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Abstract

Let n be a positive integer and P ¼ diagð�In�k; Ik;�In�k; IkÞ for some integer kA½0; n�: In
this paper, we prove that for any convex compact smooth hypersurface S in R2n with nX2

there always exists at least one closed characteristic on S which possesses at least 2n � 4k
Floquet multipliers on the unit circle of the complex plane, provided S is P-symmetric, i.e.,

xAS implies PxAS:
r 2004 Elsevier Inc. All rights reserved.
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1. The main result

As in Chapter 15 of [8], let S be a C2 compact hypersurface in R2n bounding a
convex compact set C with non-empty interior, and possess a non-vanishing
Gaussian curvature. Without loss of generality we assume 0AC:We denote the set of

all such hypersurfaces in R2n by Hð2nÞ: For any xAS; let NSðxÞ be the outward
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normal unit vector at x of S: We consider the given energy problem of finding t40

and a C1 curve x : ½0; t�-R2n such that

’xðtÞ ¼ JNSðxðtÞÞ; xðtÞAS; 8tAR; ð1:1Þ

xðtÞ ¼ xð0Þ; ð1:2Þ

where J ¼ Jn ¼ 0
In

�In

0

� �
; and In is the identity matrix on Rn: A solution ðt; xÞ of

problem (1.1)–(1.2) is called a closed characteristic on S: We denote by JðSÞ the set
of all closed characteristics ðt; xÞ on S with t being the minimal period of x: Two
closed characteristics ðt; xÞ and ðs; yÞAJðSÞ are geometrically distinct, if

xðRÞayðRÞ: We denote by *JðSÞ the set of all geometrically distinct closed
characteristics ðt; xÞ on S:
Problem (1.1)–(1.2) can be put into a Hamiltonian version. Let j : R2n-½0;þNÞ

be the gauge function of S defined by

jð0Þ ¼ 0; and jðxÞ ¼ inf l40
x

l

��� AC
n o

; 8xa0:

Fix a constant a with 1oao2 in this paper, we define H : R2n-½0;þNÞ by

HðxÞ ¼ jðxÞa; 8xAR2n: ð1:3Þ

Then HAC1ðR2n;RÞ-C2ðR2n
\f0g;RÞ is convex and S ¼ H�1ð1Þ: It is well known

that the problem (1.1)(1.2) is equivalent to the following problem:

’xðtÞ ¼ JH 0ðxðtÞÞ; HðxðtÞÞ ¼ 1; 8tAR; ð1:4Þ

xðtÞ ¼ xð0Þ: ð1:5Þ

Denote byJðS; aÞ the set of all distinct solutions ðt;xÞ of (1.4)–(1.5) with t being the
minimal period of x: Note that elements in JðSÞ and JðS; aÞ are one to one
correspondent to each other.
Let ðt; xÞAJðS; aÞ: As usual we call the fundamental solution gx :

½0;þNÞ-Spð2nÞ with gxð0Þ ¼ I2n of the linearized Hamiltonian system

’yðtÞ ¼ JAðtÞyðtÞ; 8tAR; ð1:6Þ

where AðtÞ ¼ H 00ðxðtÞÞ; the associated symplectic path of ðt; xÞ: The eigenvalues of
gxðtÞ are called Floquet multipliers of ðt; xÞ: It is well-known that the Floquet
multipliers with their multiplicity and Krein type numbers of ðt; xÞAJðS; aÞ do not
depend on the particular choice of the Hamiltonian function H in (1.4). As in [9] and
Chapter 15 of [8], for any symplectic matrix M; we define the elliptic height eðMÞ of
M by the total algebraic multiplicity of all eigenvalues of M on the unit circle
U ¼ fzAC j jzj ¼ 1g of the complex plane. And for any ðt; xÞAJðS; aÞ we define
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eðmt; xÞ ¼ eðgxðmtÞÞ; and call ðt; xÞ elliptic or hyperbolic if eðt; xÞ ¼ 2n or eðt; xÞ ¼
2; respectively.

Note that eðMÞ ¼ eðMkÞ holds for any integer kX1 if M is a symplectic matrix.
A long-standing conjecture is mentioned on p. 235 of [4]: for every SAHð2nÞ;

there exists a ðt; xÞAJðSÞ such that eðt; xÞ ¼ 2n: Ekeland [3] proved the conjecture if

S is
ffiffiffi
2

p
-pinched. Long [6] studied the existence of non-hyperbolic closed

characteristics if there exist only finitely many hyperbolic ones on SAHð2nÞ: A
similar result was proved for star-shaped hypersurfaces in [5]. If SAHð2nÞ is

symmetric with respect to the origin 0 of R2n; i.e., xAS implies �xAS; the conjecture
was proved by Dell’Antonio et al. [1]. In [7], Long proved that both the two closed
characteristics are elliptic if there are precisely two geometrical distinct ones on a
SAHð4Þ: Long and Zhu [9], further proved the existence of at least one elliptic
closed characteristic on S if the number of elements in JðSÞ is finite, as well as a
result on the existence of at least two elliptic closed characteristics on S under certain
conditions.
In this paper we study the stability of closed characteristics on partially symmetric

hyper-surface. Fixing an integer k with 0pkpn; let P ¼ diagð�In�k; Ik;�In�k; IkÞ
and Hkð2nÞ ¼ fSAHð2nÞ j xAS implies PxASg: Recall that a lower bound

estimate on # *JðSÞ was established for any SAHkð2nÞ by the authors in the recent
[2]. The following is the main result of this paper:

Theorem 1. For any SAHkð2nÞ; there exists ðt; xÞAJðS; aÞ such that

eðt; xÞX2n � 4k:

In the following Section 2, we prove Theorem 1. Then in Section 3 we compute the
ðP; 1Þ-index of a minimal solution of the functional corresponding to the problem
(1.4)–(1.5) which is used in Section 2.

2. The proof of Theorem 1

In order to prove Theorem 1 we need some results about ðP;oÞ-index theory
introduced in [2]. As usual we define

Spð2nÞ ¼ fMAGLðR2nÞjMT JM ¼ Jg;

Ptð2nÞ ¼ fgACð½0; t�; Spð2nÞÞ j gð0Þ ¼ I2ng;

where MT denotes the transpose of M and t40 is a constant.
For every gAPtð2nÞ and oAU a pair of integers ðiP;oðgÞ; nP;oðgÞÞAZ�

f0; 1;y; 2ng was defined by the authors in [2]. The nullity has a simple
expression:

nP;oðgÞ ¼ nP;oðgðtÞÞ ¼ dimC kerCðgðtÞ � oPÞ: ð2:1Þ
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We refer to [2] for the definition of iP;oðgÞ: The splitting numbers of M at ðP;oÞ were
also defined by:

S7
MðP;oÞ ¼ lim

e-0þ
iP;expð7

ffiffiffiffiffi
�1

p
eÞoðgÞ � iP;oðgÞ:

We shall need the following results from Definition I.2.8 and Lemma I.2.9 of [4],
Propositions 3.8 and 3.12, and Theorem 4.1 of [2]:

Lemma 2. (i) For any MASpð2nÞ and oAU being an eigenvalue of M; denote by

moðMÞ and ðpoðMÞ; qoðMÞÞ the algebraic multiplicity of the eigenvalue o and the

Krein type numbers of M at o; and denote by %o the complex conjugate of o; then %o is

an eigenvalue of M and

poðMÞ þ qoðMÞ ¼ moðMÞ; mo ¼ m %o:

Moreover, we have

p1ðMÞ ¼ q1ðMÞ ¼ 1

2
m1ðMÞ:

(ii) For any MASpð2nÞ and oAU being an eigenvalue of M; we have

0pSþ
MðP;oÞppoðMPÞ; 0pS�

MðP;oÞpqoðMPÞ:

(iii) For gAPtð2nÞ and M ¼ gðtÞ; we have

iP;�1ðgÞ ¼ iP;1ðgÞ þ
X

0pyop

Sþ
M P; e

ffiffiffiffiffi
�1

p
y

� �
�

X
0oypp

S�
M P; e

ffiffiffiffiffi
�1

p
y

� �
:

(iv) Let AðtÞ be a symmetric, positive definite 2n � 2n real matrix function and

continuous in tA½0; t�: Denote the fundamental solution of (1.6) satisfying gAð0Þ ¼ I2n

by g ¼ gAðtÞ: Then

iP;1ðgAÞ ¼ kþ
X

0osot

nP;1ðgAðsÞÞ:

Now we give

Proof of Theorem 1. Define two function spaces WP ¼ fxAW 1;2ð½0; 1�;R2nÞ j xð1Þ ¼
Pxð0Þg and L2 ¼ L2ðð0; 1Þ;R2nÞ: Define L : WPCL2-L2 by ðLxÞðtÞ ¼ ’xðtÞ: Then
we have an orthogonal decomposition L2 ¼ ImðLÞ"kerðLÞ: We denote by
ðx1; y1Þ}ðx2; y2Þ ¼ ðx1; x2; y1; y2Þ for any xi; yiARmi with some integer mi for i ¼
1; 2: Simple computations yield kerðLÞ ¼ f0}x j xAR2kg; where 0 is the origin of

R2n�2k and

ImðLÞ ¼ fu1}u2 j u1AL2ðð0; 1Þ;R2n�2kÞ;
Z 1

0

u2ðtÞ dt ¼ 0; u2AL2ðð0; 1Þ;R2kÞg:
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Denote by L2
k ¼ ImðLÞ: Then L0 ¼ LjL2

k-WP
is invertible, and for any u ¼

u1}u2AImðLÞ we have

ðL�1
0 uÞðtÞ ¼ x1ðtÞ}x2ðtÞ; ð2:2Þ

x1ðtÞ ¼
Z t

0

u1ðtÞ dt�
1

2

Z 1

0

u1ðtÞ dt; ð2:3Þ

x2ðtÞ ¼
Z t

0

u2ðtÞ dt�
Z 1

0

dt

Z t

0

u2ðtÞ dt: ð2:4Þ

So JL�1
0 ¼ L�1

0 J and JL�1
0 : L2

k-L2
k is self-adjoint and compact.

Define b40 by 1
a þ 1

b ¼ 1 and set Lb
k ¼ L2

k-Lbðð0; 1Þ;R2nÞ: Consider the functional

cðuÞ ¼
Z 1

0

1

2
ðJu;L�1

0 uÞ þ H�ð�JuÞ
	 


dt; 8uALb
k;

where H�ðxÞ ¼ supyAR2n fðx; yÞ � HðyÞg is the Fenchel dual of H; It is well-known

that the global minimum of c on Lb
k is reached. Denote by %u one of its global

minimal point. Then we have

cð %uÞ ¼ min
uAL

b
k

cðuÞo0: ð2:5Þ

Then it is also well-known (cf. [4]) that %ucconstant holds and that the minimal
period of %u must be 1 if it is periodic from (2.5), although it may not be periodic at all

in our case. We also have c0ð %uÞ ¼ 0: Note that for any uALb
k; we have

c0ðuÞALa
kðð0; 1Þ;R2nÞ is a linear functional on Lb

k:

c0ðuÞðvÞ ¼
Z 1

0

½ðJu;L�1
0 vÞ þ ðH�0 ð�JuÞ;�JvÞ� dt; 8u; vALb

k: ð2:6Þ

We obtain

H�0 ð�J %uÞ ¼ L�1
0 %u þ x %u; ð2:7Þ

for some x %uAkerðLÞ: By the Legendre reciprocity formula of Proposition II.1.15 of

[4], %x � L�1
0 %u þ x %ua0 is a solution of the boundary value problem:

’x ¼ JH 0ðxÞ; 8tAð0; 1Þ; xð1Þ ¼ Pxð0Þ: ð2:8Þ

From (2.6) we have

ðc00ð %uÞv; vÞ ¼
Z 1

0

½ðJv;L�1
0 vÞ þ ðH�00 ð�Jð %uÞÞJv; JvÞ� dt; ð2:9Þ

ARTICLE IN PRESS
Y. Dong, Y. Long / J. Differential Equations 206 (2004) 265–279 269



for every vALb
k: By Proposition II.2.10 of [4] and (2.7), we have

H�00 ð�J %uðtÞÞ ¼ ðH 00ð %xðtÞÞ�1: ð2:10Þ

It follows that c00ð %uÞ in (2.9) can be defined on vAL2
k: From (2.5), %u is a minimal

point, we know that the Morse index of c00ð %uÞ defined on L2
k is zero. That is

iE
PðA %xÞ ¼ 0; ð2:11Þ

where A %xðtÞ ¼ H 00ð %xðtÞÞ for tA½0; 1�:We postpone the definition of iE
PðA %xÞ to the next

section. Note that %x is defined on ½0; 1�: Let

%xðt þ 1Þ ¼ P %xðtÞ; 8tA½0; 1�:

By (2.7), we have lime-0þ %xð1þ eÞ ¼ P %xð0Þ ¼ %xð1Þ: So %xACð½0; 2�;R2nÞ; and %xð2Þ ¼
P %xð1Þ ¼ P2 %xð0Þ ¼ %xð0Þ: By definition, we have

HðPyÞ ¼ HðyÞ; 8 yAR2n:

Thus there hold

PH 0ðPyÞ ¼ H 0ðyÞ; PH 00ðPyÞP ¼ H 00ðyÞ; 8 yAR2n: ð2:12Þ

We have from (2.12)

lim
e-0þ

’%xð1þ eÞ ¼ lim
e-0þ

P ’%xð0þ eÞ ¼ lim
e-0þ

PJH 0ð %xðeÞÞ

¼PJH 0ð %xð0ÞÞ ¼ JPH 0ð %xð0ÞÞ ¼ JH 0ðP %xð0ÞÞ

¼ JH 0ð %xð1ÞÞ ¼ lim
e-0þ

JH 0ð %xð1� eÞÞ

¼ lim
e-0þ

’%xð1� eÞ:

So %xAC1ð½0; 2�;R2nÞ; and x ¼ %xðtÞ satisfies

’%x ¼ JH 0ð %xÞ; 8tAð0; 2Þ; %xð2Þ ¼ %xð0Þ: ð2:13Þ

Let g ¼ g %xðtÞ be the fundamental solution of (1.6) with AðtÞ ¼ H 00ð %xðtÞÞ for tA½0; 2�
satisfying gð0Þ ¼ I2n: By (2.12), we have

H 00ð %xðt þ 1ÞÞ ¼ H 00ðP %xðtÞÞ ¼ PH 00ð %xðtÞÞP:

Direct calculations give

d

dt
ðPgðtÞPgð1ÞÞ ¼P’gðtÞPgð1Þ

¼PJH 00ð %xðtÞÞgðtÞPgð1Þ ¼ JH 00ð %xðt þ 1ÞÞPgðtÞPgð1Þ:
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Since the fundamental solution of (1.6) is unique, g satisfies

gðt þ 1Þ ¼ PgðtÞPgð1Þ; 8tA½0; 1�:

Specially

gð2Þ ¼ ðPgð1ÞÞ2: ð2:14Þ

We claim that (2.11) implies

iP;1ðgj½0;1�Þ ¼ k; ð2:15Þ

and postpone its proof to the next section.
By Theorem 4.1 of [2], we also have

iP;�1ðgj½0;1�ÞXn � k: ð2:16Þ

By (i)–(iii) of Lemma 2, (2.15), and (2.16) we obtain

X
0oyop

m
e
ffiffiffiffi
�1

p
yðPgð1ÞÞ þ

1

2
m1ðPgð1ÞÞX

X
0pyop

p
e
ffiffiffiffi
�1

p
yðPgð1ÞÞXn � 2k:

Thus by (i) of Lemma 2 and (2.14) we get

eðPgð1ÞÞX2n � 4k and eðgð2ÞÞ ¼ eððPgð1ÞÞ2Þ ¼ eðPgð1ÞÞX2n � 4k:

Note that by our above study the minimal period %t of %x is either 1 or 2. Let
h ¼ Hð %xðtÞÞ:
If h ¼ 1; then ð%t; %xÞAJðS; aÞ from (2.13), and

eð%t; %xÞÞ ¼ eð2; %xÞ ¼ eððPgð1ÞÞ2ÞX2n � 4k:

If ha1; viewing %x as a 2-periodic solution, let

xh ¼ h�1a %xðh
2
a�1tÞ; th ¼ 2h1�

2
a:

Then HðxhðtÞÞ ¼ 1 for all tA½0; 2�; the minimal period %th of xh is either th=2 or th;
and ð%th; xhÞAJðSÞ: Because Hð�Þ is a-homogenous, H 00ð�Þ is ða� 2Þ-homogenous,
we get

H 00ð %xhðtÞÞ ¼ h
2
a�1H 00ð %xðh

2
a�1tÞÞ:

Let gh be the fundamental solution of (1.6) with AðtÞ ¼ H 00ð %xhðtÞÞ for tAð0; thÞ
satisfying ghð0Þ ¼ I2n: Then we have

ghðtÞ ¼ gðh
2
a�1tÞ:
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Thus ghðthÞ ¼ gð2Þ: Then we have ð%t; %xhÞAJðSÞ and

eð%th; %xhÞ ¼ eð%th; %xhÞ ¼ eðghðthÞÞ ¼ eðgð2ÞÞX2n � 4k:

This completes the proof of Theorem 1. &

3. The proof of the computation (2.15)

In this section we will define iE
PðAÞ; which appeared in (2.11), and prove (2.15). In

order to do this we will give a slight generalization of the contents of Section I.4 in [4]
of Ekeland first.
For any symmetric and positive definite 2n � 2n real matrix AðtÞ continuous in

tA½0;þNÞ; let BðtÞ ¼ AðtÞ�1 and consider the following quadratic form:

qs;kðu; uÞ ¼ 1

2

Z s

0

½ðJu;Ps;kuÞ þ ðBðtÞJu; JuÞ� dt; 8uAL2
kð0; sÞ; ð3:1Þ

where L2
kð0; sÞ ¼ fu1}u2 j u1AL2ðð0; sÞ;R2n�2kÞ and u2AL2ðð0; sÞ;R2kÞ withR s

0 u2ðtÞ dt ¼ 0g and Ps;k : L2
kð0; sÞ-L2

kð0; sÞ is defined by

ðPs;kuÞðtÞ ¼ x1ðtÞ}x2ðtÞ; ð3:2Þ

x1ðtÞ ¼
Z t

0

ðu1ðtÞÞ dt�
1

2

Z s

0

u1ðtÞ dt; ð3:3Þ

x2ðtÞ ¼
Z t

0

u2ðtÞ dt�
1

s

Z s

0

dt

Z t

0

u2ðtÞ dt; ð3:4Þ

for any u ¼ u1}u2AL2
kð0; sÞ: Note that we have P1;k ¼ L�1

0 and L2
kð0; 1Þ ¼ L2

k:

Lemma 3. For any symmetric and positive definite 2n � 2n real matrix AðtÞ continuous

in tA½0;þNÞ; there is a qs;k-orthogonal decomposition

L2
kð0; sÞ ¼ Eþ

k ðAÞ"E0
kðAÞ"E�

k ðAÞ

such that qs;k is positive definite, null and negative definite on Eþ
k ðAÞ; E0

kðAÞ and

E�
k ðAÞ; respectively. Moreover, the dimensions of E0

kðAÞ and E�
k ðAÞ are finite.

Proof. Define %Bk : L2
k-L2

k by

ð %Bku; vÞ ¼
Z s

0

ðBðtÞJuðtÞ; JvðtÞÞ dt; 8u; vAL2
kð0; sÞ:
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From the Lax–Milgram theorem, %Bk is an isomorphism and L2
kð0; sÞ is a Hilbert

space under the inner product ð %Bku; vÞ: Because

ð %Bk %B
�1
k JPs;ku; vÞ ¼ ðJPs;ku; vÞ ¼ ðu; JPs;kvÞ ¼ ð %Bku; %B�1

k JPs;kvÞ; 8u; vAL2
kð0; sÞ;

the map %B�1
k JPs;k : L2

kð0; sÞ-L2
kð0; sÞ is self-adjoint. From the spectral theory of

compact self-adjoint operators on a Hilbert space, there exist a basis fejgjAN of

L2
kð0; sÞ; and a sequence lj-0 in R as j-þN such that

ð %Bkei; ejÞ ¼ dij;

%B�1
k JPs;kej ¼ ljej:

And hence, for any u ¼
P

N

j¼1 cjejAL2
kð0; sÞ; we have

qs;kðu; uÞ ¼ � 1

2
ðJPs;ku; uÞ þ 1

2
ð %Bku; uÞ

¼ 1

2

XN
j¼1

ð1� ljÞc2j :

Define

Eþ
k ðAÞ ¼

X
cjej j cj ¼ 0 if 1� ljp0

n o
;

E0
kðAÞ ¼

X
cjej j cj ¼ 0 if 1� lja0

n o
;

E�
k ðAÞ ¼

X
cjej j cj ¼ 0 if 1� ljX0

n o
;

Then the claim of the lemma follows because lj-0 as j-þN: &

Definition 4. For any symmetric positive definite continuous 2n � 2n real matrix
function AðtÞ in tA½0; s�; we define

nE
PðAÞ ¼ dim E0

kðAÞ; iE
PðAÞ ¼ dim E�

k ðAÞ:

Proposition 5. For any symmetric positive definite continuous 2n � 2n real matrix

function AðtÞ in tA½0; s�; there hold

nE
PðAÞ ¼ nP;1ðgAÞ; iP;1ðgAÞ ¼ kþ iE

PðAÞ;

where g ¼ gAðtÞ is the fundamental solution of (1.6) with gð0Þ ¼ I2n:
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Proof. The proof is carried out in 6 steps.
Step 1. The proof of the first equality in Proposition 5.

For any uAE0
kðAÞ; by definition and Lemma 3, we have

qs;kðu; vÞ ¼ 1

2

Z s

0

ðPs;ku þ BðtÞJu; JvÞ dt ¼ 0; 8vAL2
kð0; sÞ:

Thus there exists xuAkerðLÞ such that

Ps;ku þ BðtÞJu ¼ xu:

Denote by x ¼ Ps;ku � xu: We obtain u ¼ ’x and

’x ¼ JAðtÞx for tAð0; sÞ; xðsÞ ¼ Pxð0Þ:

Therefore xðtÞ ¼ gAðtÞc; where cAR2n satisfies

gAðsÞc ¼ PgAð0Þc ¼ Pc:

That is,

ðgAðsÞ � PÞc ¼ 0: ð3:5Þ

Hence we obtain

E0
kðAÞDfcAR2njðgAðsÞ � PÞc ¼ 0g ¼ kerðgAðsÞ � PÞ;

and from (2.1)

nE
PðAÞ ¼ dim E0

kðAÞ ¼ dim kerðgAðsÞ � PÞ ¼ nP;1ðgAÞ:

This yields the first equality claimed by Proposition 5.
In the next 5 steps we prove the second equality claimed in Proposition 5. By (iv)

of Lemma 2 and the first equality in Proposition 5, it suffices to prove

iE
PðAÞ ¼

X
0osos

nE
PðAsÞ; ð3:6Þ

where As ¼ Aj½0;s�:
Step 2. Proof for iE

PðAsÞ ¼ 0 with s40 sufficiently small.

In fact, by Definition (3.2)–(3.4) we have

jx1ðtÞjp 2

Z s

0

ju1ðtÞj dtp2s
1
2jju1jj;

jjx1jjp 2sjju1jj;

jjx2jjp ð1þ sÞjju2jj;
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where jj � jj is the usual norm in L2ðð0; tÞ;R2nÞ: Therefore we have

jjPs;kujjpð2þ sÞsjjujj; 8uAL2
kð0; sÞ:

Since AðtÞ is symmetric, positive definite, and continuous, we have

ðBðtÞx; xÞXbðx; xÞ; 8xAR2n; tA½0; s�;

where b40 is a constant. It follows that

qs;kðu; uÞ ¼
1

2

Z 1

0

½ð�JPs;ku; uÞ þ ðBðtÞJu; JuÞ� dt

X
1

2
ð�jjujj � jjPs;kujj þ bjjujj2Þ

X
1

2
ðb � ð2þ sÞsÞjjujj2:

Therefore qs;k is positive definite when somin 1; b
3


 �
:

Step 3. We claim that there exist only finitely many points sA½0; 1� with nE
PðAsÞa0:

In fact, if not, by (3.5) there exist sjA½0; 1� and xjAR
2n
\f0g with jxjj ¼ 1

such that

gAðsjÞxj ¼ Pxj; for j ¼ 1; 2;y: ð3:7Þ

Without loss of generality, we assume sj-s and xj-x as j-þN: Then we have

gAðsÞx ¼ Px; ð3:8Þ

ðgAðsjÞ � PÞðxj � xÞ ¼ ðgAðsÞ � gAðsjÞÞx: ð3:9Þ

Since gAðsjÞ is symplectic, we have gAðsjÞT
J ¼ JgAðsjÞ�1: By (3.7) we have

ðgAðsjÞðxj � xÞ; JPxjÞ ¼ ðxj � x; gAðsjÞT
JPxjÞ

¼ ðxj � x; JgAðsjÞ�1PxjÞ

¼ ðxj � x; JxjÞ

¼ ðPðxj � xÞ; JPxjÞ:

Thus ððgAðsjÞ � PÞðxj � xÞ; JPxjÞ ¼ 0; and by (3.9) we have

ððgAðsÞ � gAðsjÞÞx; JPxjÞ ¼ 0:
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Multiplying the left hand side of the above equality by ðs � sjÞ�1 and taking the limit
as j-þN; from (3.8) and ’gAðsÞ ¼ JAðsÞgAðsÞ we have

0 ¼ ð’gAðsÞx; JPxÞ ¼ ðJAðsÞPx; JPxÞ ¼ ðAðsÞPx;PxÞ:

This contradiction proves our claim.
Step 4. If s1os2; there hold

iE
PðAs1ÞpiE

PðAs2Þ; ð3:10Þ

iE
PðAs1Þ þ nE

PðAs1ÞpiE
PðAs2Þ: ð3:11Þ

In fact, we define a map r : L2
kð0; s1Þ-L2

kð0; s2Þ by

ðruÞðtÞ ¼
uðtÞ if 0ptps1;

0 if s1otps2:

�

Then for any uAL2
kð0; s1Þ we have

qs2;kðru; ruÞ ¼ qs1;kðu; uÞ:

And hence,

qs2;kðu; uÞo0; 8uArðE�
k ðAs1ÞÞ\f0g:

This yields

iE
PðAs2ÞXdimðrðE�

k ðAs1ÞÞÞ ¼ iE
PðAs1Þ;

i.e., (3.10) holds. In a similar way we obtain

iE
PðAs1Þ þ nE

PðAs1ÞpiE
PðAs2Þ þ nE

PðAs2Þ:

From Step 3, it follows that nE
PðAs2Þ ¼ 0 as s2-sþ1 ; and hence (3.11).

Step 5. iE
PðAsÞ is left continuous with respect to s:

In fact, from (3.1)–(3.4) we obtain

x1ðstÞ ¼ s

Z t

0

u1ðstÞ dt�
1

2

Z 1

0

u1ðstÞ dt
	 


;

x2ðstÞ ¼ s

Z t

0

u2ðstÞ dt�
Z 1

0

dt

Z t

0

u2ðstÞ dt
	 


;

and qs;kðu; uÞ ¼ sq1s;kðpu; puÞ; where ðpuÞðtÞ ¼ uðstÞ for tA½0; 1� and

q1s;kðu; uÞ ¼ 1

2

Z 1

0

½sðJu;P1;kuÞ þ ðBðstÞJu; JuÞ� dt; 8uAL2
kð0; 1Þ: ð3:12Þ
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For any fixed s0; let E1 :¼ pðE�
k ðAs0ÞÞ; then iE

PðAs0Þ ¼ dim E1; and

q1s0;kðu; uÞo0; 8uAE1\f0g:

From the continuity of q1s;k with respect to s in (3.12), we also have

q1s;kðu; uÞo0; 8uAE1\f0g;

as s-s0: Then we get

iE
PðAsÞXiE

PðAs0Þ

as s-s0: Together with (3.10), the claim is proved.

Step 6. iE
PðAsÞ is continuous at the point sAð0; 1Þ with nE

PðAsÞ ¼ 0 and for any

sA½0; 1Þ; there holds

lim
e-0þ

iPðAsþeÞ ¼ iE
PðAsÞ þ nE

PðAsÞ: ð3:13Þ

In fact, denote by

ðB1
kðsÞu; uÞ ¼

Z 1

0

ðBðstÞJu; JuÞ dt; 8uAL2
kð0; 1Þ:

Then L2
kð0; 1Þ is a Hilbert space under the inner product ðB1

kðsÞu; uÞ: B1
kðsÞ

�1
JP1;k is a

self-adjoint compact operator, so there exist a basis fes
j j jANg of L2

kð0; 1Þ and a

sequence ls
j in R with ls

j-0; such that

ðB1
kðsÞes

j ; e
s
j Þ ¼ dij;

ðJP1;kes
j ; uÞ ¼ ls

j ðB1
kðsÞes

j ; uÞ; 8uAL2
kð0; 1Þ:

For any u ¼
P

N

j¼1 xje
s
j ; we have

q1s;kðu; uÞ ¼ 1

2

XN
j¼1

ð1� sls
j Þx

2
j :

Fix a s40 and denote by K ¼ lime-0þ iE
PðAsþeÞ: There is a s04s such that iE

PðAsÞ ¼
K for sAðs; s0Þ: So for any sAðs; s0Þ we have

1� sls
jo0 for 1pjpK :

Fix jpK : Then ls
j ¼ ðJP1;kes

j ; es
j Þ is bounded and ls

j4
1
s
X

1
s0: There exist fe

sðlÞ
j g

and flsðlÞ
j g such that e

sðlÞ
j ,ej in L2

kð0; 1Þ and lsðlÞ
j -lj; sðlÞ-s in R as l-N:
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So we have

ðB1
kðsÞej; ejÞ ¼ dij; i; j ¼ 1; 2;y;K ;

ðJP1;kej; uÞ ¼ ljðB1
kðsÞej; uÞ; 8uAL2

kð0; 1Þ; j ¼ 1; 2;y;K ;

1� sljp0; for j ¼ 1; 2;y;K :

Therefore, for any u ¼
PK

j¼1xjej; we have

q1s;kðu; uÞ ¼ 1

2

XK

j¼1
ð1� sljÞx2j p0:

Hence,

KpiE
PðAsÞ þ nE

PðAsÞ:

Combining (3.11) we obtain (3.13). If nE
PðAsÞ ¼ 0; then lime-0þ iPðAsþeÞ ¼ iE

PðAsÞ
from (3.13), and iE

PðAtÞ is continuous at t ¼ s: &

Proof of (2.15). By (2.10) we know that the Morse index of ðc00ð %uÞv; vÞ defined by

(2.9) on L2
k is iE

PðA %xÞ; which yields (2.11). Since g ¼ gA and AðtÞ ¼ H 00ð %xðtÞÞ for

tA½0; 1�; we obtain (2.15) from the second equality of Proposition 5. &

At the end of this section we give an example for readers on computing the index

iE
PðcI2nÞ for c40: Let E½a� ¼ maxfkAZ j koag:

Example 6. For any c40; we have

iPðcI2nj½0;s�Þ ¼
2k E

cs

2p

h i
if cp3

2
p;

2k E
cs

2p

h i
þ 2ðn � kÞE

cs � 3
2
p

2p

	 

if c43

2
p:

8>><
>>:

ð3:14Þ

In fact, denoting by gðtÞ the fundamental solution of (1.6) with AðtÞ ¼ cI2n; by

definition we have gðtÞ ¼ ectJ and that kerðgðtÞ � PÞaf0g if and only if t ¼ tk ¼ 2kp
c

with dim kerðgðtkÞ � PÞÞ ¼ 2k; or t ¼ sk ¼ ð2kpþ 3
2pÞ=c with dim kerðgðskÞ � PÞÞ ¼

2ðn � kÞ: Then (3.14) follows from (3.6) and the first equality of Proposition 5.
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