Stable closed characteristics on partially symmetric convex hypersurfaces

Yujun Dong ${ }^{\text {a,1 }}$ and Yiming Long ${ }^{\text {b, }, 2}$
${ }^{a}$ Department of Mathematics, Nanjing Normal University, Nanjing, Jiangsu 210097, PR China
${ }^{\mathrm{b}}$ Nankai Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, PR China

Received January 4, 2004

Abstract

Let n be a positive integer and $P=\operatorname{diag}\left(-I_{n-\kappa}, I_{\kappa},-I_{n-\kappa}, I_{k}\right)$ for some integer $\kappa \in[0, n]$. In this paper, we prove that for any convex compact smooth hypersurface Σ in $\mathbf{R}^{2 n}$ with $n \geqslant 2$ there always exists at least one closed characteristic on Σ which possesses at least $2 n-4 \kappa$ Floquet multipliers on the unit circle of the complex plane, provided Σ is P-symmetric, i.e., $x \in \Sigma$ implies $P x \in \Sigma$.

(C) 2004 Elsevier Inc. All rights reserved.

MSC: 58E05; 70H12; 34D08; 34C25
Keywords: Hamiltonian systems; Convex energy surface; P-symmetry; Closed orbit; Ellipticity

1. The main result

As in Chapter 15 of [8], let Σ be a C^{2} compact hypersurface in $\mathbf{R}^{2 n}$ bounding a convex compact set C with non-empty interior, and possess a non-vanishing Gaussian curvature. Without loss of generality we assume $0 \in C$. We denote the set of all such hypersurfaces in $\mathbf{R}^{2 n}$ by $\mathscr{H}(2 n)$. For any $x \in \Sigma$, let $N_{\Sigma}(x)$ be the outward

[^0]normal unit vector at x of Σ. We consider the given energy problem of finding $\tau>0$ and a C^{1} curve $x:[0, \tau] \rightarrow \mathbf{R}^{2 n}$ such that
\[

$$
\begin{gather*}
\dot{x}(t)=J N_{\Sigma}(x(t)), \quad x(t) \in \Sigma, \quad \forall t \in \mathbf{R}, \tag{1.1}\\
x(\tau)=x(0) \tag{1.2}
\end{gather*}
$$
\]

where $J=J_{n}=\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right)$, and I_{n} is the identity matrix on \mathbf{R}^{n}. A solution (τ, x) of problem (1.1)-(1.2) is called a closed characteristic on Σ. We denote by $\mathscr{J}(\Sigma)$ the set of all closed characteristics (τ, x) on Σ with τ being the minimal period of x. Two closed characteristics (τ, x) and $(\sigma, y) \in \mathscr{F}(\Sigma)$ are geometrically distinct, if $x(\mathbf{R}) \neq y(\mathbf{R})$. We denote by $\tilde{\mathcal{J}}(\Sigma)$ the set of all geometrically distinct closed characteristics (τ, x) on Σ.

Problem (1.1)-(1.2) can be put into a Hamiltonian version. Let $j: \mathbf{R}^{2 n} \rightarrow[0,+\infty)$ be the gauge function of Σ defined by

$$
j(0)=0, \quad \text { and } \quad j(x)=\inf \left\{\lambda>0 \left\lvert\, \frac{x}{\lambda} \in C\right.\right\}, \quad \forall x \neq 0
$$

Fix a constant α with $1<\alpha<2$ in this paper, we define $H: \mathbf{R}^{2 n} \rightarrow[0,+\infty)$ by

$$
\begin{equation*}
H(x)=j(x)^{\alpha}, \quad \forall x \in \mathbf{R}^{2 n} \tag{1.3}
\end{equation*}
$$

Then $H \in C^{1}\left(\mathbf{R}^{2 n}, \mathbf{R}\right) \cap C^{2}\left(\mathbf{R}^{2 n} \backslash\{0\}, \mathbf{R}\right)$ is convex and $\Sigma=H^{-1}(1)$. It is well known that the problem (1.1)(1.2) is equivalent to the following problem:

$$
\begin{gather*}
\dot{x}(t)=J H^{\prime}(x(t)), \quad H(x(t))=1, \quad \forall t \in \mathbf{R} \tag{1.4}\\
x(\tau)=x(0) \tag{1.5}
\end{gather*}
$$

Denote by $\mathscr{F}(\Sigma, \alpha)$ the set of all distinct solutions (τ, x) of (1.4)-(1.5) with τ being the minimal period of x. Note that elements in $\mathscr{J}(\Sigma)$ and $\mathscr{J}(\Sigma, \alpha)$ are one to one correspondent to each other.

Let $(\tau, x) \in \mathscr{J}(\Sigma, \alpha)$. As usual we call the fundamental solution γ_{x} : $[0,+\infty) \rightarrow \operatorname{Sp}(2 n)$ with $\gamma_{x}(0)=I_{2 n}$ of the linearized Hamiltonian system

$$
\begin{equation*}
\dot{y}(t)=J A(t) y(t), \quad \forall t \in \mathbf{R}, \tag{1.6}
\end{equation*}
$$

where $A(t)=H^{\prime \prime}(x(t))$, the associated symplectic path of (τ, x). The eigenvalues of $\gamma_{x}(\tau)$ are called Floquet multipliers of (τ, x). It is well-known that the Floquet multipliers with their multiplicity and Krein type numbers of $(\tau, x) \in \mathscr{J}(\Sigma, \alpha)$ do not depend on the particular choice of the Hamiltonian function H in (1.4). As in [9] and Chapter 15 of [8], for any symplectic matrix M, we define the elliptic height $e(M)$ of M by the total algebraic multiplicity of all eigenvalues of M on the unit circle $\mathbf{U}=\{z \in \mathbf{C}| | z \mid=1\}$ of the complex plane. And for any $(\tau, x) \in \mathscr{J}(\Sigma, \alpha)$ we define
$e(m \tau, x)=e\left(\gamma_{x}(m \tau)\right)$, and call (τ, x) elliptic or hyperbolic if $e(\tau, x)=2 n$ or $e(\tau, x)=$ 2 , respectively.

Note that $e(M)=e\left(M^{k}\right)$ holds for any integer $k \geqslant 1$ if M is a symplectic matrix.
A long-standing conjecture is mentioned on p. 235 of [4]: for every $\Sigma \in \mathscr{H}(2 n)$, there exists a $(\tau, x) \in \mathscr{J}(\Sigma)$ such that $e(\tau, x)=2 n$. Ekeland [3] proved the conjecture if Σ is $\sqrt{2}$-pinched. Long [6] studied the existence of non-hyperbolic closed characteristics if there exist only finitely many hyperbolic ones on $\Sigma \in \mathscr{H}(2 n)$. A similar result was proved for star-shaped hypersurfaces in [5]. If $\Sigma \in \mathscr{H}(2 n)$ is symmetric with respect to the origin 0 of $\mathbf{R}^{2 n}$, i.e., $x \in \Sigma$ implies $-x \in \Sigma$, the conjecture was proved by Dell'Antonio et al. [1]. In [7], Long proved that both the two closed characteristics are elliptic if there are precisely two geometrical distinct ones on a $\Sigma \in \mathscr{H}(4)$. Long and Zhu [9], further proved the existence of at least one elliptic closed characteristic on Σ if the number of elements in $\mathscr{J}(\Sigma)$ is finite, as well as a result on the existence of at least two elliptic closed characteristics on Σ under certain conditions.

In this paper we study the stability of closed characteristics on partially symmetric hyper-surface. Fixing an integer κ with $0 \leqslant \kappa \leqslant n$, let $P=\operatorname{diag}\left(-I_{n-\kappa}, I_{\kappa},-I_{n-\kappa}, I_{\kappa}\right)$ and $\mathscr{H}_{\kappa}(2 n)=\{\Sigma \in \mathscr{H}(2 n) \mid x \in \Sigma$ implies $P x \in \Sigma\}$. Recall that a lower bound estimate on $\# \tilde{\mathscr{J}}(\Sigma)$ was established for any $\Sigma \in \mathscr{H}_{\kappa}(2 n)$ by the authors in the recent [2]. The following is the main result of this paper:

Theorem 1. For any $\Sigma \in \mathscr{H}_{\kappa}(2 n)$, there exists $(\tau, x) \in \mathscr{J}(\Sigma, \alpha)$ such that

$$
e(\tau, x) \geqslant 2 n-4 \kappa .
$$

In the following Section 2, we prove Theorem 1. Then in Section 3 we compute the $(P, 1)$-index of a minimal solution of the functional corresponding to the problem (1.4)-(1.5) which is used in Section 2.

2. The proof of Theorem 1

In order to prove Theorem 1 we need some results about (P, ω)-index theory introduced in [2]. As usual we define

$$
\begin{aligned}
& \mathrm{Sp}(2 n)=\left\{M \in G L\left(\mathbf{R}^{2 n}\right) \mid M^{T} J M=J\right\}, \\
& \mathscr{P}_{\tau}(2 n)=\left\{\gamma \in C([0, \tau], \operatorname{Sp}(2 n)) \mid \gamma(0)=I_{2 n}\right\},
\end{aligned}
$$

where M^{T} denotes the transpose of M and $\tau>0$ is a constant.
For every $\gamma \in \mathscr{P}_{\tau}(2 n)$ and $\omega \in \mathbf{U}$ a pair of integers $\left(i_{P, \omega}(\gamma), v_{P, \omega}(\gamma)\right) \in \mathbf{Z} \times$ $\{0,1, \ldots, 2 n\}$ was defined by the authors in [2]. The nullity has a simple expression:

$$
\begin{equation*}
v_{P, \omega}(\gamma)=v_{P, \omega}(\gamma(\tau))=\operatorname{dim}_{\mathbf{C}} \operatorname{ker}_{\mathbf{C}}(\gamma(\tau)-\omega P) \tag{2.1}
\end{equation*}
$$

We refer to [2] for the definition of $i_{P, \omega}(\gamma)$. The splitting numbers of M at (P, ω) were also defined by:

$$
S_{M}^{ \pm}(P, \omega)=\lim _{\varepsilon \rightarrow 0^{+}} i_{P, \exp (\pm \sqrt{-1} \varepsilon) \omega}(\gamma)-i_{P, \omega}(\gamma)
$$

We shall need the following results from Definition I.2.8 and Lemma I.2.9 of [4], Propositions 3.8 and 3.12, and Theorem 4.1 of [2]:

Lemma 2. (i) For any $M \in \operatorname{Sp}(2 n)$ and $\omega \in \mathbf{U}$ being an eigenvalue of M, denote by $m_{\omega}(M)$ and $\left(p_{\omega}(M), q_{\omega}(M)\right)$ the algebraic multiplicity of the eigenvalue ω and the Krein type numbers of M at ω, and denote by $\bar{\omega}$ the complex conjugate of ω, then $\bar{\omega}$ is an eigenvalue of M and

$$
p_{\omega}(M)+q_{\omega}(M)=m_{\omega}(M), m_{\omega}=m_{\bar{\omega}}
$$

Moreover, we have

$$
p_{1}(M)=q_{1}(M)=\frac{1}{2} m_{1}(M)
$$

(ii) For any $M \in \operatorname{Sp}(2 n)$ and $\omega \in \mathbf{U}$ being an eigenvalue of M, we have

$$
0 \leqslant S_{M}^{+}(P, \omega) \leqslant p_{\omega}(M P), \quad 0 \leqslant S_{M}^{-}(P, \omega) \leqslant q_{\omega}(M P)
$$

(iii) For $\gamma \in \mathscr{P}_{\tau}(2 n)$ and $M=\gamma(\tau)$, we have

$$
i_{P,-1}(\gamma)=i_{P, 1}(\gamma)+\sum_{0 \leqslant \theta<\pi} S_{M}^{+}\left(P, e^{\sqrt{-1} \theta}\right)-\sum_{0<\theta \leqslant \pi} S_{M}^{-}\left(P, e^{\sqrt{-1} \theta}\right)
$$

(iv) Let $A(t)$ be a symmetric, positive definite $2 n \times 2 n$ real matrix function and continuous in $t \in[0, \tau]$. Denote the fundamental solution of (1.6) satisfying $\gamma_{A}(0)=I_{2 n}$ by $\gamma=\gamma_{A}(t)$. Then

$$
i_{P, 1}\left(\gamma_{A}\right)=\kappa+\sum_{0<s<\tau} v_{P, 1}\left(\gamma_{A}(s)\right)
$$

Now we give
Proof of Theorem 1. Define two function spaces $W_{P}=\left\{x \in W^{1,2}\left([0,1], \mathbf{R}^{2 n}\right) \mid x(1)=\right.$ $P x(0)\}$ and $L^{2}=L^{2}\left((0,1), \mathbf{R}^{2 n}\right)$. Define $\Lambda: W_{P} \subset L^{2} \rightarrow L^{2}$ by $(\Lambda x)(t)=\dot{x}(t)$. Then we have an orthogonal decomposition $L^{2}=\operatorname{Im}(\Lambda) \oplus \operatorname{ker}(\Lambda)$. We denote by $\left(x_{1}, y_{1}\right) \diamond\left(x_{2}, y_{2}\right)=\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ for any $x_{i}, y_{i} \in \mathbf{R}^{m_{i}}$ with some integer m_{i} for $i=$ 1,2. Simple computations yield $\operatorname{ker}(\Lambda)=\left\{0 \diamond \xi \mid \xi \in \mathbf{R}^{2 \kappa}\right\}$, where 0 is the origin of $\mathbf{R}^{2 n-2 \kappa}$ and

$$
\operatorname{Im}(\Lambda)=\left\{u_{1} \diamond u_{2} \mid u_{1} \in L^{2}\left((0,1), \mathbf{R}^{2 n-2 \kappa}\right), \int_{0}^{1} u_{2}(t) \mathrm{d} t=0, u_{2} \in L^{2}\left((0,1) ; \mathbf{R}^{2 \kappa}\right)\right\}
$$

Denote by $L_{\kappa}^{2}=\operatorname{Im}(\Lambda)$. Then $\Lambda_{0}=\left.\Lambda\right|_{L_{\kappa}^{2} \cap W_{P}}$ is invertible, and for any $u=$ $u_{1} \diamond u_{2} \in \operatorname{Im}(\Lambda)$ we have

$$
\begin{gather*}
\left(\Lambda_{0}^{-1} u\right)(t)=x_{1}(t) \diamond x_{2}(t) \tag{2.2}\\
x_{1}(t)=\int_{0}^{t} u_{1}(\tau) \mathrm{d} \tau-\frac{1}{2} \int_{0}^{1} u_{1}(\tau) \mathrm{d} \tau \tag{2.3}\\
x_{2}(t)=\int_{0}^{t} u_{2}(\tau) \mathrm{d} \tau-\int_{0}^{1} \mathrm{~d} t \int_{0}^{t} u_{2}(\tau) \mathrm{d} \tau \tag{2.4}
\end{gather*}
$$

So $J \Lambda_{0}^{-1}=\Lambda_{0}^{-1} J$ and $J \Lambda_{0}^{-1}: L_{\kappa}^{2} \rightarrow L_{\kappa}^{2}$ is self-adjoint and compact.
Define $\beta>0$ by $\frac{1}{\alpha}+\frac{1}{\beta}=1$ and set $L_{\kappa}^{\beta}=L_{\kappa}^{2} \cap L^{\beta}\left((0,1) ; \mathbf{R}^{2 n}\right)$. Consider the functional

$$
\psi(u)=\int_{0}^{1}\left[\frac{1}{2}\left(J u, \Lambda_{0}^{-1} u\right)+H^{*}(-J u)\right] \mathrm{d} t, \quad \forall u \in L_{\kappa}^{\beta},
$$

where $H^{*}(x)=\sup _{y \in \mathbf{R}^{2 n}}\{(x, y)-H(y)\}$ is the Fenchel dual of H, It is well-known that the global minimum of ψ on L_{κ}^{β} is reached. Denote by \bar{u} one of its global minimal point. Then we have

$$
\begin{equation*}
\psi(\bar{u})=\min _{u \in L_{k}^{\beta}} \psi(u)<0 . \tag{2.5}
\end{equation*}
$$

Then it is also well-known (cf. [4]) that $\bar{u} \not \equiv$ constant holds and that the minimal period of \bar{u} must be 1 if it is periodic from (2.5), although it may not be periodic at all in our case. We also have $\psi^{\prime}(\bar{u})=0$. Note that for any $u \in L_{\kappa}^{\beta}$, we have $\psi^{\prime}(u) \in L_{\kappa}^{\alpha}\left((0,1) ; \mathbf{R}^{2 n}\right)$ is a linear functional on L_{κ}^{β} :

$$
\begin{equation*}
\psi^{\prime}(u)(v)=\int_{0}^{1}\left[\left(J u, \Lambda_{0}^{-1} v\right)+\left(H^{*^{\prime}}(-J u),-J v\right)\right] \mathrm{d} t, \quad \forall u, v \in L_{\kappa}^{\beta} . \tag{2.6}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
H^{*^{\prime}}(-J \bar{u})=\Lambda_{0}^{-1} \bar{u}+\xi_{\bar{u}} \tag{2.7}
\end{equation*}
$$

for some $\xi_{\bar{u}} \in \operatorname{ker}(\Lambda)$. By the Legendre reciprocity formula of Proposition II.1.15 of [4], $\bar{x} \equiv \Lambda_{0}^{-1} \bar{u}+\xi_{\bar{u}} \neq 0$ is a solution of the boundary value problem:

$$
\begin{equation*}
\dot{x}=J H^{\prime}(x), \quad \forall t \in(0,1), \quad x(1)=P x(0) \tag{2.8}
\end{equation*}
$$

From (2.6) we have

$$
\begin{equation*}
\left(\psi^{\prime \prime}(\bar{u}) v, v\right)=\int_{0}^{1}\left[\left(J v, \Lambda_{0}^{-1} v\right)+\left(H^{*^{\prime \prime}}(-J(\bar{u})) J v, J v\right)\right] \mathrm{d} t \tag{2.9}
\end{equation*}
$$

for every $v \in L_{\kappa}^{\beta}$. By Proposition II.2.10 of [4] and (2.7), we have

$$
\begin{equation*}
H^{*^{\prime \prime}}(-J \bar{u}(t))=\left(H^{\prime \prime}(\bar{x}(t))^{-1}\right. \tag{2.10}
\end{equation*}
$$

It follows that $\psi^{\prime \prime}(\bar{u})$ in (2.9) can be defined on $v \in L_{\kappa}^{2}$. From (2.5), \bar{u} is a minimal point, we know that the Morse index of $\psi^{\prime \prime}(\bar{u})$ defined on L_{κ}^{2} is zero. That is

$$
\begin{equation*}
i_{P}^{E}\left(A_{\bar{x}}\right)=0 \tag{2.11}
\end{equation*}
$$

where $A_{\bar{x}}(t)=H^{\prime \prime}(\bar{x}(t))$ for $t \in[0,1]$. We postpone the definition of $i_{P}^{E}\left(A_{\bar{x}}\right)$ to the next section. Note that \bar{x} is defined on $[0,1]$. Let

$$
\bar{x}(t+1)=P \bar{x}(t), \quad \forall t \in[0,1] .
$$

By (2.7), we have $\lim _{\varepsilon \rightarrow 0+} \bar{x}(1+\varepsilon)=P \bar{x}(0)=\bar{x}(1)$. So $\bar{x} \in C\left([0,2], \mathbf{R}^{2 n}\right)$, and $\bar{x}(2)=$ $P \bar{x}(1)=P^{2} \bar{x}(0)=\bar{x}(0)$. By definition, we have

$$
H(P y)=H(y), \quad \forall y \in \mathbf{R}^{2 n}
$$

Thus there hold

$$
\begin{equation*}
P H^{\prime}(P y)=H^{\prime}(y), \quad P H^{\prime \prime}(P y) P=H^{\prime \prime}(y), \quad \forall y \in \mathbf{R}^{2 n} . \tag{2.12}
\end{equation*}
$$

We have from (2.12)

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0+} \dot{\bar{x}}(1+\varepsilon) & =\lim _{\varepsilon \rightarrow 0+} P \dot{\bar{x}}(0+\varepsilon)=\lim _{\varepsilon \rightarrow 0+} P J H^{\prime}(\bar{x}(\varepsilon)) \\
& =\operatorname{PJH}^{\prime}(\bar{x}(0))=J P H^{\prime}(\bar{x}(0))=J H^{\prime}(P \bar{x}(0)) \\
& =J H^{\prime}(\bar{x}(1))=\lim _{\varepsilon \rightarrow 0+} J H^{\prime}(\bar{x}(1-\varepsilon)) \\
& =\lim _{\varepsilon \rightarrow 0+} \dot{\bar{x}}(1-\varepsilon) .
\end{aligned}
$$

So $\bar{x} \in C^{1}\left([0,2], \mathbf{R}^{2 n}\right)$, and $x=\bar{x}(t)$ satisfies

$$
\begin{equation*}
\dot{\bar{x}}=J H^{\prime}(\bar{x}), \quad \forall t \in(0,2), \quad \bar{x}(2)=\bar{x}(0) \tag{2.13}
\end{equation*}
$$

Let $\gamma=\gamma_{\bar{x}}(t)$ be the fundamental solution of (1.6) with $A(t)=H^{\prime \prime}(\bar{x}(t))$ for $t \in[0,2]$ satisfying $\gamma(0)=I_{2 n}$. By (2.12), we have

$$
H^{\prime \prime}(\bar{x}(t+1))=H^{\prime \prime}(P \bar{x}(t))=P H^{\prime \prime}(\bar{x}(t)) P .
$$

Direct calculations give

$$
\begin{aligned}
\frac{d}{d t}(P \gamma(t) P \gamma(1)) & =P \dot{\gamma}(t) P \gamma(1) \\
& =P J H^{\prime \prime}(\bar{x}(t)) \gamma(t) P \gamma(1)=J H^{\prime \prime}(\bar{x}(t+1)) P \gamma(t) P \gamma(1)
\end{aligned}
$$

Since the fundamental solution of (1.6) is unique, γ satisfies

$$
\gamma(t+1)=P \gamma(t) P \gamma(1), \quad \forall t \in[0,1] .
$$

Specially

$$
\begin{equation*}
\gamma(2)=(P \gamma(1))^{2} \tag{2.14}
\end{equation*}
$$

We claim that (2.11) implies

$$
\begin{equation*}
i_{P, 1}\left(\left.\gamma\right|_{[0,1]}\right)=\kappa, \tag{2.15}
\end{equation*}
$$

and postpone its proof to the next section.
By Theorem 4.1 of [2], we also have

$$
\begin{equation*}
i_{P,-1}\left(\left.\gamma\right|_{[0,1]}\right) \geqslant n-\kappa \tag{2.16}
\end{equation*}
$$

By (i)-(iii) of Lemma 2, (2.15), and (2.16) we obtain

$$
\sum_{0<\theta<\pi} m_{e^{\sqrt{-1 \theta}}}(P \gamma(1))+\frac{1}{2} m_{1}(P \gamma(1)) \geqslant \sum_{0 \leqslant \theta<\pi} p_{e^{\sqrt{-1 \theta}}}(P \gamma(1)) \geqslant n-2 \kappa .
$$

Thus by (i) of Lemma 2 and (2.14) we get

$$
e(P \gamma(1)) \geqslant 2 n-4 \kappa \quad \text { and } \quad e(\gamma(2))=e\left((P \gamma(1))^{2}\right)=e(P \gamma(1)) \geqslant 2 n-4 \kappa .
$$

Note that by our above study the minimal period $\bar{\tau}$ of \bar{x} is either 1 or 2 . Let $h=H(\bar{x}(t))$.

If $h=1$, then $(\bar{\tau}, \bar{x}) \in \mathscr{J}(\Sigma, \alpha)$ from (2.13), and

$$
e(\bar{\tau}, \bar{x}))=e(2, \bar{x})=e\left((P \gamma(1))^{2}\right) \geqslant 2 n-4 \kappa .
$$

If $h \neq 1$, viewing \bar{x} as a 2 -periodic solution, let

$$
x_{h}=h^{-\frac{1}{\alpha} \bar{x}}\left(h^{\frac{2}{\alpha}-1} t\right), \quad \tau_{h}=2 h^{1-\frac{2}{\alpha}} .
$$

Then $H\left(x_{h}(t)\right)=1$ for all $t \in[0,2]$, the minimal period $\bar{\tau}_{h}$ of x_{h} is either $\tau_{h} / 2$ or τ_{h}, and $\left(\bar{\tau}_{h}, x_{h}\right) \in \mathscr{J}(\Sigma)$. Because $H(\cdot)$ is α-homogenous, $H^{\prime \prime}(\cdot)$ is $(\alpha-2)$-homogenous, we get

$$
H^{\prime \prime}\left(\bar{x}_{h}(t)\right)=h^{\frac{2}{\alpha}-1} H^{\prime \prime}\left(\bar{x}\left(h^{\frac{2}{\alpha}-1} t\right)\right)
$$

Let γ_{h} be the fundamental solution of (1.6) with $A(t)=H^{\prime \prime}\left(\bar{x}_{h}(t)\right)$ for $t \in\left(0, \tau_{h}\right)$ satisfying $\gamma_{h}(0)=I_{2 n}$. Then we have

$$
\gamma_{h}(t)=\gamma\left(h^{\frac{2}{\alpha}-1} t\right)
$$

Thus $\gamma_{h}\left(\tau_{h}\right)=\gamma(2)$. Then we have $\left(\bar{\tau}, \bar{x}_{h}\right) \in \mathscr{J}(\Sigma)$ and

$$
e\left(\bar{\tau}_{h}, \bar{x}_{h}\right)=e\left(\bar{\tau}_{h}, \bar{x}_{h}\right)=e\left(\gamma_{h}\left(\tau_{h}\right)\right)=e(\gamma(2)) \geqslant 2 n-4 \kappa .
$$

This completes the proof of Theorem 1.

3. The proof of the computation (2.15)

In this section we will define $i_{P}^{E}(A)$, which appeared in (2.11), and prove (2.15). In order to do this we will give a slight generalization of the contents of Section I.4 in [4] of Ekeland first.

For any symmetric and positive definite $2 n \times 2 n$ real matrix $A(t)$ continuous in $t \in[0,+\infty)$, let $B(t)=A(t)^{-1}$ and consider the following quadratic form:

$$
\begin{equation*}
q_{s, \kappa}(u, u)=\frac{1}{2} \int_{0}^{s}\left[\left(J u, \Pi_{s, \kappa} u\right)+(B(t) J u, J u)\right] \mathrm{d} t, \quad \forall u \in L_{\kappa}^{2}(0, s) \tag{3.1}
\end{equation*}
$$

where $\quad L_{\kappa}^{2}(0, s)=\left\{u_{1} \diamond u_{2} \mid u_{1} \in L^{2}\left((0, s), \mathbf{R}^{2 n-2 \kappa}\right) \quad\right.$ and $\quad u_{2} \in L^{2}\left((0, s) ; \mathbf{R}^{2 \kappa}\right) \quad$ with $\left.\int_{0}^{s} u_{2}(t) \mathrm{d} t=0\right\}$ and $\Pi_{s, k}: L_{k}^{2}(0, s) \rightarrow L_{k}^{2}(0, s)$ is defined by

$$
\begin{gather*}
\left(\Pi_{s, \kappa} u\right)(t)=x_{1}(t) \diamond x_{2}(t) \tag{3.2}\\
x_{1}(t)=\int_{0}^{t}\left(u_{1}(\tau)\right) \mathrm{d} \tau-\frac{1}{2} \int_{0}^{s} u_{1}(\tau) \mathrm{d} \tau \tag{3.3}\\
x_{2}(t)=\int_{0}^{t} u_{2}(\tau) \mathrm{d} \tau-\frac{1}{s} \int_{0}^{s} \mathrm{~d} t \int_{0}^{t} u_{2}(\tau) \mathrm{d} \tau \tag{3.4}
\end{gather*}
$$

for any $u=u_{1} \diamond u_{2} \in L_{\kappa}^{2}(0, s)$. Note that we have $\Pi_{1, \kappa}=\Lambda_{0}^{-1}$ and $L_{\kappa}^{2}(0,1)=L_{\kappa}^{2}$.
Lemma 3. For any symmetric and positive definite $2 n \times 2 n$ real matrix $A(t)$ continuous in $t \in[0,+\infty)$, there is a $q_{s, \kappa}$-orthogonal decomposition

$$
L_{\kappa}^{2}(0, s)=E_{\kappa}^{+}(A) \oplus E_{\kappa}^{0}(A) \oplus E_{\kappa}^{-}(A)
$$

such that $q_{s, \kappa}$ is positive definite, null and negative definite on $E_{\kappa}^{+}(A), E_{\kappa}^{0}(A)$ and $E_{\kappa}^{-}(A)$, respectively. Moreover, the dimensions of $E_{\kappa}^{0}(A)$ and $E_{\kappa}^{-}(A)$ are finite.

Proof. Define $\bar{B}_{\kappa}: L_{\kappa}^{2} \rightarrow L_{\kappa}^{2}$ by

$$
\left(\bar{B}_{k} u, v\right)=\int_{0}^{s}(B(t) J u(t), J v(t)) \mathrm{d} t, \quad \forall u, v \in L_{\kappa}^{2}(0, s) .
$$

From the Lax-Milgram theorem, \bar{B}_{κ} is an isomorphism and $L_{\kappa}^{2}(0, s)$ is a Hilbert space under the inner product ($\bar{B}_{\kappa} u, v$). Because

$$
\left(\bar{B}_{k} \bar{B}_{\kappa}^{-1} J \Pi_{s, k} u, v\right)=\left(J \Pi_{s, k} u, v\right)=\left(u, J \Pi_{s, k} v\right)=\left(\bar{B}_{\kappa} u, \bar{B}_{\kappa}^{-1} J \Pi_{s, k} v\right), \quad \forall u, v \in L_{\kappa}^{2}(0, s),
$$

the map $\bar{B}_{\kappa}^{-1} J \Pi_{s, \kappa}: L_{\kappa}^{2}(0, s) \rightarrow L_{\kappa}^{2}(0, s)$ is self-adjoint. From the spectral theory of compact self-adjoint operators on a Hilbert space, there exist a basis $\left\{e_{j}\right\}_{j \in \mathbf{N}}$ of $L_{\kappa}^{2}(0, s)$, and a sequence $\lambda_{j} \rightarrow 0$ in \mathbf{R} as $j \rightarrow+\infty$ such that

$$
\begin{aligned}
\left(\bar{B}_{\kappa} e_{i}, e_{j}\right) & =\delta_{i j} \\
\bar{B}_{\kappa}^{-1} J \Pi_{s, \kappa} e_{j} & =\lambda_{j} e_{j}
\end{aligned}
$$

And hence, for any $u=\sum_{j=1}^{\infty} c_{j} e_{j} \in L_{\kappa}^{2}(0, s)$, we have

$$
\begin{aligned}
q_{s, \kappa}(u, u) & =-\frac{1}{2}\left(J \Pi_{s, \kappa} u, u\right)+\frac{1}{2}\left(\bar{B}_{\kappa} u, u\right) \\
& =\frac{1}{2} \sum_{j=1}^{\infty}\left(1-\lambda_{j}\right) c_{j}^{2}
\end{aligned}
$$

Define

$$
\begin{aligned}
E_{\kappa}^{+}(A) & =\left\{\sum c_{j} e_{j} \mid c_{j}=0 \text { if } 1-\lambda_{j} \leqslant 0\right\}, \\
E_{\kappa}^{0}(A) & =\left\{\sum c_{j} e_{j} \mid c_{j}=0 \text { if } 1-\lambda_{j} \neq 0\right\}, \\
E_{\kappa}^{-}(A) & =\left\{\sum c_{j} e_{j} \mid c_{j}=0 \text { if } 1-\lambda_{j} \geqslant 0\right\},
\end{aligned}
$$

Then the claim of the lemma follows because $\lambda_{j} \rightarrow 0$ as $j \rightarrow+\infty$.
Definition 4. For any symmetric positive definite continuous $2 n \times 2 n$ real matrix function $A(t)$ in $t \in[0, s]$, we define

$$
v_{P}^{E}(A)=\operatorname{dim} E_{\kappa}^{0}(A), \quad i_{P}^{E}(A)=\operatorname{dim} E_{\kappa}^{-}(A)
$$

Proposition 5. For any symmetric positive definite continuous $2 n \times 2 n$ real matrix function $A(t)$ in $t \in[0, s]$, there hold

$$
v_{P}^{E}(A)=v_{P, 1}\left(\gamma_{A}\right), \quad i_{P, 1}\left(\gamma_{A}\right)=\kappa+i_{P}^{E}(A)
$$

where $\gamma=\gamma_{A}(t)$ is the fundamental solution of (1.6) with $\gamma(0)=I_{2 n}$.

Proof. The proof is carried out in 6 steps.
Step 1. The proof of the first equality in Proposition 5.
For any $u \in E_{\kappa}^{0}(A)$, by definition and Lemma 3, we have

$$
q_{s, \kappa}(u, v)=\frac{1}{2} \int_{0}^{s}\left(\Pi_{s, \kappa} u+B(t) J u, J v\right) \mathrm{d} t=0, \quad \forall v \in L_{\kappa}^{2}(0, s)
$$

Thus there exists $\xi_{u} \in \operatorname{ker}(\Lambda)$ such that

$$
\Pi_{s, k} u+B(t) J u=\xi_{u} .
$$

Denote by $x=\Pi_{s, \kappa} u-\xi_{u}$. We obtain $u=\dot{x}$ and

$$
\dot{x}=J A(t) x \quad \text { for } t \in(0, s), \quad x(s)=\operatorname{Px}(0)
$$

Therefore $x(t)=\gamma_{A}(t) c$, where $c \in \mathbf{R}^{2 n}$ satisfies

$$
\gamma_{A}(s) c=P \gamma_{A}(0) c=P c
$$

That is,

$$
\begin{equation*}
\left(\gamma_{A}(s)-P\right) c=0 . \tag{3.5}
\end{equation*}
$$

Hence we obtain

$$
E_{\kappa}^{0}(A) \cong\left\{c \in \mathbf{R}^{2 n} \mid\left(\gamma_{A}(s)-P\right) c=0\right\}=\operatorname{ker}\left(\gamma_{A}(s)-P\right),
$$

and from (2.1)

$$
v_{P}^{E}(A)=\operatorname{dim} E_{\kappa}^{0}(A)=\operatorname{dim} \operatorname{ker}\left(\gamma_{A}(s)-P\right)=v_{P, 1}\left(\gamma_{A}\right)
$$

This yields the first equality claimed by Proposition 5.
In the next 5 steps we prove the second equality claimed in Proposition 5. By (iv) of Lemma 2 and the first equality in Proposition 5, it suffices to prove

$$
\begin{equation*}
i_{P}^{E}(A)=\sum_{0<\sigma<s} v_{P}^{E}\left(A_{\sigma}\right) \tag{3.6}
\end{equation*}
$$

where $A_{\sigma}=\left.A\right|_{[0, \sigma]}$.
Step 2. Proof for $i_{P}^{E}\left(A_{\sigma}\right)=0$ with $\sigma>0$ sufficiently small.
In fact, by Definition (3.2)-(3.4) we have

$$
\begin{aligned}
\left|x_{1}(t)\right| & \leqslant 2 \int_{0}^{\sigma}\left|u_{1}(t)\right| \mathrm{d} t \leqslant 2 \sigma^{\frac{1}{2}}\left\|u_{1}\right\| \\
\left\|x_{1}\right\| & \leqslant 2 \sigma\left\|u_{1}\right\| \\
\left\|x_{2}\right\| & \leqslant(1+\sigma)\left\|u_{2}\right\|
\end{aligned}
$$

where $\|\cdot\|$ is the usual norm in $L^{2}\left((0, \tau) ; \mathbf{R}^{2 n}\right)$. Therefore we have

$$
\left\|\Pi_{\sigma, \kappa} u\right\| \leqslant(2+\sigma) \sigma\|u\|, \quad \forall u \in L_{\kappa}^{2}(0, \sigma) .
$$

Since $A(t)$ is symmetric, positive definite, and continuous, we have

$$
(B(t) x, x) \geqslant b(x, x), \quad \forall x \in \mathbf{R}^{2 n}, t \in[0, s],
$$

where $b>0$ is a constant. It follows that

$$
\begin{aligned}
q_{\sigma, \kappa}(u, u) & =\frac{1}{2} \int_{0}^{1}\left[\left(-J \Pi_{s, k} u, u\right)+(B(t) J u, J u)\right] \mathrm{d} t \\
& \geqslant \frac{1}{2}\left(-\|u\| \cdot\left\|\Pi_{\sigma, \kappa} u\right\|+b\|u\|^{2}\right) \\
& \geqslant \frac{1}{2}(b-(2+\sigma) \sigma)\|u\|^{2}
\end{aligned}
$$

Therefore $q_{\sigma, \kappa}$ is positive definite when $\sigma<\min \left\{1, \frac{b}{3}\right\}$.
Step 3 . We claim that there exist only finitely many points $\sigma \in[0,1]$ with $v_{P}^{E}\left(A_{\sigma}\right) \neq 0$.
In fact, if not, by (3.5) there exist $s_{j} \in[0,1]$ and $\xi_{j} \in \mathbf{R}^{2 n} \backslash\{0\}$ with $\left|\xi_{j}\right|=1$ such that

$$
\begin{equation*}
\gamma_{A}\left(s_{j}\right) \xi_{j}=P \xi_{j}, \quad \text { for } j=1,2, \ldots \tag{3.7}
\end{equation*}
$$

Without loss of generality, we assume $s_{j} \rightarrow s$ and $\xi_{j} \rightarrow \xi$ as $j \rightarrow+\infty$. Then we have

$$
\begin{align*}
\gamma_{A}(s) \xi & =P \xi \tag{3.8}\\
\left(\gamma_{A}\left(s_{j}\right)-P\right)\left(\xi_{j}-\xi\right) & =\left(\gamma_{A}(s)-\gamma_{A}\left(s_{j}\right)\right) \xi . \tag{3.9}
\end{align*}
$$

Since $\gamma_{A}\left(s_{j}\right)$ is symplectic, we have $\gamma_{A}\left(s_{j}\right)^{T} J=J \gamma_{A}\left(s_{j}\right)^{-1}$. By (3.7) we have

$$
\begin{aligned}
\left(\gamma_{A}\left(s_{j}\right)\left(\xi_{j}-\xi\right), J P \xi_{j}\right) & =\left(\xi_{j}-\xi, \gamma_{A}\left(s_{j}\right)^{T} J P \xi_{j}\right) \\
& =\left(\xi_{j}-\xi, J \gamma_{A}\left(s_{j}\right)^{-1} P \xi_{j}\right) \\
& =\left(\xi_{j}-\xi, J \xi_{j}\right) \\
& =\left(P\left(\xi_{j}-\xi\right), J P \xi_{j}\right)
\end{aligned}
$$

Thus $\left(\left(\gamma_{A}\left(s_{j}\right)-P\right)\left(\xi_{j}-\xi\right), J P \xi_{j}\right)=0$, and by (3.9) we have

$$
\left(\left(\gamma_{A}(s)-\gamma_{A}\left(s_{j}\right)\right) \xi, J P \xi_{j}\right)=0 .
$$

Multiplying the left hand side of the above equality by $\left(s-s_{j}\right)^{-1}$ and taking the limit as $j \rightarrow+\infty$, from (3.8) and $\dot{\gamma}_{A}(s)=J A(s) \gamma_{A}(s)$ we have

$$
0=\left(\dot{\gamma}_{A}(s) \xi, J P \xi\right)=(J A(s) P \xi, J P \xi)=(A(s) P \xi, P \xi) .
$$

This contradiction proves our claim.
Step 4. If $\sigma_{1}<\sigma_{2}$, there hold

$$
\begin{gather*}
i_{P}^{E}\left(A_{\sigma_{1}}\right) \leqslant i_{P}^{E}\left(A_{\sigma_{2}}\right) \tag{3.10}\\
i_{P}^{E}\left(A_{\sigma_{1}}\right)+v_{P}^{E}\left(A_{\sigma_{1}}\right) \leqslant i_{P}^{E}\left(A_{\sigma_{2}}\right) . \tag{3.11}
\end{gather*}
$$

In fact, we define a map $r: L_{\kappa}^{2}\left(0, \sigma_{1}\right) \rightarrow L_{\kappa}^{2}\left(0, \sigma_{2}\right)$ by

$$
(r u)(t)= \begin{cases}u(t) & \text { if } 0 \leqslant t \leqslant \sigma_{1} \\ 0 & \text { if } \sigma_{1}<t \leqslant \sigma_{2}\end{cases}
$$

Then for any $u \in L_{\kappa}^{2}\left(0, \sigma_{1}\right)$ we have

$$
q_{\sigma_{2}, k}(r u, r u)=q_{\sigma_{1}, k}(u, u) .
$$

And hence,

$$
q_{\sigma_{2}, \kappa}(u, u)<0, \quad \forall u \in r\left(E_{\kappa}^{-}\left(A_{\sigma_{1}}\right)\right) \backslash\{0\}
$$

This yields

$$
i_{P}^{E}\left(A_{\sigma_{2}}\right) \geqslant \operatorname{dim}\left(r\left(E_{\kappa}^{-}\left(A_{\sigma_{1}}\right)\right)\right)=i_{P}^{E}\left(A_{\sigma_{1}}\right)
$$

i.e., (3.10) holds. In a similar way we obtain

$$
i_{P}^{E}\left(A_{\sigma_{1}}\right)+v_{P}^{E}\left(A_{\sigma_{1}}\right) \leqslant i_{P}^{E}\left(A_{\sigma_{2}}\right)+v_{P}^{E}\left(A_{\sigma_{2}}\right)
$$

From Step 3, it follows that $v_{P}^{E}\left(A_{\sigma_{2}}\right)=0$ as $\sigma_{2} \rightarrow \sigma_{1}^{+}$, and hence (3.11).
Step 5. $i_{P}^{E}\left(A_{s}\right)$ is left continuous with respect to s.
In fact, from (3.1)-(3.4) we obtain

$$
\begin{aligned}
& x_{1}(s t)=s\left[\int_{0}^{t} u_{1}(s \tau) \mathrm{d} \tau-\frac{1}{2} \int_{0}^{1} u_{1}(s \tau) \mathrm{d} \tau\right] \\
& x_{2}(s t)=s\left[\int_{0}^{t} u_{2}(s \tau) \mathrm{d} \tau-\int_{0}^{1} \mathrm{~d} t \int_{0}^{t} u_{2}(s \tau) \mathrm{d} \tau\right]
\end{aligned}
$$

and $q_{s, K}(u, u)=s q_{s, k}^{1}(p u, p u)$, where $(p u)(t)=u(s t)$ for $t \in[0,1]$ and

$$
\begin{equation*}
q_{s, \kappa}^{1}(u, u)=\frac{1}{2} \int_{0}^{1}\left[s\left(J u, \Pi_{1, k} u\right)+(B(s t) J u, J u)\right] \mathrm{d} t, \quad \forall u \in L_{\kappa}^{2}(0,1) \tag{3.12}
\end{equation*}
$$

For any fixed s_{0}, let $E_{1}:=p\left(E_{\kappa}^{-}\left(A_{s_{0}}\right)\right)$, then $i_{P}^{E}\left(A_{s_{0}}\right)=\operatorname{dim} E_{1}$, and

$$
q_{s_{0}, \kappa}^{1}(u, u)<0, \quad \forall u \in E_{1} \backslash\{0\} .
$$

From the continuity of $q_{s, k}^{1}$ with respect to s in (3.12), we also have

$$
q_{s, K}^{1}(u, u)<0, \quad \forall u \in E_{1} \backslash\{0\}
$$

as $s \rightarrow s_{0}$. Then we get

$$
i_{P}^{E}\left(A_{s}\right) \geqslant i_{P}^{E}\left(A_{s_{0}}\right)
$$

as $s \rightarrow s_{0}$. Together with (3.10), the claim is proved.
Step 6. $i_{P}^{E}\left(A_{s}\right)$ is continuous at the point $s \in(0,1)$ with $v_{P}^{E}\left(A_{s}\right)=0$ and for any $s \in[0,1)$, there holds

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+} i_{P}\left(A_{s+\varepsilon}\right)=i_{P}^{E}\left(A_{s}\right)+v_{P}^{E}\left(A_{s}\right) \tag{3.13}
\end{equation*}
$$

In fact, denote by

$$
\left(B_{\kappa}^{1}(s) u, u\right)=\int_{0}^{1}(B(s t) J u, J u) \mathrm{d} t, \quad \forall u \in L_{\kappa}^{2}(0,1)
$$

Then $L_{\kappa}^{2}(0,1)$ is a Hilbert space under the inner product $\left(B_{\kappa}^{1}(s) u, u\right) . B_{\kappa}^{1}(s)^{-1} J \Pi_{1, \kappa}$ is a self-adjoint compact operator, so there exist a basis $\left\{e_{j}^{s} \mid j \in \mathbf{N}\right\}$ of $L_{\kappa}^{2}(0,1)$ and a sequence λ_{j}^{s} in \mathbf{R} with $\lambda_{j}^{s} \rightarrow 0$, such that

$$
\begin{aligned}
& \left(B_{\kappa}^{1}(s) e_{j}^{s}, e_{j}^{s}\right)=\delta_{i j}, \\
& \left(J \Pi_{1, \kappa} e_{j}^{s}, u\right)=\lambda_{j}^{s}\left(B_{\kappa}^{1}(s) e_{j}^{s}, u\right), \quad \forall u \in L_{\kappa}^{2}(0,1)
\end{aligned}
$$

For any $u=\sum_{j=1}^{\infty} \xi_{j} e_{j}^{s}$, we have

$$
q_{s, k}^{1}(u, u)=\frac{1}{2} \sum_{j=1}^{\infty}\left(1-s \lambda_{j}^{s}\right) \xi_{j}^{2} .
$$

Fix a $\sigma>0$ and denote by $K=\lim _{\varepsilon \rightarrow 0+} i_{P}^{E}\left(A_{\sigma+\varepsilon}\right)$. There is a $\sigma^{\prime}>\sigma$ such that $i_{P}^{E}\left(A_{s}\right)=$ K for $s \in\left(\sigma, \sigma^{\prime}\right)$. So for any $s \in\left(\sigma, \sigma^{\prime}\right)$ we have

$$
1-s \lambda_{j}^{s}<0 \quad \text { for } 1 \leqslant j \leqslant K
$$

Fix $j \leqslant K$. Then $\lambda_{j}^{s}=\left(J \Pi_{1, \kappa} e_{j}^{s}, e_{j}^{s}\right)$ is bounded and $\lambda_{j}^{s}>\frac{1}{s} \geqslant \frac{1}{\sigma^{\prime}}$. There exist $\left\{e_{j}^{s(l)}\right\}$ and $\left\{\lambda_{j}^{s(l)}\right\}$ such that $e_{j}^{s(l)}-e_{j}$ in $L_{\kappa}^{2}(0,1)$ and $\lambda_{j}^{s(l)} \rightarrow \lambda_{j}, s(l) \rightarrow \sigma$ in \mathbf{R} as $l \rightarrow \infty$.

So we have

$$
\begin{aligned}
& \left(B_{\kappa}^{1}(\sigma) e_{j}, e_{j}\right)=\delta_{i j}, i, j=1,2, \ldots, K \\
& \left(J \Pi_{1, \kappa} e_{j}, u\right)=\lambda_{j}\left(B_{\kappa}^{1}(\sigma) e_{j}, u\right), \quad \forall u \in L_{\kappa}^{2}(0,1), j=1,2, \ldots, K \\
& 1-\sigma \lambda_{j} \leqslant 0, \quad \text { for } j=1,2, \ldots, K
\end{aligned}
$$

Therefore, for any $u=\sum_{j=1}^{K} \xi_{j} e_{j}$, we have

$$
q_{\sigma, k}^{1}(u, u)=\frac{1}{2} \sum_{j=1}^{K}\left(1-\sigma \lambda_{j}\right) \xi_{j}^{2} \leqslant 0
$$

Hence,

$$
K \leqslant i_{P}^{E}\left(A_{\sigma}\right)+v_{P}^{E}\left(A_{\sigma}\right)
$$

Combining (3.11) we obtain (3.13). If $v_{P}^{E}\left(A_{s}\right)=0$, then $\lim _{\varepsilon \rightarrow 0+} i_{P}\left(A_{s+\varepsilon}\right)=i_{P}^{E}\left(A_{s}\right)$ from (3.13), and $i_{P}^{E}\left(A_{t}\right)$ is continuous at $t=s$.

Proof of (2.15). By (2.10) we know that the Morse index of $\left(\psi^{\prime \prime}(\bar{u}) v, v\right)$ defined by (2.9) on L_{κ}^{2} is $i_{P}^{E}\left(A_{\bar{x}}\right)$, which yields (2.11). Since $\gamma=\gamma_{A}$ and $A(t)=H^{\prime \prime}(\bar{x}(t))$ for $t \in[0,1]$, we obtain (2.15) from the second equality of Proposition 5.

At the end of this section we give an example for readers on computing the index $i_{P}^{E}\left(c I_{2 n}\right)$ for $c>0$. Let $E[a]=\max \{k \in \mathbf{Z} \mid k<a\}$.

Example 6. For any $c>0$, we have

$$
i_{P}\left(\left.c I_{2 n}\right|_{[0, s]}\right)= \begin{cases}2 \kappa E\left[\frac{c s}{2 \pi}\right] & \text { if } c \leqslant \frac{3}{2} \pi \tag{3.14}\\ 2 \kappa E\left[\frac{c s}{2 \pi}\right]+2(n-\kappa) E\left[\frac{c s-\frac{3}{2} \pi}{2 \pi}\right] & \text { if } c>\frac{3}{2} \pi\end{cases}
$$

In fact, denoting by $\gamma(t)$ the fundamental solution of (1.6) with $A(t)=c I_{2 n}$, by definition we have $\gamma(t)=e^{c t J}$ and that $\operatorname{ker}(\gamma(t)-P) \neq\{0\}$ if and only if $t=t_{k}=\frac{2 k \pi}{c}$ with $\left.\operatorname{dim} \operatorname{ker}\left(\gamma\left(t_{k}\right)-P\right)\right)=2 \kappa$, or $t=s_{k}=\left(2 k \pi+\frac{3}{2} \pi\right) / c$ with $\left.\operatorname{dim} \operatorname{ker}\left(\gamma\left(s_{k}\right)-P\right)\right)=$ $2(n-\kappa)$. Then (3.14) follows from (3.6) and the first equality of Proposition 5.

References

[1] G. Dell'Antonio, B. D'Onofrio, I. Ekeland, Les system hamiltoniens convexes et pairs ne sont pas ergodiques en general, C. R. Acad. Sci. Paris. Series I. 315 (1992) 1413-1415.
[2] Y. Dong, Y. Long, Closed characteristics on partially symmetric compact convex hypersurfaces in $\mathbf{R}^{2 n}$, J. Differential Equations 196 (2004) 226-248.
[3] I. Ekeland, An index theory for periodic solutions of convex Hamiltonian system, Proceedings of the Symposium in Pure Mathematics, Vol. 45, 1986, pp. 395-423.
[4] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, Berlin, 1990.
[5] C. Liu, Y. Long, Hyperbolic characteristics on star-shaped hypersurfaces, Ann. IHP. Anal. Nonlineaire 16 (1999) 725-746.
[6] Y. Long, Hyperbolic closed characteristics on compact convex smooth hypersurfaces, J. Differential Equations 150 (1998) 227-249.
[7] Y. Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics, Adv. Math. 154 (2000) 76-131.
[8] Y. Long, Index Theory for symplectic paths with applications, Progress in Mathematics, Vol. 207, Birkhäuser, Basel, 2002.
[9] Y. Long, C. Zhu, Closed characteristics on compact convex hypersurfaces in $\mathbf{R}^{2 n}$, Ann. Math. 155 (2) (2002) 317-368.

[^0]: ${ }^{*}$ Corresponding author. Fax: $+0086-22-23501532$.
 E-mail address: longym@nankai.edu.cn (Y. Long).
 ${ }^{1}$ Partially supported by the National Natural Science Foundation of China(10251001), the Educational Committee Foundation of Jiangsu, the Natural Science Foundation of Jiangsu(BK2002023), and the PD Foundation of China.
 ${ }^{2}$ Partially supported by the 973 Program of STM, NSFC, Cheung Kong Scholars Programme, MCME, RFDP, LPMC of EM of China, S. S. Chern Foundation, and Nankai University.

