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Abstract

Let n be a positive integer and P = diag(—1,—, I;, —L,—y, ) for some integer k€[0,n]. In
this paper, we prove that for any convex compact smooth hypersurface ¥ in R* with n>2
there always exists at least one closed characteristic on X which possesses at least 2n — 4k
Floquet multipliers on the unit circle of the complex plane, provided 2 is P-symmetric, i.e.,
xeX implies PxeX.
© 2004 Elsevier Inc. All rights reserved.

MSC: 58E05; 70H12; 34D08; 34C25

Keywords: Hamiltonian systems; Convex energy surface; P-symmetry; Closed orbit; Ellipticity

1. The main result

As in Chapter 15 of [8], let X be a C? compact hypersurface in R*" bounding a
convex compact set C with non-empty interior, and possess a non-vanishing
Gaussian curvature. Without loss of generality we assume 0 e C. We denote the set of

all such hypersurfaces in R by #(2n). For any xe X, let Nx(x) be the outward
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normal unit vector at x of X. We consider the given energy problem of finding 7>0
and a C' curve x : [0, 7] > R*" such that

(1) = INs(x(1)), x(f)eX, VieR, (1.1)

x(t) = x(0), (1.2)

where J = J, = (2 _0’"), and I, is the identity matrix on R”. A solution (t,x) of

problem (1.1)—(1.2) is called a closed characteristic on ~. We denote by #(2) the set
of all closed characteristics (t,x) on X with 7 being the minimal period of x. Two
closed characteristics (t,x) and (o,y)e #(X) are geometrically distinct, if
x(R)#y(R). We denote by #(X) the set of all geometrically distinct closed
characteristics (t,x) on X.

Problem (1.1)~(1.2) can be put into a Hamiltonian version. Let j : R* —[0, + o)
be the gauge function of 2 defined by

j(0)=0, and j(x):inf{/1>0‘%eC}, Vx£0.

Fix a constant o with 1 <o<2 in this paper, we define H : R — [0,4+0) by
H(x) =j(x)*, VxeR™. (1.3)

Then HeC'(R*,R)n C*(R*\{0},R) is convex and X = H~'(1). It is well known
that the problem (1.1)(1.2) is equivalent to the following problem:

x(1) = JH'(x(r)), H(x(r)) =1, VieR, (1.4)

x(t) = x(0). (1.5)

Denote by # (X, a) the set of all distinct solutions (t, x) of (1.4)—(1.5) with t being the
minimal period of x. Note that elements in #(X) and #(X,«) are one to one
correspondent to each other.

Let (7,x)e #(X,x). As usual we call the fundamental solution vy, :
[0, +00)—Sp(2n) with y,(0) = I, of the linearized Hamiltonian system

y(t) =JA()y(t), VteR, (1.6)

where A(1) = H"(x(t)), the associated symplectic path of (t,x). The eigenvalues of
y.(7) are called Floquet multipliers of (t,x). It is well-known that the Floquet
multipliers with their multiplicity and Krein type numbers of (z,x)e #(Z, o) do not
depend on the particular choice of the Hamiltonian function H in (1.4). As in [9] and
Chapter 15 of [8], for any symplectic matrix M, we define the elliptic height e(M) of
M by the total algebraic multiplicity of all eigenvalues of M on the unit circle
U={zeC||z| = 1} of the complex plane. And for any (r,x)e #(Z,«) we define
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e(mt,x) = e(y,(m1)), and call (z,x) elliptic or hyperbolic if e(t,x) = 2n or e(t,x) =
2, respectively.

Note that e(M) = e(M*) holds for any integer k=1 if M is a symplectic matrix.

A long-standing conjecture is mentioned on p. 235 of [4]: for every X e #(2n),
there exists a (7, x) € #(2) such that e(z, x) = 2n. Ekeland [3] proved the conjecture if
Y is +/2-pinched. Long [6] studied the existence of non-hyperbolic closed
characteristics if there exist only finitely many hyperbolic ones on Xe#(2n). A
similar result was proved for star-shaped hypersurfaces in [5]. If e #(2n) is
symmetric with respect to the origin 0 of R*, i.e., xe X implies —x € X, the conjecture
was proved by Dell’Antonio et al. [1]. In [7], Long proved that both the two closed
characteristics are elliptic if there are precisely two geometrical distinct ones on a
2eAH(4). Long and Zhu [9], further proved the existence of at least one elliptic
closed characteristic on X if the number of elements in #(X) is finite, as well as a
result on the existence of at least two elliptic closed characteristics on X under certain
conditions.

In this paper we study the stability of closed characteristics on partially symmetric
hyper-surface. Fixing an integer k with 0<x<n, let P = diag(—1l,—«, Lc, —Lu—r, L)
and #(2n) = {Xe# (2n) | xeX implies PxeX}. Recall that a lower bound
estimate on #_#(X) was established for any X e.#,(2n) by the authors in the recent
[2]. The following is the main result of this paper:

Theorem 1. For any X e #(2n), there exists (t,x)€ ¢ (X, o) such that
e(t,x)=2n — 4x.

In the following Section 2, we prove Theorem 1. Then in Section 3 we compute the
(P, 1)-index of a minimal solution of the functional corresponding to the problem
(1.4)—(1.5) which is used in Section 2.

2. The proof of Theorem 1

In order to prove Theorem 1 we need some results about (P, w)-index theory
introduced in [2]. As usual we define

Sp(2n) = {M e GL(R*")|MTJM = J},
Z:(2n) = {ye C([0,7],Sp(2n)) [ 7(0) = Lu},

where M7 denotes the transpose of M and >0 is a constant.

For every ye#.(2n) and weU a pair of integers (ipy(7),vpw(y))€EZ X
{0,1,...,2n} was defined by the authors in [2]. The nullity has a simple
expression:

vrw(y) = vpw(y(1)) = dimc kerc(y(7) — wP). (2.1)
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We refer to [2] for the definition of ip (7). The splitting numbers of M at (P, w) were
also defined by:

S]ti/[(Pa w) = lim iP}exp(i\/——]g)(u(’y) —ipw()-

e—-0F

We shall need the following results from Definition 1.2.8 and Lemma 1.2.9 of [4],
Propositions 3.8 and 3.12, and Theorem 4.1 of [2]:

Lemma 2. (i) For any M eSp(2n) and weU being an eigenvalue of M, denote by
my(M) and (p,(M),q,(M)) the algebraic multiplicity of the eigenvalue w and the
Krein type numbers of M at o, and denote by & the complex conjugate of w, then @ is
an eigenvalue of M and

Po(M) + qo(M) = my(M), my, = mg.
Moreover, we have

g1 (M) = 5 (M),

Pi(M)

(ii) For any M eSp(2n) and weU being an eigenvalue of M, we have
0< Sy, (P,0)<po(MP), 0<S;,(P,0)<qu(MP).

(iil) For ye2.(2n) and M = y(t), we have

ip1(y) =ip1(y) + Z S}}(R e‘/__w) — Z S]T/I(Pv e‘/__w),

0<l0<mn 0<0<n

(iv) Let A(t) be a symmetric, positive definite 2n x 2n real matrix function and
continuous in t€0,7|. Denote the fundamental solution of (1.6) satisfying y4(0) = Iy,
by vy =1v,(t). Then

ip1(y4) =K+ Z ve1(74(5))-

0<s<rt

Now we give

Proof of Theorem 1. Define two function spaces Wp = {xe W'2([0,1],R*") | x(1) =
Px(0)} and L? = L*((0,1),R*). Define A : Wpc L> - L? by (Ax)(t) = x(¢). Then
we have an orthogonal decomposition L? =Im(A)@ker(4). We denote by
(x1,11) O (x2,32) = (x1,x2,1,2) for any x;, y;eR™ with some integer m; for i =
1,2. Simple computations yield ker(A4) = {00 & | eR*}, where 0 is the origin of
R2n72;c and

Im(A) = {u; Qup | uy € L*((0, 1),112”2*‘),/1 uy(t) dt = 0,u € L*((0, 1); R*)}.
0
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Denote by Lj =Im(A). Then Ay= Ay, is invertible, and for any u=
u; Qupyelm(A) we have

(A" u)(1) = x1(2) O x2(1), (2.2)
1 1
xl(t):/o ul(r)drf%/o up (1) dr, (2.3)
t 1 ‘
(f) = /0 un(z) de — /0 di /0 un(7) dr. (2.4)

So JA;"' = Ag'J and JAy' : L2 — L2 is self-adjoint and compact.
Define >0y} + 4= 1 and set L} = L: nLF((0,1); R*). Consider the functional

¥ (u) =/01B(Ju,/101u)+H*(—Ju)} dt, Vuell,

where H*(x) = sup, g {(x,y) — H(y)} is the Fenchel dual of H, It is well-known

that the global minimum of ¢ on L/ is reached. Denote by @ one of its global
minimal point. Then we have

W (@) = min ¥ (u) <O0. (2.5)

ueL{f

Then it is also well-known (cf. [4]) that ##constant holds and that the minimal
period of # must be 1 if it is periodic from (2.5), although it may not be periodic at all
in our case. We also have /(7)) =0. Note that for any uelL’ we have
/(1) e L%((0,1); R*) is a linear functional on L/:

V' (u)(v) = /01[(Ju,/1(jlv) + (H" (=Ju), —Jv)]dt, Yu,veLl. (2.6)

We obtain

’

H (~J) = Ay i+ &, (2.7)

for some &;eker(A). By the Legendre reciprocity formula of Proposition II.1.15 of
4], x = Aalﬂ + &;#0 is a solution of the boundary value problem:

X =JH'(x), Vte(0,1), x(1)= Px(0). (2.8)

From (2.6) we have

1

" (@), v) :/0 [(Ju, Ay ) + (H' (=J (@))Jv, Jv)] dt, (2.9)
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for every veLf_. By Proposition I1.2.10 of [4] and (2.7), we have
H (—Ja(t)) = (H"(x(1)) " (2.10)

It follows that ¥ (1) in (2.9) can be defined on ve L2. From (2.5), @ is a minimal
point, we know that the Morse index of ¥ (i) defined on L2 is zero. That is

i5(4s) = 0, (2.11)

where A4x(t) = H"(%(¢)) for t€ |0, 1]. We postpone the definition of i5(45) to the next
section. Note that % is defined on [0, 1]. Let

X+ 1) = Px(r), Veelo,1].

By (2.7), we have lim,_,o, (1 + &) = P%(0) = %(1). So xe C([0,2],R*"), and %(2) =
Px(1) = P*%(0) = %(0). By definition, we have

H(Py)=H(y), VyeR™.
Thus there hold
PH'(Py) = H'(y), PH"(Py)P=H"(y), VyeR™. (2.12)
We have from (2.12)
SEISI+ X(1+e) = sgrgl+ Px(0+¢) = 8l_i)r(gl+ PJH'(x(¢))
=PJH'(x(0)) = JPH'(x(0)) = JH'(Px(0))
=JH'(x(1)) = ggrgl+ JH'(x(1 —¢))

= SIB& x(1—c¢).

So xe C'([0,2],R*"), and x = X(¢) satisfies
= JH'(R), Vie(0,2), (2)=x(0). (2.13)

Let y = y¢(7) be the fundamental solution of (1.6) with A(¢) = H”(x(z)) for t€]0,2]
satisfying y(0) = b,. By (2.12), we have

H"(x(t+ 1)) = H"(Px(t)) = PH"(x(1))P.
Direct calculations give
& Py Py(1) =Py Po(1)

=PJH" (%(1))y(1)Py(1) = JH" (x(1 + 1)) Py() Py(1).
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Since the fundamental solution of (1.6) is unique, y satisfies
p(t+1)=Py(t)Py(1), Vtel0,1].
Specially
7(2) = (Py(1))*. (2.14)
We claim that (2.11) implies
i1 (7o) =%, (2.15)

and postpone its proof to the next section.
By Theorem 4.1 of [2], we also have

ip—1(7]p.) =0 — K. (2.16)

By (i)—(iii) of Lemma 2, (2.15), and (2.16) we obtain

> e (Pr0) +ym (P> 3 (P10 - 2

0<0<m 0<O<mn

Thus by (i) of Lemma 2 and (2.14) we get

e(Py(1)=2n—4x and e(y(2)) = e((Py(1))?) = e(Py(1))=2n — 4.

Note that by our above study the minimal period 7 of X is either 1 or 2. Let
h=H(x(1)).
If h =1, then (7,x)e #(X,a) from (2.13), and
e(f,%)) = e(2,%) = e((Py(1))*) >2n — 4.
If h+#1, viewing X as a 2-periodic solution, let
12 122
xp=h"ax(he't), 71, =2h =
Then H(x,(¢)) =1 for all €0, 2], the minimal period 7, of xy, is either 7,/2 or 1,

and (T, x,) € #(2). Because H(-) is a-homogenous, H"() is (o — 2)-homogenous,
we get

H(5(0)) = b HY (505 1)).

Let y, be the fundamental solution of (1.6) with A(¢) = H"(%;(¢)) for te(0,1s)
satisfying y,(0) = I,. Then we have

1t = p(50).
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Thus y,(t;) = p(2). Then we have (7, %) € #(X) and
e(Th, Xn) = e(Th, Xn) = e(;,(ta)) = e(»(2)) =2n — 4.

This completes the proof of Theorem 1. [

3. The proof of the computation (2.15)

In this section we will define i5(A4), which appeared in (2.11), and prove (2.15). In
order to do this we will give a slight generalization of the contents of Section 1.4 in [4]
of Ekeland first.

For any symmetric and positive definite 2n x 2n real matrix A(¢) continuous in

€[0,4+ ), let B(r) = A(¢)"" and consider the following quadratic form:

Gt u):% /0 i, ) + (B, Ju)|dr, YueL2(0,s),  (3.0)

where  L2(0,s) = {u; Ous |y e L*((0,5),R* ) and wueL*((0,s);R*) with
Jo u2(1) dt = 0} and Iy, : L2(0,5) - L2(0,s) is defined by

(I ) (1) = x1(2) O x2(2), (3.2)
() = /Ot(ul(f)) dr —% /Osul(f) dr, (3.3)
x(t) = /0 up(1)dr — é/ox dl‘/0 up (1) dr, (3.4)

for any u = u; Quy e L2(0,s). Note that we have IT;,, = A;' and L2(0,1) = L2.

Lemma 3. For any symmetric and positive definite 2n x 2n real matrix A(t) continuous
in tel0,400), there is a g -orthogonal decomposition

L(0,5) = E[ (A) @ E(A) @ E, (A)

such that g5, is positive definite, null and negative definite on E}(A), E°(A) and
E_(A), respectively. Moreover, the dimensions of EX(A) and E_(A) are finite.

K

Proof. Define B, : L2 —L? by

(But, v) = /0 “(B()Ju(t), Jo() dt, Vu,ve L2(0, 5).
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From the Lax-Milgram theorem, B, is an isomorphism and L?(0,s) is a Hilbert
space under the inner product (B,u,v). Because

(B,CB;IJHS_KM, v) = (JH;u,0) = (u, JIv) = (Bgu, BEIJHS,KU), Yu, veLi(O,s),

the map B 'JI,, : L?(0,5) > L*(0,s) is self-adjoint. From the spectral theory of
compact self-adjoint operators on a Hilbert space, there exist a basis {ej}jeN of
L2(0,s), and a sequence 4;—0 in R as j— + oo such that

(Biei, e)) =0y,
n—1
BK JHS’,Cej = ).jej.

And hence, for any u = Y7, cje;e L2(0,5), we have

Define
E;(4) ={ZC/€.1‘|CJ=0 if 1—/1;<0},
ENA) ={Y " qelg=0if 1- 220},

E (4) = {Z cejlej=0if 1 - /11?0}7
Then the claim of the lemma follows because 4, -0 as j— + c0. [

Definition 4. For any symmetric positive definite continuous 2n x 2n real matrix
function A(t) in 1[0, s], we define

vE(4) = dim E°(4), i5(A4) = dim E_(A).

Proposition 5. For any symmetric positive definite continuous 2n x 2n real matrix
Sfunction A(t) in t€|0,s], there hold

V(A) =vpi(74),  ipa(v4) = K+ ip(A),

where y =y 4(¢) is the fundamental solution of (1.6) with y(0) = I,.
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Proof. The proof is carried out in 6 steps.
Step 1. The proof of the first equality in Proposition 5.
For any ue E°(A), by definition and Lemma 3, we have

1 N
Gsic(U,0) = 3 /0 (I, cu + B(t)Ju,Jv)dt =0, YoeL2(0,s).

Thus there exists &, eker(A) such that
Hu+ B(t)Ju=2¢,.
Denote by x = I, ,u — &,. We obtain u = x and
x=JA(t)x for te(0,s), x(s)= Px(0).
Therefore x(7) = 7 ,(f)c, where ce R*" satisfies
7a(s)c = Py,(0)c = Pe.
That is,
(y4(s) = P)e=0. (3.5)

Hence we obtain

E(A)={ceRY|(74(s) — P)e = 0} = ker(y,(s) — P),
and from (2.1)

vE(4) = dim E°(4) = dim ker(y4(s) — P) = vp1(74)-

This yields the first equality claimed by Proposition 5.
In the next 5 steps we prove the second equality claimed in Proposition 5. By (iv)
of Lemma 2 and the first equality in Proposition 5, it suffices to prove

i) = 3 vE(4,), (3.6)

O<o<s

where A, = Al 5.
Step 2. Proof for i5(A4,) = 0 with ¢>0 sufficiently small.
In fact, by Definition (3.2)—(3.4) we have

g 1
()< 2/ ()] dr <22,
0
il < 201,

[Peaf| < (1 + o) [z,
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where || - || is the usual norm in L?((0,1); R*"). Therefore we have

[ cu|| < (2 + 0)o||ull, VueLi(O, ).

Since A(?) is symmetric, positive definite, and continuous, we have

(B(t)x,x)=b(x,x), VYxeR> te|0,s],
where b>0 is a constant. It follows that

1
o (U, 1) :% /0 [(—JHcu, u) + (B(t)Ju, Ju)] dt

2
= S(=ull - [[Houl| + blful]")

= N =

> 5 (b= (2+0)a)|ull.

Therefore ¢, is positive definite when a<min{1,§ .
Step 3. We claim that there exist only finitely many points ¢ € [0, 1] with v&(4,) 0.
In fact, if not, by (3.5) there exist 5;€[0,1] and &eR™ {0} with [&]=1
such that

’))A(S])£]:PCJ7 forj: 1,2,.... (37)
Without loss of generality, we assume s;—s and &;—¢ as j— + oo. Then we have

74(8)E = P¢, (3-8)

(74(si) = P)(& = &) = (74(s) — 74(5))<. (3.9)
Since 7 4(s;) is symplectic, we have y,(s;)"J = Jy,(s;) . By (3.7) we have
(74 (5)(& — &), TPE) = (& — & 74(5) T TPE))
= (& — & Tra(5) "' P)
=(§—¢,JE)
=(P(¢ - €),JPE).

Thus ((y,4(s;) = P)(& — &), JPE;) = 0, and by (3.9) we have

((ra(s) = v4(s7))& JPE;) = 0.
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Multiplying the left hand side of the above equality by (s — sj)f1 and taking the limit
as j— + oo, from (3.8) and y4(s) = JA(s)y,(s) we have

0 = (4(9)¢, JPE) = (JA(s) P&, JPE) = (A(s) PE, PY).

This contradiction proves our claim.
Step 4. If 01 <o, there hold

i5(A0) + VE(An) <IE(As). (3.11)

In fact, we define a map r: L2(0,01) > L?(0,02) by

u(t) if 0<r<ay,
0 if o1<t<o0>.

w0 ={
Then for any ue L2(0,5,) we have
Qo s (rUt, 1) = o, (U, u).

And hence,

Goruc(,u) <0, Vuer(E; (4q,))\{0}.
This yields

ip(Ag,) Zdim(r(E (45,))) = ip(As),
i.e., (3.10) holds. In a similar way we obtain

ip(Ag,) + Vp (Ao ) Sip(Ae) + Vi (Aa).

From Step 3, it follows that v5(4,,) = 0 as 02— 0, and hence (3.11).

Step 5. i5(A4y) is left continuous with respect to s.
In fact, from (3.1)—~(3.4) we obtain

x1(s?) :s[/olul(sr)dr—%/olul(sr) dr},

xo(st) :s[/oluQ(sr) dr — /01 dt/otuz(sr) dr},

and gy, (u,u) = sq! , (pu, pu), where (pu)(r) = u(st) for 1[0, 1] and

i
qélﬂﬁ,c(u, u) = %/ [s(Ju, Iy u) + (B(st)Ju,Ju)| dt, VueL2(0,1). (3.12)
0
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For any fixed so, let Ey == p(E_ (4,)), then i5(A4,,) = dim E;, and
qio’lc(u,u)<0, Yue E;\{0}.

From the continuity of ¢! with respect to s in (3.12), we also have

q},_’,c(u,u)<0, Yue E;\{0},
as s—sp. Then we get
ip(Ay) > ip(Ay,)
as s—so. Together with (3.10), the claim is proved.
Step 6. i5(A4;) is continuous at the point se(0,1) with vE(4,) =0 and for any

s€[0,1), there holds

lim ip(Ay.,) = i5(Ay) + vE(4,). (3.13)

e—0+

In fact, denote by
1
(B (s)u, u) = / (B(st)Ju, Ju) di, Ve L2(0,1).
0

Then L2(0, 1) is a Hilbert space under the inner product (B! (s)u,u). B.(s)"'JII, . is a
self- adjoint compact operator, so there exist a basis {ej|jeN} of L%(0,1) and a
sequence A in R with } —0, such that

(B,lc(s)e;,e;) :5!7’
(JHl,,Cej,u) :i;(B,lc(s)e;,u), VueLi(O, 1).

For any u = Y77, &ef, we have

o0
qmuu Z 1 —s57)

Fix a ¢>0 and denote by K = lim, o i5(4,+.). There is a ¢’ > o such that i5(4;) =
K for se(a,d’). So for any s€(o,d’) we have

1 —s2;<0 for 1<j<K.

Fix j<K. Then i = (JII, ¢}, ¢}) is bounded and 4;>{>X. There exist {e !

=9

and {l;w} such that e_‘;wée]‘ in L2(0,1) and i_;</)—>)7,s(l)—>o in R as /- .
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So we have
(B}((a)ej,ej) =05,4,j=12,....K,
(JII) cej,u) = Ai(BL(a)ej,u), YueL(0,1),j=1,2,...,K,
1-04;<0, forj=12,..K.

Therefore, for any u = ZK:

j—15;¢j, we have

K
q”uu Z (1 —a;)¢ <0.

Hence,
K<if(As) + vi(As).

Combining (3.11) we obtain (3.13). If vE(4,) =0, then lim,_ o ip(Asie) = i5(A4y)
from (3.13), and i5(4,) is continuous at 1 =s. [

Proof of (2.15). By (2.10) we know that the Morse index of (" (it)v,
(2.9) on L? is i5(Az), which yields (2.11). Since y =7y, and A(¢) =
t€[0, 1], we obtain (2.15) from the second equality of Proposition 5.

v) defined by
H"(x(1)) for
O

At the end of this section we give an example for readers on computing the index
i5(chy) for ¢>0. Let E[a] = max{keZ | k<a}.

Example 6. For any ¢>0, we have

cs .
2KE|:E} if ¢<3n,

iP(CIZI’l|[0’S]) = CS_%TC (314)

& _ - 3
2KE{27J +2(n K)E|: } if ¢>sm.
In fact, denoting by y(¢) the fundamental solution of (1.6) with A(¢) = chy,, by
definition we have y(¢) = ¢/ and that ker(y(t) — P)# {0} if and only if r = 1, = %=
with dim ker(y(z) — P)) = 2«, or t = sx = (2kn + 3n)/c with dim ker(y(sx) — P)) =
2(n — k). Then (3.14) follows from (3.6) and the first equality of Proposition 5.
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