' (Larsen et al, 1990).
In semithin sections no differences were noted in the numbers of
lymphatic vessels in cultured and uncultured skin. By TEM of a
large number of sections of 48 h explant cultures we did observe
entry of dendritic cells into vessels. Dendritic cells moved through
the intercellular space of two neighboring endothelial cells (Fig 5a,
b). As cell±cell contacts between adjacent endothelial cells were
often loose, entry of cells may be relatively easy. A tight ``sealing''
of the pore through which the migrating cell entered the vessel was
described for dendritic cells acquiring antigens through the
intestinal wall (Rescigno et al, 2001). Such tight contacts were
not observed between migrating dendritic cells and skin lymphatics.
In addition, we repeatedly noted distinct gaps in the endothelial
layer. The endothelial cells were intact but they were not adjacent
to each other, thus forming an interruption that was sometimes
very wide (Fig 5c). Clearly, these gaps appeared large enough to
allow the entry of a dendritic cell and, indeed, dendritic cells in the
vessel lumen were occasionally found close to these gaps, although
never really in transit (Fig 5c, d). A quantitative comparison of
dendritic cells entering the vessel by transmigration between
endothelial cells and dendritic cells that had possibly entered via the
gaps was not possible. Both events were too rare.

Dendritic cells inside lymph vessels carry antigens The
vessels contained cells with the morphology of dendritic cells such
as an electron-lucent cytoplasm, veils, and an irregularly shaped
nucleus. Frequently we could ®nd Birbeck granules (Birbeck et al,
1961), i.e., the Langerin (CD207)-containing cell organelles typical
for Langerhans cells (Valladeau et al, 2000) and possibly important
for antigen processing. This had been described previously (Schuler
et al, 1991; Weinlich et al, 1998). Granules with an electron-dense
core, typical for dendritic epidermal T cells (Romani et al, 1985),
were not found in the cells evaluated. Moreover, as BALB/c mice,
which contain only very few dendritic epidermal T cells, were used
for most experiments, it is highly unlikely that the cells described
here might be dendritic epidermal T cells rather than dendritic
cells. Frequently these lymph-borne cells contained substantial
amounts of material that they must have taken up earlier. Some
dendritic cells had ingested melanosomes (Fig 6a, c). Other cells
carried various forms of cellular material including apoptotic bodies
(Fig 6b, d).

DISCUSSION

It has been shown before that Langerhans cells emigrate out of the
epidermis after receiving an in¯ammatory stimulus such as the
application of contact allergen (Silberberg-Sinakin et al, 1976) or
the onset of skin explant culture (Larsen et al, 1990). After passage
through the basement membrane the migrating dendritic cells enter
lymphatic vessels in the dermis and travel to the draining lymph
nodes to initiate primary immune responses (Zinkernagel, 1996).
Here we present for the ®rst time a three-dimensional view of
migrating Langerhans cells with the help of SEM. We were able to
follow Langerhans cells on their way out of the epidermis, through
the basement membrane and the dermis, and into the dermal

lymphatics. This view allows some novel insights to be gained into
the mechanism of dendritic cell migration.

Langerhans cell migration appears to be a highly active
process After an in¯ammatory stimulus, here given by the onset
of the organ culture, Langerhans cells start to emigrate from the
epidermis in a time-dependent way. They squeeze out between the
keratinocytes. This may happen in an active way in that they
extend long thin pseudopodia, attach them to neighboring
keratinocytes, and so seem to pull themselves out of the
epidermis. Also in the dermal meshwork of collagen ®brils the
migrating dendritic cells appear far from being passive. Again, they
frequently stretch out processes and cling onto bundles of collagen.
Although we are aware that the study of the dynamics of a process
requires serial or real-time analysis ± something that is not possible
with electron microscopy ± it is tempting to speculate that they
were actively pulling. Such active dendritic cell movement has
been shown in arti®cial collagen lattices by time-lapse video
microscopy (Gunzer et al, 2000). Our data suggest that it may also
occur in vivo.

Migrating Langerhans cells need to ``create a path'' with the
help of enzymes and adhesion molecules Our observations
suggest critical roles for enzymes and adhesion molecules at several
levels.

First, for the emigration of Langerhans cells from the epidermis it
is necessary that the intercellular bonds between keratinocytes (e.g.,
desmosomes) and between keratinocytes and Langerhans cells be
loosened. A role for E-cadherin has been proposed
(Schwarzenberger and Udey, 1996). Another perhaps additional
way is by digestion of cell-adhesion-mediating molecules with
special proteases such as the MMPs (Murphy and Gavrilovic, 1999).
We have evidence that a broad-spectrum inhibitor of MMPs and,
more speci®cally, monoclonal antibodies against MMP-9 and
MMP-2 strongly impaired the emigration of Langerhans cells out
of epidermal sheets.1 As epidermal sheets procured by the use of the
enzyme dispase (Kitano and Okado, 1983) possess no more lamina
densa these data might suggest a role for the MMPs in helping to
loosen contacts between epidermal keratinocytes. Such a function
for MMP-9 on epidermal cells has been demonstrated in the
context of carcinogenesis (Coussens et al, 2000).

Second, the scanning electron micrographs strongly suggest that
for the transit through the basement membrane Langerhans cells
need to be equipped with enzymatic tools. We2 and others
(Kobayashi, 1997) have shown that migrating Langerhans cells
express MMP-9 and MMP-2. Kobayashi et al additionally demon-
strated that Langerhans cells produce MMP-9, which is able to
digest collagen IV (Kobayashi, 1997). TEM highlighted an
important qualitative aspect. The basement membrane was absent
(presumably ``digested away'') only in the very focused area of cell±
basement membrane contact. This mode of action is typical for the
MMPs (Basbaum and Werb, 1996).

Third, the scanning electron microscopic view of the dermis
suggests that similar cellular tools may also be needed for the second
leg of the Langerhans cell journey within the skin, namely from the
basement membrane through the collagen thicket until they gain
access to draining lymphatic vessels. The pictures suggest that
migrating cells contact and temporarily adhere to collagen ®brils.
One might speculate that the cells are actively pulling themselves
along the ®brils.

Migrating dendritic cells appear to enter dermal lymphatic
vessels by endothelial transmigration and through gaps in
the endothelium Langerhans cells and dermal dendritic cells en
route are chemotactically attracted towards the dermal lymphatic
vessels by the chemokine SLC/CCL21, which is expressed in
lymph endothelial cells in situ (Saeki et al, 1999). How exactly they

1Ratzinger G, Stoitzner P, Lutz MB, et al: Effect of matrix
metalloproteinases on the migration of murine cutaneous dendritic cells.
Arch Dermatol Res 292:74, 2000 (abstr.)
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get into the lumen of the vessels is not clear. Our observations
would suggest two possibilities: entry by transmigration through
intercellular spaces and entry through gaps in the endothelial lining.

Transmigration of dendritic cells through intact layers of
endothelium occurs. The experiments by Randolph et al in vitro
(Randolph et al, 1998) and in vivo (Randolph et al, 1999) suggest an

Figure 5. Dendritic cells enter the dermal lymphatics. Skin explants were cultured for 48 h. Panels a and b are consecutive ultrathin sections of
the same transmigrating dendritic cell. The cell body is already inside the lumen of a lymph vessel; a cytoplasmic process is still extending into the
dermal connective tissue. Arrows point at an area of close apposition of dendritic cell and endothelial cell surfaces. Panels c and d show gaps in the
endothelial lining (ending of endothelium indicated by arrows). The gaps are wide enough to allow passage of cells. Note the distinct separation of electron-
lucent lumen and more electron-dense connective tissue suggesting the presence of a physical barrier. Panel d also demonstrates that often endothelial
cells are loosely connected to each other (arrowhead). Scale bars: (a, b, c) 1 mm; (d) 2 mm.
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additional important role for this type of entry into lymphatic
vessels. In¯ammatory tissue monocytes may transform into
dendritic cells upon ablumenal-to-lumenal transmigration through
lymphatic endothelium. Even though the lymph vessel endothelial
cells are very thin we noted a close apposition of transmigrating
dendritic cells and endothelial cells (Fig 5a, b) that may suf®ce to
deliver the necessary signals for cell transformation as described by
Randolph et al. Transmigration through the endothelium of dermal
lymphatics may also be facilitated by the fact that endothelial cells

are only loosely connected to each other; sometimes the most distal
parts of their elongated cell bodies overlap, forming some sort of
¯ap (Fig 5d). This is clearly in contrast to transmigration through
the tightly structured walls of blood vessels.

We have previously noted that in human (Lukas et al, 1996) and
murine (Weinlich et al, 1998) skin explant cultures the lymphatic
endothelium shows interruptions that appear large enough for a
dendritic cell to go through. In these studies, however, we have not
investigated the frequency of the gaps in detail. In this study we

Figure 6. Dendritic cells migrating through lymph carry antigens. Skin explants were cultured for 48 h. The cell in panels a and c has ingested
melanosomes; the cell in panels b and d contains much cellular debris including an apoptotic body (asterisk). A dotted line indicates lymphatic
endothelium. Scale bars: (a, b) 1 mm; (c, d) 0.5 mm.
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gained the impression that such gaps were frequent. We saw
dendritic cells close to the gaps and even in contact with the gaps
(Fig 5c, d); we did not see dendritic cells going across these gaps,
however. Nevertheless, it seems likely that dendritic cells also enter
via the gaps. It should be noted that there was always a well-
delineated separation of ablumenal connective tissue and the lumen
of the vessel, indicating that also the gaps had some sort of a vessel
wall, perhaps consisting of electron-lucent lamina lucida materials
such as integrins, laminins, etc.

Migrating dendritic cells carry antigens The prime function
of dendritic cells in peripheral organs is to take up, process, and
transport antigens to lymphoid organs. Observations with dendritic
cells from the intestine have suggested that immature dendritic cells
may also carry self antigens to the lymph nodes, thereby
maintaining tolerance (Huang et al, 2000). We show here that
this may happen also in the skin: dendritic cells transport self
antigens such as melanosomes that they have probably collected
from dying keratinocytes in the epidermis. They also carry
apoptotic bodies. This would suggest that the described ef®cient
pathway of cross-presentation, which uses apoptotic cells as the
preferred form of antigen (Albert et al, 1998), may also be operative
in the skin. In contrast to Huang et al (2000), however,
melanosome- and apoptotic-body-containing dendritic cells in
lymph vessels looked morphologically mature. Whether this would
ultimately result in the generation of immunity of tolerance cannot
be judged from ultrastructural observations only. Additionally, our
observations complement and extend the work by Hemmi et al
(2001), who showed recently that melanosomes are transported to
draining nodes in two ways. First, we noted melanosome transport
under conditions of normal melanogenesis; Hemmi et al used
experimentally increased melanogenesis. Second, we show uptake
and melanosome transport directly in the dermal lymphatics;
Hemmi et al describe the end result of melanosome transport, i.e.,
accumulation in the lymph node.

Relevance Dendritic cells are crucial for the generation of
immunity to epicutaneously or intracutaneously arriving pathogens
or vaccines. The use of in vitro generated, tumor-antigen-loaded
dendritic cells has come to the stage of clinical evaluation (Thurner
et al, 1999; Fong and Engleman, 2000; Schuler-Thurner et al, 2000;
Steinman and Dhodapkar, 2001). When dendritic cells are injected
into the skin most of them have been shown to remain at the
injection site (Morse et al, 1999; Eggert et al, 1999; Barratt-Boyes et
al, 2000). Migration to the lymph nodes is ineffective, and it
therefore appears desirable to improve this process and, as a
consequence, improve immunogenicity. Better knowledge about
the pathways and the regulation of dendritic cell migration in
model systems will help to achieve this goal.
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