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Human keratinocytes (KCs) express multiple EGF receptor (EGFR) ligands; however, their functions in specific
cellular contexts remain largely undefined. To address this issue, first we measured mRNA and protein levels for
multiple EGFR ligands in KCs and skin. Amphiregulin (AREG) was by far the most abundant EGFR ligand in
cultured KCs, with 419 times more mRNA and 47.5 times more shed protein than any other family member.
EGFR ligand expression in normal skin was low (o8% of RPLP0/36B4); however, HB-EGF and AREG mRNAs were
strongly induced in human skin organ culture. KC migration in scratch wound assays was highly
metalloproteinase (MP)- and EGFR dependent, and was markedly inhibited by EGFR ligand antibodies. However,
lentivirus-mediated expression of soluble HB-EGF, but not soluble AREG, strongly enhanced KC migration, even
in the presence of MP inhibitors. Lysophosphatidic acid (LPA)-induced ERK phosphorylation was also strongly
EGFR and MP dependent and markedly inhibited by neutralization of HB-EGF. In contrast, autocrine KC
proliferation and ERK phosphorylation were selectively blocked by neutralization of AREG. These data show that
distinct EGFR ligands stimulate KC behavior in different cellular contexts, and in an MP-dependent fashion.
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INTRODUCTION
Substantial evidence implicates EGF-like growth factor
activity in the regulation of cell migration, proliferation,
survival, and differentiation of normal and malignant
epithelial cells (Hashimoto et al., 1994; Piepkorn et al.,
1998; Yarden and Sliwkowski, 2001). Human keratinocytes
(KCs) express multiple EGF-like growth factors including
amphiregulin (AREG), betacellulin (BTC), epiregulin (EREG),
heparin-binding EGF-like growth factor (HB-EGF), and TGF-a
in an autocrine fashion (Coffey et al., 1987; Barnard et al.,
1994; Hashimoto et al., 1994; Piepkorn et al., 1998;
Shirakata et al., 2000). All EGF receptor (EGFR) ligands are
synthesized as membrane-bound precursors that require
MP-mediated proteolytic cleavage to produce the soluble,

mature forms (for review see (Sanderson et al., 2006)).
Although paracrine/juxtacrine signaling by transmembrane
precursors has been shown to mediate biological effects in
some experimental systems (Miyoshi et al., 1997; Iwamoto
and Mekada, 2000; Singh et al., 2004; Willmarth and Ethier,
2006), findings from numerous studies strongly suggest that
major EGF-like growth factor functions including cell
proliferation depend on proteolytic release of soluble EGFR
ligands from their membrane-bound precursors (Peschon
et al., 1998; Yamazaki et al., 2003; Sanderson et al., 2006).

EGF-like growth factors bind to one or more members of
the ErbB family of receptor tyrosine kinases, which include
the EGFR, also known as ErbB1 or HER1, ErbB2 (HER2 or
neu), ErbB3 (HER3), and ErbB4 (HER4) (Sanderson et al.,
2006). Ligand binding results in conformational changes of
the extracellular receptor domains (Burgess et al., 2003)
initiating signaling mechanisms that regulate multiple cellular
responses such as migration, proliferation, differentiation,
and survival (Yarden and Sliwkowski, 2001; Citri and Yarden,
2006).

Human KCs express substantial levels of EGFR, ErbB2,
and ErbB3 but no detectable ErbB4 protein (Press et al., 1990;
Prigent et al., 1992; De Potter et al., 2001; Stoll et al., 2001)
suggesting that EGF-like growth factor signaling in KCs
proceeds through the formation of EGFR homo- or EGFR/
ErbB2 and/or EGFR/ErbB3 heterodimers.

Although the function of EGFR ligands in human KCs
appears to be highly redundant (Coffey et al., 1987; Cook
et al., 1991; Barnard et al., 1994; Hashimoto et al., 1994;
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Shirakata et al., 2000; Strachan et al., 2001), the importance
of individual growth factors in specific cellular contexts has
not been elucidated. From animal models and other
experimental systems it is known that EGF-like growth factors
have distinct roles in various tissues. For example, HB-EGF
has been shown to be important for wound healing
(Marikovsky et al., 1993; Stoll et al., 1997; Tokumaru et al.,
2000), arteriosclerosis (Nakata et al., 1996), blastocyst
implantation (Das et al., 1994), and heart function (Iwamoto
et al., 2003; Jackson et al., 2003; Yamazaki et al., 2003),
whereas AREG has been implicated in mammary gland
development (Sternlicht et al., 2005) and targeted expression
of AREG in the epidermis results in a dermatosis with many
similarities to psoriasis (Cook et al., 1997, 2004). Both AREG
and HB-EGF have been shown to be important for retinoic
acid-induced epidermal hyperproliferation (Varani et al.,
2001; Rittié et al., 2006). TGF-a is implicated in hair follicle
development and eye formation (Luetteke et al., 1993),
whereas EREG appears to be a mediator of dermatitis and
lung metastasis (Shirasawa et al., 2004; Sternlicht et al., 2005;
Gupta et al., 2007). BTC null mice have no detectable defects
(Luetteke et al., 1999) however, in transgenic animals it was
recently shown that BTC regulates hair follicle development and
angiogenesis during wound healing (Schneider et al., 2008).

In this study, we asked whether the autocrine expression of
different EGFR ligands by KCs reflects the existence of
nonredundant signaling mechanisms that become activated in
different cellular contexts, and whether MPs are necessary for
their activation. In pursuit of these objectives, we measured the
effects of inhibitors of MP, EGFR, and EGF-like growth factor
function in the contexts of wound-induced KC migration and
proliferation. We also assessed the potency of various EGF-like
growth factors on EGFR activation, as well as their effects on
autocrine and LPA-induced ERK phosphorylation.

RESULTS
Expression of EGFR ligands in human KCs and normal and
organ-cultured human skin

To characterize the context-dependent function of EGFR
ligands in KC physiology, we first measured EGF-like growth
factor mRNA expression and protein shedding in subcon-
fluent cultures of proliferating KCs using QRT-PCR and a
multiplex EGFR ligand assay. As shown in Figure 1a, normal
human KCs express high levels of AREG (transcript levels
were 596% of 36B4 control gene expression) whereas EPGN,
EREG, HB-EGF and TGF-a were expressed at significantly
lower levels (transcript levels 5.8, 17.3, 31.3, and 26.9% of
36B4, respectively). BTC message levels in proliferating KCs
were nearly 40,000 times less abundant than AREG
transcripts. AREG was also the most abundant EGFR ligand
protein shed into the culture medium (Figure 1b), whereas
EREG, HB-EGF, and TGF-a were present at much lower
levels. BTC and EPGN were not included in the study due to
the lack of reliable detection reagents.

We next measured EGFR ligand mRNA levels in normal
and organ-cultured human skin. As depicted in Figure 1c,
expression of all EGF-like growth factors in normal human
skin was very low (o8% of 36B4 control gene transcript

levels). However, HB-EGF was strongly induced after 4 hours
of human skin organ culture (432-fold, increasing to 140%
of 36B4). AREG expression was also markedly induced after
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Figure 1. EGFR ligand expression and shedding in human KCs and normal

and organ-cultured human skin. (a) Normal human KCs were plated at 5%

confluence, grown as described in Materials and Methods and harvested

B70–95% confluence. Relative EGFR ligand mRNA expression was analyzed

by QRT-PCR. Values represent fold-change versus the control gene 36B4

times 103 (mean±SEM, n¼8). Asterisk denotes a significant difference in

AREG expression relative to other ligands with Po10�6. (b) KCs were plated

in 60 mm dishes and grown as described above and 24 hours accumulation of

shed EGFR ligands in the culture medium of near-confluent KC cultures were

assayed using a Multiplex Ligand Assay as described in Materials and

Methods. Data are expressed as ng of shed growth factor protein per ml of KC

culture medium, mean±SEM, n¼ 8, *Po0.0001 versus all other growth

factors shown. Soluble HB-EGF could only be detected in four out of eight

samples. (c) Total RNA was isolated from full-thickness 3 mm punch biopsies

of normal human skin either immediately (control) or from biopsies subjected

to human skin organ culture for 4 or 24 hours and EGFR ligand mRNA was

analyzed by QRT-PCR. Data represent fold-change versus the control gene

36B4 times 103, n¼ 5–8, *Po0.05, **Po0.007.
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4 hours of organ culture, but to a significantly lesser extent
than HB-EGF. After 24 hours of organ culture HB-EGF
expression declined by nearly half whereas AREG expression
doubled, making it the most strongly expressed EGFR ligand
at this time point (135% of 36B4).

HB-EGF is a potent mediator of KC migration in vitro

To determine the relative importance of various components
of the EGFR system for KC migration, we performed scratch

wound assays on near-confluent KC monolayers in the
presence or absence of inhibitors of EGFR signaling, EGF-
like growth factor function, and MP activity. As shown in
Figure 2a, KCs showed vigorous migration in scratch wound
assays that could only be slightly improved through addition
of 10 ng ml�1 EGF. Interfering with EGFR signaling using the
EGFR blocking antibody (Ab) 225 IgG or the pan-ErbB RTKI
PD158780 or MP activity using either GM6001 or MMPI-3,
markedly reduced scratch wound-induced migration.
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α-TGF-α 20 hα-HB-EGF 20 hα-AREG 20 hControl 14 h

EGF 14 h GM6001/EGF 14 h MMPI-3/EGF 14 h

Control Anti-AREG Anti-BTC Anti-EREG Anti-HB-EGF Anti-TGF-alpha

P
er

ce
nt

ag
e 

of
  w

ou
nd

 c
lo

su
re

 (
m

ea
n 

+
/–

 S
E

M
)

50

40

30

20

10

0

70

60

90

80

GM6001 14 h MMPI-3 14 h

PD158780 14 hlgG225 14 h

*

c

Figure 2. HB-EGF is a potent inducer of KC migration in vitro. (a) Scratch-wounded, confluent KC monolayers were incubated in basal M154 medium in the

presence or absence of EGF (10 ng ml�1), GM6001 (40 mM), MMPI-3 (25 mM), PD158780 (1 mM) and/or IgG225 (5mg ml�1). Scratch wounds were photographed

by phase contrast microscopy after the indicated times. The results for individual panels are representative of at least two independent experiments. Scale

bar¼ 400 mm. (b) Scratch-wounded KC monolayers were incubated in basal M154 in the presence or absence of neutralizing Abs against EGFR ligands alone or

in combination (Ab cocktail) or isotype control Abs (each at 5 mg ml�1) with and without EGF (10 ng ml�1) for 20 hours. Scale bar¼400 mm. (c) Confluent KC

cultures were scratch wounded and incubated for 18–24 hours as described above (b). Digital images of representative areas were quantitated by measuring the

scratch surface area using AxioVision-LE software. Data are expressed as percent wound closure relative to controls at t¼ 0 hour (% wound

closure¼ (100�((scratch surface area at t¼ 18–24 hours/surface area at t¼0 hour)�100)), n¼ 4 independent experiments, *Pp0.05 vs control. (d) N-TERT, N-

TERT-TR, and N-TERT, or N-TERT-TR stably infected with lentivirus constructs encoding transmembrane (tm) and soluble (s) AREG (N-TERT-tmAREG,

N-TERT-sAREG) and transmembrane and soluble HB-EGF (N-TERT-TR-tmHB-EGF, N-TERT-TR-sHB-EGF) were grown to confluence, scratch wounded and

incubated in basal KSFM medium for 36 hours in the presence or absence of 40mM GM6001 (MPI). HB-EGF expression in N-TERT-TR-HB-EGF cells was induced

with 1 mg ml�1 TET at least 3 hours before scratch wounding. Scale bar¼400 mm. (e) Confluent cultures of N-TERT and N-TERT-TR with and without lentivirus-

mediated expression of sAREG or sHB-EGF were scratch wounded and incubated for 18–36 hours in basal KSFM in the presence or absence of 40 mM GM6001 or

25mM MMPI-3 as described above (d). Tetracycline-induced expression of HB-EGF in N-TERT-TRsHB-EGF cells is indicated by ‘‘þ TET’’. Digital images of

representative areas were quantitated by measuring the scratch surface area as described in c, n¼3, except N-TERT and N-TERT-TR n¼ 2, *Po0.05. (f) Equal

amounts of RIPA cell lysates of control N-TERT or N-TERT stably infected with lentiviruses encoding AREG and HB-EGF were analyzed by ELISA for AREG or

HB-EGF expression, respectively, as described in Materials and Methods. Data are expressed as ng of AREG or HB-EGF protein per ml of RIPA lysates, n¼ 3 for

AREG and controls and n¼ 7–12 for HB-EGF and controls, *Po0.001 relative to uninfected controls. (g) N-TERT-TR-sHB-EGF KC were grown and scratch

wounded as described above and followed by incubation in basal KSFM medium for 24 hours in the presence or absence of TET with and without 1 mg ml�1

mitomycin C. Results are representative of two separate experiments. Bar¼ 400mm.
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However, addition of EGF to MP inhibitors could only
partially overcome the block, suggestive of MP-mediated
aspects of KC migration other than EGFR activation.
Similarly, scratch wound-induced migration was markedly
reduced in the presence of EGFR-neutralizing Abs (Figure 2b
and c) with HB-EGF and AREG Abs displaying the strongest
inhibition of KC migration. Addition of EGF to Ab-treated
cultures restored their migratory phenotype, demonstrating a
lack of cellular toxicity from Ab treatment.

Because KCs express and shed much less HB-EGF than
AREG (Figure 1), yet neutralizing Abs against HB-EGF were
as effective as AREG Abs to block KC migration, we
wondered whether exogenous expression of HB-EGF might
improve KC migration to a greater extent than exogenous
expression of AREG. To address this, N-TERT KCs stably
infected with lentivirus constructs encoding transmembrane
and soluble forms of HB-EGF and AREG were tested in
scratch wound assays as above. As shown in Figure 2d and
quantitated in Figure 2e, TET-induced expression of the full-
length transmembrane (tm) form of HB-EGF (tmHB-EGF) or a
secreted form lacking the transmembrane and cytoplasmic
domains (sHB-EGF) markedly improved KC migration com-
pared with N-TERT-TR control cells or N-TERT-TR-HB-EGF
without TET-induced expression of sHB-EGF. Interestingly,
TET-induced expression of HB-EGF resulted in a marked
piling up of cells upon closure of scratch wounds. In contrast,
lentivirus-mediated, constitutive expression of soluble

AREG (sAREG) or its transmembrane form (tmAREG) did
not improve KC migration relative to control cells (N-TERT).
As expected, MP inhibitor (MPI) treatment of KCs reduced
migration in cells expressing tmHB-EGF, but not in cells
expressing sHB-EGF. Unexpectedly, however, MPI treatment
significantly reduced cell migration in KCs expressing soluble
AREG. Our data in Figure 2f confirmed increased expression
of AREG and HB-EGF in lentivirus infected N-TERT KCs and
show that scratch wound migration is not blocked by the
proliferation inhibitor mitomycin C (Figure 2g).

Autocrine KC proliferation and ERK phosphorylation are
selectively regulated by MP-dependent release of AREG

To address the importance of individual growth factors on KC
growth, we performed growth assays in the presence or
absence of EGFR ligand-neutralizing Abs. As depicted in
Figure 3, incubation of KCs with anti-AREG Abs significantly
reduced KC growth by more than 66 % (Po0.005), whereas
Abs directed against other ligands had only modest effects on
KC growth. Similar to their effects on KC migration, PD158780
and GM6001 markedly reduced KC growth. Addition of
exogenous EGF (1 ng ml�1) to KCs incubated with GM6001
could only partially restore growth but had no effect on KCs
incubated in the presence of PD158780. In contrast, EGF
treatment markedly improved KC growth in cell cultures
incubated with a cocktail of all three neutralizing Abs (AREG,
HB-EGF, and TGF-a), demonstrating a lack of Ab toxicity.
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Because ERK is an important regulator of cell proliferation
(Hobbs et al., 2004), we tested whether AREG also selectively
regulates the high levels of ERK phosphorylation that we have
consistently observed in KCs even after 48 hours of growth
factor deprivation (Stoll et al., 2002; Kansra et al., 2004). As
shown in Figure 4, neutralizing antibodies against AREG
strongly reduced ERK phosphorylation in KCs incubated in
growth factor-free medium whereas Abs against four other
EGFR ligands had little or no inhibitory activity on this
process. As expected, ERK phosphorylation was strongly
inhibited by the MEK inhibitor U0126, the pan-ErbB
RTKI PD158780, and the MPI GM6001. Addition of EGF
restored NHK ERK phosphorylation in the presence of
GM6001 and in the presence of an Ab cocktail against all
five EGFR ligands but not in cells incubated with PD158780
or U0126.

LPA-induced ERK phosphorylation is mediated by
MP-dependent release of HB-EGF

Transactivation of EGFR by GPCR ligands including LPA is a
mechanism that requires proteolytic release of EGFR ligands
from their transmembrane-bound precursors (Sanderson
et al., 2006) and LPA-mediated ERK activation has been
previously shown (Kranenburg and Moolenaar, 2001). There-
fore, we tested whether LPA could induce ERK phosphoryla-
tion in KCs and whether neutralizing Abs against EGFR
ligands could block this process. As can be seen in Figure 5,
LPA treatment of KCs maintained under autocrine conditions
for 48 hours before assay led to a marked increase in ERK
phosphorylation that could be blocked after treatment with
the MPI GM6001, the MEK inhibitor U0126, and the ErbB

RTKI PD158780. Interestingly and in contrast to the data
presented in Figure 4, LPA-induced ERK phosphorylation was
markedly inhibited by HB-EGF antibodies whereas other
EGFR ligand Abs or IgG isotype controls had little or no
effect.

ErbB ligands differ in their ability to stimulate EGFR tyrosine
phosphorylation

We also measured the potency of the various EGF-like growth
factors to induce total tyrosine phosphorylation as well as
tyrosine residue-specific EGFR phosphorylation in KCs. As
can be seen in Figure 6, EGF, HB-EGF, and BTC were nearly
equipotent in their ability to stimulate total tyrosine
phosphorylation of proteins in the 170–180 kDa size range
(4G10). The same three growth factors also induced a very
similar pattern of tyrosine phosphorylation on EGFR residues
1148, 992, and 845. In contrast, TGF-a and particularly
AREG were much less potent as inducers of total and residue-
specific EGFR tyrosine phosphorylation, with no visible
phosphorylation of EGFR pY845 even after treatment with
20 nM AREG.

DISCUSSION
Autocrine EGFR receptor signaling controls multiple KC
functions including migration, proliferation, differentiation,
and survival (Klein et al., 1992; Danilenko et al., 1995;
Nanney and King, 1996; Stoll et al., 1998; Pastore et al.,
2008). Acute stimulation of KCs with high concentrations of
EGF or other EGFR ligands leads to increased expression of
multiple EGF family members including AREG, HB-EGF, and
TGF-a (Barnard et al., 1994; Stoll and Elder, 1999; Shirakata
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KCs were growth factor depleted for 48 hours as described in Materials and
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et al., 2000). Although KCs express multiple EGF-like growth
factors in an autocrine fashion, their importance and specific
function in different cellular contexts has been incompletely
characterized, and it remains unclear why the ErbB-signaling
network relies on multiple ligands. To address these
questions, we started our investigation by assessing the
relative expression of EGF ligands in cultured KCs and normal
and organ-cultured human skin (Figure 1). Using QRT-PCR,
we found that proliferating normal human KCs express at
least 19 times more AREG mRNA than EPGN, EREG, HB-EGF
or TGF-a, and that BTC mRNA was nearly undetectable.
Similarly, using a multiplex EGFR ligand assay we found that
AREG was also the most abundant EGF-like growth factor
shed into the culture medium, whereas EREG, TGF-a, and
HB-EGF were very close to our detection limit.

Our finding that AREG is the most abundantly expressed
and shed EGF-like growth factor in KCs may largely explain
why autocrine KC growth and ERK phosphorylation were
selectively blocked by antibodies against AREG but not by
antibodies against four other EGF-like growth factors (Figures
3 and 4). However, it may not be the only explanation. AREG
has a much lower binding affinity for EGFR than does EGF,
due to the lack of a conserved leucine residue necessary
for high affinity binding to EGFR (Adam et al., 1995).

Interestingly, EPGN is also a low affinity EGFR ligand with a
hundred-fold lower binding affinity than EGF, yet its
mitogenic potential is far superior to that of EGF or TGF-a
(Kochupurakkal et al., 2005). The authors of this study
suggested that the high mitogenic potential of EPGN might be
due to evasion of desensitization; for example, receptor-
mediated endocytosis-targeting receptor-ligand complexes
for intracellular degradation. We confirm that HB-EGF, BTC,
and EGF are much more potent activators of the KC EGFR
than is AREG (Figure 6). Thus, it is possible that the strong
dependence of KC proliferation on AREG might be further
explained by relatively weak desensitization of ligand-
receptor complexes.

Our study also confirms findings from earlier studies
showing that AREG antibodies block the growth of cultured
KCs under autocrine conditions (Bhagavathula et al., 2005),
whereas TGF-a Abs had no effect under these conditions
(Pittelkow et al., 1993). However, in those studies the
function of EGFR ligands other than AREG and TGF-a for
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Results are representative of three separate experiments.
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followed by treatment with goat isotype control (for HB-EGF) or neutralizing

Abs against EGFR ligands (each at 5 mg ml�1) alone or in combination (AB

cocktail), GM6001 (40 mM), PD158780 (1 mM), or U0126 (10mM) for 1 hour

followed by treatment with EGF (10 ng ml�1) or LPA (10 mM) for 10 or

20 minutes, respectively. Protein lysates were assayed for phospho-ERK and

total ERK by western blotting as described in Materials and Methods. The

slight reduction of ERK phosphorylation in the presence of AREG Abs might

be related to the component of the total signal that is due to basal ERK

phosphorylation and therefore sensitive to AREG antibodies (see Figure 4).

The band underneath the phospho-ERK signal has been consistently observed

with the mouse mono- but not with the rabbit polyclonal phospho-ERK Ab

(Figure 4) from Cell Signaling Technologies. Its identity is unknown, however,

it does not appear to be regulated in response to different treatments. The

additional bands in the anti-AREG lane are due to a cross-reaction of the goat anti-

mouse-HRP-labeled secondary antibody with the AREG-neutralizing antibody.

The results shown are representative for three independent experiments.
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autocrine KC growth was not assessed. Similarly, we have
previously shown that AREG antibodies abrogate autocrine ERK
phosphorylation (Kansra et al., 2004). In this study, we show
that four other EGFR ligands are not important for this process.

Overexpression of AREG in transgenic mice leads to a
hyperproliferative skin phenotype with many similarities to
psoriasis (Cook et al., 1997, 2004). Furthermore, a huma-
nized antibody against AREG also markedly blocked the
psoriatic phenotype of human skin grafts on immunodeficient
mice (Bhagavathula et al., 2005). Although it is tempting to
speculate that the growth-stimulatory properties of AREG in
culture are responsible for the profound epidermal hyperpla-
sia characteristic of psoriasis, this remains to be proven.
Recently, AREG has been shown to be overexpressed in
synovium and synovial fluid as well as synovial fluid-derived
mononuclear cells of rheumatoid arthritis (RA) patients,
relative to patients with osteoarthritis (Yamane et al., 2008).
Notably, transgenic mice engineered to overexpress AREG in
basal keratinocytes developed a severe inflammatory arthritis
(Cook et al., 1997). Thus, it is possible that AREG may have a
role in the inflammatory cascade of psoriasis, instead of or
along with a direct effect on KC proliferation.

The low expression of BTC in proliferating KCs was not
surprising, as it was previously shown that its expression is
restricted to the fully differentiated, upper suprabasal layers of
the skin (Piepkorn et al., 2003; Rittié et al., 2006). It is possible
that BTC might be more important for KC differentiation rather
than proliferation. On the other hand, forced expression of BTC
in the basal layer of transgenic mice results in significantly
increased KC proliferation without affecting differentiation
(Schneider et al., 2008). Basal overexpression of BTC might
lead to different physiological effects than its normal expression
in suprabasal layers, which also display different ErbB
expression profiles (Stoll et al., 2001). In this study we also
show that the recently discovered EPGN (Strachan et al., 2001)
is another EGFR ligand expressed by KCs (Figure 1).

In contrast to cultured KCs, expression of all EGF-like
growth factors in normal skin was very low. However, HB-
EGF and AREG were strongly induced in human skin organ
culture, an in vitro model displaying many similarities to
cutaneous wound healing (Sarkany et al., 1965; Reaven and
Cox, 1968; Eisen, 1969; Hebda, 1988; Mackie et al., 1988;
Bhora et al., 1995; Stoll et al., 1997, 2002) (Figure 1c). Our
recent data confirm and extend earlier data from our
laboratories about EGFR ligand expression in normal and
organ-cultured skin (Stoll et al., 1997, 2002; Rittie et al.,
2007). However, using QRT-PCR instead of northern blotting,
we were able to quantitate the expression levels of all EGFR
ligands and show that EREG and TGF-a are also strongly
induced in the organ culture system. Furthermore, our data
demonstrate a sequential regulation of HB-EGF and AREG
expression, and suggest that HB-EGF may be important in the
earliest phases of wound healing, with AREG increasing later
during the process. This is interesting because wound healing
can be divided into an early phase during which KCs migrate
but do not proliferate and a later phase characterized by
vigorous KC proliferation (Marks et al., 1972; Stenn, 1978;
Hebda, 1988; Bhora et al., 1995; Stoll et al., 1997).

The importance of AREG for autocrine KC proliferation
(Figure 3) might explain its increased expression during the
later phase of organ culture. Interestingly, increased expres-
sion of AREG during wound healing has been reported
(Schelfhout et al., 2002). The early expression of HB-EGF in
this model and its importance in scratch wound assays
(Figure 2), strongly suggest an important function of HB-EGF
during the early migration phase of wound healing.
Consistent with this, it has been shown that skin wound
closure was markedly impaired in KC-specific HB-EGF-
deficient mice (Shirakata et al., 2005). Our data also confirm
earlier findings that KC migration is sensitive to EGFR, HB-
EGF, and MP inhibitors (Tokumaru et al., 2000). However, in
those experiments KC migration was assessed on tissue
culture plates coated with type-1 collagen. Although KC
migration was sensitive to antibodies against several ligands,
expression of soluble HB-EGF markedly improved KC
migration even in the presence of MP inhibitors (Figure 2).
In contrast, our findings demonstrate that soluble AREG by
itself is not sufficient to promote KC migration, but instead
requires the proteolytic release of one or more additional
growth factor(s).

LPA is an important constituent of blood and serum and
has been implicated in many cellular processes such as
migration, proliferation, cancer, and wound healing
(Watterson et al., 2007). The strong activation of EGFR
by HB-EGF (Figure 6) and our data showing that LPA-induced
ERK phosphorylation (Figure 5) depends on MP-mediated
release of HB-EGF further suggest an important role of
HB-EGF during the early phases of wound healing. The
finding that an anti-HB-EGF mAb blocks LPA-induced
ERK phosphorylation is in marked contrast to the specific
blockade of autocrine ERK phosphorylation by AREG
Abs and the lack thereof in the presence of HB-EGF Abs
(Figure 4).

We cannot exclude that differential ligand affinities of
neutralizing antibodies affect some of the conclusions of
the growth and migration assays or other comparative
analyses of this study. Ultimately, these findings will have
to be confirmed using RNAi-mediated gene knockdown in
human KCs.

In aggregate, our data show that MP-mediated release of
membrane-bound EGF-like growth factors is required for
EGFR-dependent autocrine ERK phosphorylation, migration,
and proliferation of normal human KCs. We find that
autocrine KC proliferation and ERK phosphorylation are
selectively regulated by MP-dependent release of AREG,
whereas proteolytic release of HB-EGF is required for KC
migration as well as LPA-induced ERK phosphorylation.
These data suggest important but distinct functions of HB-
EGF and AREG during the migratory and proliferative phases
of cutaneous wound healing, respectively.

MATERIALS AND METHODS
Reagents

The MP inhibitors (MPI) GM6001 and MMP inhibitor III (MMPI-3),

the MEK inhibitor U0126, and the pan-ErbB receptor tyrosine kinase

inhibitor (RTKI) PD158780 were purchased from Calbiochem
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(San Diego, CA). Recombinant human EGF was from Peprotech

(Rocky Hill, NJ) and AREG, BTC, EREG, HB-EGF, and TGF-a and

their cognate Abs were from R&D Systems (Minneapolis, MN). Anti-

ERK and anti-phospho ERK Abs were obtained from Cell Signaling

Technology (Beverly, MA). Abs against human EGFR were from

Labvision (Freemont, CA), Cell Signaling Technology and from

Biosource/Invitrogen (Carlsbad, CA). The anti-phosphotyrosine mAb

4G10 and horseradish peroxidase (HRP) or FITC-conjugated anti-

mouse, anti-rabbit, and anti-goat Abs were purchased from Upstate

Biotechnology (Lake Placid, NY). All other chemicals were from

Sigma (St Louis MO) or Invitrogen (Carlsbad, CA).

Human subjects and organ culture

Human skin full-thickness punch biopsies (3 mm) were collected

from sun-protected skin (buttocks) of healthy volunteers after having

obtained informed consent according to a protocol approved by the

University of Michigan Institutional Review Board. All experiments

involving humans were performed in adherence to the Helsinki

Guidelines. Skin samples were snap frozen immediately or after

having been subjected to organ culture by incubation in basal M154

medium (Cascade Biologics, Portland, OR) for 4 and 24 hours at

371C/5% CO2 as previously described (Stoll et al., 2002) and were

processed for RNA isolation as described below.

Cell culture

Normal human KCs (passages 2–4) were cultured in low-calcium,

serum-free M154 medium (KGM) as previously described (Stoll

et al., 2001). Human embryonic kidney cells (293FT, Invitrogen)

were grown in Dulbecco’s modified Eagle’s medium (DMEM,

Gibco, Carlsbad, CA) supplemented with 10% fetal bovine serum

(FBS, Gibco). The immortalized, non-transformed KC cell line N-

TERT-2G was grown in keratinocyte SFM medium (KFSM, Gibco) as

previously described (Dickson et al., 2000).

Lentivirus-mediated gene expression
The cDNAs encoding the full-length (transmembrane) or extracel-

lular (soluble) forms of AREG and HB-EGF were cloned into the

lentiviral expression vectors pLenti6/CMV/V5-DEST (full-length

AREG) or pLenti4/TO/V5-DEST (soluble forms of AREG and

HB-EGF and full-length HB-EGF) and used to produce infectious

lentivirus particles according to the manufacturer’s instructions

(Invitrogen). Stably transduced KC cell lines with constitutive

expression of soluble or transmembrane AREG were generated by

infection of N-TERT-2G KCs with the corresponding lentivirus

constructs followed by antibiotic selection with 8 mg ml�1 blasticidin

or 200mg ml�1 zeocin and the resulting cell lines were termed

N-TERT-sAREG (expressing the soluble form of AREG) and N-TERT-

tmAREG (expressing full-length, transmembrane AREG). To generate

stably transduced cell lines with inducible expression of HB-EGF,

N-TERT-2G KCs were first infected with TR lentivirus (pLenti6/TR

construct) as above. After selection with blasticidin, the resulting cell

line, termed N-TERT-TR, was infected with lentiviruses encoding

HB-EGF constructs as described above followed by antibiotic

selection with zeocin. Stably transduced cell lines expressing the

soluble or transmembrane forms of HB-EGF (N-TERT-TRsHB-EGF

and N-TERT-TR-tmHB-EGF, respectively) were used for experiments

as described below and gene expression was induced with 1 mg ml�1

TET (Invitrogen).

RNA isolation and quantitative reverse transcriptase
polymerase chain reaction (QRT-PCR)

Total RNA from KCs or frozen skin was isolated using RNeasy mini

kits with on-column DNase digestion (Qiagen, Valencia, CA). Total

RNA was reverse transcribed using the Applied Biosystems High

Capacity cDNA Reverse Transcription Kit. cDNA equivalent to

5–40 ng of total RNA was used for QRT-PCR using pre-validated

TaqMan gene expression assays (Applied Biosystems, Foster City,

CA) for AREG (no. Hs00155832), BTC (no. Hs00156140), EREG (no.

Hs00914313), EPGN (no. Hs02385425), HB-EGF (no. Hs00181813),

TGF-a (no. Hs00608187) and ribosomal protein large P0 (RPLP0 or

36B4, no. Hs99999902) (Laborda, 1991; Minner and Poumay,

2009). Data are expressed as fold-change relative to 36B4 multiplied

by 103 (fold-change vs 36B4¼ 2�(CT target�CT 36B4)).

In vitro wound healing assays

KCs were plated, grown and wounded as previously described (Stoll

et al., 2003; Kansra et al., 2005). Wounded cultures were incubated

with basal M154 medium or KSFM in the presence or absence of

EGF (10 ng ml�1) with or without MMPI-3 (25 mM) or GM6001

(40 mM), IgG225 (5mg ml�1), PD158780 (1 mM), or neutralizing Abs

directed against EGFR ligands (each at 5mg ml�1) or isotype control

Abs. KC migration was assessed by phase contrast microscopy and

documented by photography. Digital images were quantified using

AxioVision-LE software (Carl Zeiss, Germany).

Cell growth assays

KCs were plated at 1,000–2,000 cells per cm2 in complete M154 and

allowed to attach for 20 hours. The cells were then incubated in

basal M154 in the presence or absence of EGF (1 ng ml�1) with or

without GM6001, PD158780, or blocking Abs and isotype controls

as described above. KC growth was assessed using the

3-(4,5dimethyldiazol-2-yl)-2,5-diphenyltetrazolium assay (Roche,

Indianapolis, IN).

Western blotting

KCs were grown to 40–50% confluence and deprived of growth

factors by incubation in basal M154 medium for 48 hours. The

cells were incubated in fresh M154 in the presence or absence of

U0126 (10 mM), PD158780 (1mM), GM6001 (40 mM), or EGFR ligand-

blocking antibodies (5mg ml�1 each) with or without stimulation for

10 minutes with EGF (16.5 nM) or 20 minutes with LPA (10 mM). Cells

were harvested with RIPA buffer and analyzed by western blotting as

previously described (Stoll et al., 2002; Kansra et al., 2004).

Multiplex EGFR ligand assay

A multiplex EGFR ligand assay was developed by cross-linking Abs

against AREG, BTC, EREG, HB-EGF, and TGF-a (R&D Systems) with

a set of fluorescently dyed Bio-Plex microspheres (Bio-Rad,

Hercules, CA) according to the manufacturer’s instruction. Briefly,

microspheres coupled with EGFR ligand Abs were incubated with

KC-conditioned medium on 96-well microplates followed by

incubation with EGFR ligand-specific biotinylated Abs. After

addition of streptavidin-PE (Bio-Rad), fluorescence was measured

using a Bio-Plex 200 system (Bio-Rad). EGFR ligand concentration

was determined in duplicates using a 5-parameter logistic curve fit

with a cocktail of recombinant EGFR ligands used in threefold

dilutions to generate an 8-point standard curve for each ligand.
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Enzyme-linked immunosorbent assay
EGFR ligands in RIPA cell lysates were detected by sandwich ELISA

(R&D Systems) using anti-AREG and anti-HB-EGF antibodies as

previously described (Kansra et al., 2004).

Statistical analysis

Data are expressed as mean±SEM, with n for independent

experiments. Statistical analysis was performed using paired or

independent Student’s t-test (two-tailed). P-values p0.05 were

considered statistically significant.
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