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The human glycoprotein afamin was discovered as the fourth member of the albumin gene family. Despite in-
tense research over the last 20 years, our knowledge of afamin's physiological or pathophysiological functions
is still very limited. Circulating afamin is primarily of hepatic origin and abundant concentrations are found in
plasma, cerebrospinal, ovarian follicular and seminal fluids. In vitro binding studies revealed specific binding
properties for vitamin E. A previously performed analytical characterization and clinical evaluation study of an
enzyme-linked immunosorbent assay for quantitative measurement of afamin in human plasma demonstrated
that the afamin assaymeets the quality specifications for laboratorymedicine. Comparative proteomics has iden-
tified afamin as a potential biomarker for ovarian cancer and these findings were confirmed by quantitative im-
munoassay of afamin and validated in independent cohorts of patients with ovarian cancer. Afamin has also been
investigated in other types of carcinoma. Most of these studies await further evaluation with validated quantita-
tive afamin assays and require validation in larger patient cohorts. Transgenic mice overexpressing the human
afamin gene revealed increased body weight and increased blood concentrations of lipids and glucose. These
transgenic mouse data were in line with three large human population-based studies showing that afamin is
strongly associated with the prevalence and development of the metabolic syndrome. This review summarizes
and discusses the molecular, biochemical and analytical characterization of afamin as well as possible clinical
applications of afamin measurement.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Human afamin is a glycoprotein that is present in biological fluids
such as plasma, and cerebrospinal, ovarian follicular and seminal fluids.
Afaminwas discovered in 1994 by Lichtenstein et al. as the fourthmem-
ber of the albumin gene family [1]. Despite intensive research in the last
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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20 years, our knowledge of afamin's physiological or pathophysiological
functions is still very limited.Most publishedwork has so far focused on
the molecular and biochemical characterization of afamin and on dis-
covery studies using proteomics and epidemiological approaches to
search for (patho)-physiological functions. Suitable cell lines expressing
human afamin have not yet been reported and the precise molecular
structure is also unknown, which explains our limited knowledge of
afamin functions, particularly at the mechanistic molecular level.
2. Biology of afamin

2.1. First discoveries and characterizations

Human afamin (AFM) was discovered by sequence analysis and
cloning in 1994 as the fourth member of the human albumin gene
family, which includes albumin (ALB),α-fetoprotein (AFP) and vitamin
D-binding protein (DBP) [1]. Afaminwas previously described indepen-
dently by three other research groups asα-albumin in the rat [2], as α-
1T-glycoprotein in humans [3], and was first reported as a tryptophan-
poor α1-glycoprotein 50 years ago in Clinica Chimica Acta [4]. Thus, the
year 2014 marked not only the 20th anniversary of its first molecular
characterization, but also the 50th anniversary of its initial protein-
chemical discovery and description in 1964.

All four genes of the albumin gene family map to the chromosomal
region 4q11–q22 and are tandemly linked in the sub-centromeric re-
gion 5′ALB–5′AFP–5′AFM–5′DBP3′-centromere, and hence are tran-
scribed in the same, centromere-bound, direction [1,5]. The linear
chromosomal arrangement of the four genes and the structural differ-
ences between them are congruent with the following evolutionary di-
vergence of the gene family: starting with the first duplication of an
ancestral progenitor gene, a single evolutionary line led to the contem-
porary DBP, leaving ALB/AFP/AFM on the other line of descent. The sec-
ond duplication occurred in this ALB lineage, giving rise to ALB and the
AFP/AFMprogenitor, while the third one gave rise to the AFP–AFMpair.
Recently, a new, fifth member of the albumin gene family was discov-
ered, located adjacent to the 3′ end of the AFM gene but structurally re-
lated to AFP, which is why it was named α-fetoprotein-related gene
(ARG) [6]. The ARG gene is expressed perinatally at very low levels in
the liver of mice, rats, dogs and horses, but is considered an inactive
pseudogene in humans and other primates.

The nucleotide sequence of the human afamin gene spanning
24.454 bp was first reported by Nishio et al. revealing a gene structure
of 15 exons separated by 14 introns [7]. Based on structural similarity,
α-albumin appears to be most closely related to α-fetoprotein. The
complete structure of this family of four tandemly linked genes provides
a well-characterized 200 kb locus in the 4q sub-centromeric region of
the human genome.

Human afamin is a glycoprotein with an apparent molecular weight
of 87 kDa and 55% amino acid sequence similarity (34% identity) to al-
bumin [1] but, in contrast to albumin, is highly and in a complexmanner
glycosylated [3,8]. The afamin sequence completely lacks tryptophan
[1], in line with its initial description of a tryptophan-poor glycoprotein
[4]. The polypeptide chain is composed of a 21-amino acid leader pep-
tide, followed by 578 amino acids of the mature protein. Afamin has
five predicted N-glycosylation sites, and treatmentwithN-glycanase re-
duces the apparentmolecularmass of afamin to 65 kDa [1,3]. Like other
members of the albumin multigene family, afamin consists of three
structural domains containing 17 Cys–Cys disulfide bridges [1].

At the same time as human afamin was discovered, the rat ortholog
of afaminwas described by Bélanger et al. [2]. In the rat, liver expression
of afamin starts at birth and continues in adult animals, in contrast toα-
fetoprotein which is heavily expressed in yolk sac, fetal and newborn
liver, but not in the adult liver. Therefore, in rats afamin can be consid-
ered the adult form of α-fetoprotein. In extrahepatic rat tissues such
as kidney and brain, afamin is not expressed. Rat afamin reveals six
predicted N-glycosylation sites [2]. Allard et al. estimated the rat
serum concentration of afamin at approximately 20 mg/L [9].

2.2. Gene regulation of afamin

The tight linkage between the members of the albumin gene family
and their liver-specific expression has prompted the suggestion that
these genes share common regulatory elements. The α-fetoprotein en-
hancer region that activatesα-fetoprotein and albumin in fetal liver de-
velopment does not, however, affect the expression of all gene family
members, including afamin, later in hepatic development [10]. Two he-
patocyte nuclear factor 1 (HNF1)-binding sites binding HNF1α and
HNF1β have been identified in the afamin promoter. Expression studies
in mice suggest that the different responsiveness of albumin gene fam-
ily members is crucial for their liver expression [11]. More recently, a
microarray study showed increased expression of transcription factor
islet-1 levels (which is associated with increased β-cell function) to in-
crease afamin expression 35-fold [12].

In summary, our understanding of afamin's gene regulation is very
limited and needs to be further explored using suitable cell lines and/
or animal models.

2.3. Biochemical and functional characterization

Human plasma afamin has been shown to be a specific binding
protein for vitamin E [13]. Radio ligand-binding assay followed by
Scatchard and Hill analyses demonstrated in vitro afamin's specific
binding affinity for both α-tocopherol and γ-tocopherol, two of the
most important forms of vitamin E. Maximum 18 binding sites for vita-
min E permolecule afaminwas estimated. The bindingdissociation con-
stantwas determined to be 18.0± 7.1 μM, indicating that afaminmight
play a role as vitamin E carrier in plasma and other body fluids under
physiological conditions. Furthermore, a Hill coefficient of 1.8 was
obtained indicating a slight positive cooperativity that can best be ex-
plained by the fact that incoming, hydrophobicα-tocopherol molecules
increase the hydrophobicity of the protein–ligand complex and thus
make this complex more accessible to forthcoming ligands. Due to the
large binding capacity of afamin for vitamin E, it might take over the
role of vitamin E transport in body fluids under conditions in which
the lipoprotein system is not sufficient for vitamin E transport. Specific
binding of vitamin E was also confirmed by means of surface plasmon
resonance technologywith afamin immobilized on carboxymethyl dex-
tran surface chips [13].

In view of the described experimental evidence, homologymodeling
and docking calculations were performed on the predicted tertiary
structure and demonstrated coincidence between calculated and
in vitro results (Fig. 1) [8,13].

Several studies reported quantitative and qualitative analyses of
afamin's substantial glycan decorations. First reports date back to the
initial discovery of afamin by Haupt and Heide in 1964, who reported
a carbohydrate content of 13% [4]. This value is in remarkable agree-
ment withmore recent reports by Jerkovic et al., who found 15% carbo-
hydrates by quantitative high performance liquid chromatography [8],
but stands in contrast to data from Lichenstein et al., who estimated
24% carbohydrates based on less accurate comparisons of electropho-
retic separation between fully glycosylated and enzymatically deglyco-
sylated afamin [1].

Two reports on compositional glycan analysis of afamin demonstrat-
ed that N90% of glycans are sialylated biantennary complex structures
bound to five N-glycosylation sites [3,8]. One of these amino acid resi-
dues, Asn362, possesses a rare consensus sequence for N-glycan of
Asn-X-Cys. Afamin also contains five potential O-linked glycosylation
sites; there is, however, no evidence of O-glycosylation [8]. Immunoblot
analyses of normal human plasma using afamin-specific antibodies
after 2-dimensional gel electrophoresis revealed substantial molecular
heterogeneity of afamin believed to be due to different glycosylation



Fig. 1. Ribbon presentation of homologymodel of human afamin. The figurewas generat-
ed with Accelrys Discovery Studio Visualizer 3.5 from coordinates of a homology model
based on the albumin crystal structure and energy-minimized glycans as published by
Jerkovic et al. [8]. The ribbon presentation of the peptide chain is colored from N-terminal
(blue) to C-terminal (red) while the putative glycans are shown as ball-and-stick models.
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patterns [8]. So far, there is no experimental evidence for any functional
role of the substantial glycan content of afamin.

To investigate a possible association between afamin and the plasma
lipoprotein system (where most plasma vitamin E is transported [14]),
plasma distribution of afamin was investigated by size-exclusion chro-
matography. Afamin eluted between apolipoprotein AI-containing
fractions (representing high-density lipoproteins (HDL)) and lipid-free
protein fractions [8]. Incomplete separation and some overlap with
HDL and lipid-free fractions suggest a partial association between afamin
and HDL (sub)fractions. To quantify this potentially lipoprotein-
associated fraction of afamin, the afamin concentration in human plasma
sampleswasmeasured prior to and post lipoprotein precipitation. In line
with the observation made with size-exclusion chromatography, 13% of
afamin was found to be lipoprotein-associated. Using this method more
than 97% of vitamin E was seen to be lipoprotein-associated, thus
confirming that vitamin E is almost completely transported via the lipo-
protein system in plasma [14]. These data also agree with results from
our Surface-Plasmon-Resonance experiments that showed specific vita-
min E-binding of afamin, but no binding with human serum albumin
[13], in contrast to a recent report demonstrating in vitro vitamin E-
binding by albumin [15].

The observed almost exclusive transport of vitaminE via the lipopro-
tein system is also in linewith association studies of afamin and vitamin
E concentrations in various body fluids. Afamin significantly correlates
with vitamin E in ovarian follicular and cerebrospinal fluids, but not in
plasma [8]. Afamin's association with vitamin E in ovarian follicular
fluid was directly demonstrated by gel filtration chromatography and
immunoprecipitation, which complements the in vitro findings for pu-
rified native and recombinant afamin and suggests vitamin E carrier
functions for afamin in body fluids with lipoprotein species not suitable
for vitamin E transport.
3. Afamin expression and occurrence in human body fluids

In addition to the abundant occurrence of afamin in human plasma,
comparatively high concentrations of afamin have also been described
in other human body fluids such as cerebrospinal, ovarian follicular,
and seminal fluids [3,8,16–19]. The brain, kidney, testes and ovaries
have been found as additional afamin-expressing tissues (www.
proteinatlas.org). It is, however, completely unclear whether afamin
expressed in these tissues contributes to circulating plasma afamin
and what physiological roles afamin plays in these organs.

Kratzer et al. discovered afamin expression in cerebrovascular endo-
thelial cells and demonstrated that afamin facilitates vitamin E trans-
port/transfer across the blood–brain barrier in a suitable cell culture
model [20], suggesting a role of afamin in the regulation of vitamin E up-
take and transport at the blood–brain barrier.

Furthermore, in an in vitro chicken neuronal culture model afamin
was shown to possess neuroprotective properties when these cells
were challenged by apoptotic treatment [21]. Future studies need to in-
vestigatewhether these findings in amodel cell systemhave any poten-
tial therapeutic significance in animal models or humans.

Finally, afamin expressionwas previously shown for the first time in
differentiated osteoclasts derived from mouse bone marrow with
potential impact on bone resorption via G-coupled receptor and Ca2+/
calmodulin-dependent protein kinase signaling pathways [22,23]. The
authors discussed afamin as a potential chemokine involved in osteo-
blastmetabolism and bone formation. Currently there is no information
regarding similar roles of afamin in human bone metabolism.

4. Analytical characterization and clinical evaluation of a human
afamin enzyme-linked immunosorbent assay (ELISA)

Wepreviously performed a thorough analytical characterization and
clinical evaluation of a custom-made ELISA (MicroCoat Biotechnologie,
Bernried, Germany) for quantitative measurement of afamin in human
plasma [16]. This assay is of the double-antibody sandwich type and
consists of an affinity-purified polyclonal rabbit anti-human afamin an-
tibody for analyte capture and a peroxidase-conjugated mouse mono-
clonal antibody for detection. A 7 mg/L detection limit was reported,
using a diluted sample from a healthy individual. This evaluation
study revealed a within-run and total CV b 10% for the afamin assay.
Furthermore, the afamin assay was linear across the tested measure-
ment range (18–77mg/L) [16]. Studies on the in vitro stability of afamin
indicated that afamin is stable for 24 h at room temperature, for 48 h at
4 °C, and for at least one year at −20 °C and −80 °C [16]. The afamin
assay is thuswell suited for use in routine laboratory setting and the an-
alyte stability of afamin allows for convenient specimen shipment and
storage.

The reference value study revealed that afamin concentrations do
not differ between males and females and are not associated with age
or renal function in healthy blood donors (Fig. 2). Thus, the age- and
sex-independent reference interval was 45–99 mg/L (median 68 mg/L,
range 33–113 mg/L) using a non-parametric percentile method (95%,
double-sided) [16].

We also studied the components of biological variation of afamin in
healthy individuals at one-week intervals for six weeks and found a ref-
erence change value of 24% [16]. The reference change value takes into
account the within-subject biological variation as well as the analytical
variation and indicates the difference required for two serial measure-
ments of afamin to be significantly different at p b 0.05.

No significant differences in afamin concentrations between serum
and plasma samples or between fasting and non-fasting state were
seen, indicating that serum and plasma samples are both suitable for
afamin measurement and that afamin concentrations can be correctly
determined independently of a patient's fasting state [16].

Evaluation of the diurnal profile of afamin and the potential influ-
ence of menstrual cycle phase on afamin in healthy females revealed
neither a circadian variation nor a relevant influence of menstrual
phase on afamin concentrations [16]. Together with the data retrieved
from the biological variation study, these findings underline the low
variation of afamin over time, demonstrating good suitability of afamin
for serial measurements.

As part of the clinical evaluation of the afamin assay plasma concen-
trations of afamin were investigated in patients with various diseases
including patients with heart failure, pneumonia, chronic obstructive

http://www.proteinatlas.org
http://www.proteinatlas.org


Fig. 2. Box-and-whisker plots showing afamin plasma concentrations in 528healthyblood
donors across different age groups. Median afamin plasma concentrations according to
age group: 18–24 years (n = 94), 71 mg/L (range 33–106 mg/L); 25–34 years (n =
131), 66 mg/L (range 40–98 mg/L); 35–44 years (n = 128), 66 mg/L (range 43–
109 mg/L); 45–54 years (n = 127), 70 mg/L (range 33–113 mg/L); and 55–64 years
(n= 48), 68mg/L (range 38–102mg/L). No significant differences in afamin plasma con-
centrations were observed across these age groups (Kruskal–Wallis test, p = 0.104).
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pulmonary disease, renal disease and sepsis and comparedwith those of
healthy controls [16]. In this explorative analysis afamin plasma concen-
trationsweremodestly decreased in patientswith heart failure. Patients
with pneumonia or sepsis exhibitedmarkedly decreased afamin plasma
concentrations. In contrast, patients with chronic renal disease or
chronic obstructive pulmonary disease showed no difference in afamin
plasma concentrations as compared to healthy individuals. In this con-
text it is noteworthy that in a convenient sample of hospitalized pa-
tients with a variety of diseases afamin showed a rather strong inverse
association with the inflammatory biomarkers C-reactive protein
(CRP) and interleukin-6 [16]. These results revealed novel insights
into afamin as a negative acute phase protein and should encourage fur-
ther studies.

5. Clinical applications of afamin measurement

Several studies in search of (patho)-physiological functions of
afamin have been conducted, mostly using proteomics and/or epidemi-
ologic approaches with a population-based or case–control study de-
sign. Many of these studies were of a discovery nature only with small
sample sizes and were not evaluated in larger cohorts.

Comparative proteomics has previously identified afamin as a po-
tential biomarker for ovarian cancer [18]. These findings were con-
firmed with immunoblotting and a quantitative immunoassay for
afamin. Patients with ovarian cancer displayed significantly decreased
plasma concentrations of afamin by comparison to healthy controls.
These results were later validated in an independent larger study of pa-
tients with ovarian cancer [17] and, very recently, extended by showing
significant associations between afamin plasma concentrations and
clinical outcomes (response to therapy and survival rates) [24]. In con-
trast, afamin concentrations were not found to be decreased in benign
gynecological conditions including endometriosis [17,25].

Circulating afamin concentrations have also been investigated in
various other types of carcinoma including gastric, bladder, colorectal,
cervix, breast, and thyroid cancer. Most of these studies, however,
await evaluation by quantitative analyses using appropriate methods
in sufficiently large study groups [26–33]. Of these many studies, two
may highlight the importance of proper validation studies after a poten-
tial tumor marker candidate has been discovered [29,33]. Penno et al.
described in a mouse model of gastric cancer eight proteins (including
afamin) as being differently expressed compared to healthy wild-type
mice. Very recently, the same group aimed to validate their data from
the mouse model in a small group of patients with diagnosed gastric
cancer (n= 37) in comparisonwith an even smaller number of healthy
control subjects (n = 7), using a commercially available afamin ELISA
from Uscn Life Sciences (Wuhan, China). The authors reported lower
afamin concentrations in gastric cancer patients than in healthy controls
[29]. Interestingly, they found median afamin plasma concentrations in
their healthy controls to be approximately 3-fold higher than the refer-
ence values previously reported in 528 healthy blood donors [16]. The
reasons for the lack of agreement between the two ELISA methods are
most probably due to different standards and/or different antibodies,
and also different reagents and buffers. Therefore, it is important to be
aware that the results reported in published studies obtained with
different methods are not directly comparable. Understanding differ-
ences between these assays is critical, as they obviously vary quite
substantially.

In view of the reported nervous tissue expression and putative neu-
roprotective properties of afamin [20,21], several recent (mostly discov-
ery) studies revealed possible marker properties of afamin for various
neurological pathologies including Alzheimer's disease and multiple
sclerosis [34–36]. It will be very interesting to see whether these find-
ings can be confirmed in large human epidemiological studies.

During uncomplicated pregnancy afamin increases linearly almost
two-fold and drops to pre-pregnant values immediately after delivery
[37]. It is therefore tempting to speculate that afamin rises during preg-
nancy due to changing hormonal status and subsequent hormonal reg-
ulation of the afamin gene expression in human liver. A comparable
mechanism has been reported for hormonal regulation of hepatic syn-
thesis of lipids and lipoproteins leading to physiological hyperlipidemia
during gestation [38].

In a pilot study conducted in patients diagnosed with pregnancy
complications, blood drawn at the first trimester screening from
womenwith preeclampsia revealed significantly higher median afamin
concentrations than did blood from women with uncomplicated
pregnancy [37]. These findings suggest a potential role of afamin as a
predictive marker for pregnancy-related disorders. However, further
prospectively planned and adequately powered studies are needed to
confirm the potential role of afamin as a marker for pregnancy
complications.

Very recently, the first large, population-based epidemiological
study in search of (patho)-physiological functions of afamin was per-
formed [19]. The authors focused their analyses on selected phenotypes
associated with afamin after having previously investigated transgenic
mice overexpressing the human afamin gene revealing increased body
weight and serum concentrations of lipids and glucose. To validate
these data from a pilot animal study in a large human epidemiological
study, a random-effects meta-analysis using age- and sex-adjusted
baseline and follow-up investigation was applied in three large
population-based cohorts from Northern Italy, Austria and Southern
Germany. Mean afamin concentrations were 63 ± 15, 66 ± 14, and
71±17mg/L in the Bruneck, SAPHIR and KORA F4 studies, respectively.
Per 10 mg/L increment in afamin measured at baseline, the number of
metabolic syndrome components increased by 19% (incidence rate
ratio (IRR) = 1.19 (95% CI 1.16–1.21), p b 0.0001). With the same
afamin increment as used at baseline an 8% gain in metabolic syndrome
components between baseline and follow-upwas observed (IRR=1.08
(95% CI 1.06–1.10), p b 0.0001). Afamin concentrations at baselinewere
highly significantly related to all individual metabolic syndrome com-
ponents at baseline and follow-up.

In contrast to a previous small study in hospitalized patients with
various diseases where a rather strong inverse association between
afamin and CRP was reported (rs −0.463, p b 0.001) [16], a weak but
significant positive association between afamin and CRP was found in
the three large population-based studies (rs +0.108, p b 0.01 in
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Bruneck, rs +0.222, p b 0.001 in SAPHIR, and rs +0.213, p b 0.001 in
KORA F4) [19]. A possible explanation for this discrepancy might be a
different grade of inflammation present in acutely diseased patients
(e.g., chronic obstructive pulmonary disease exacerbation and pneumo-
nia) needing hospitalization versus low-grade chronic inflammation in
population-based cohorts. This is, however, mainly speculative and fur-
ther studies are necessary to clarify this issue.

Taken together, this study in transgenic mice and more than 5000
participants in epidemiological studies showed that afamin is strongly
associated with the prevalence and development of metabolic syn-
drome and all its components. In line with these findings, elevated
afamin concentrations were recently demonstrated in patients with
polycystic ovary syndrome, which is associated with insulin resistance,
thus confirming afamin's role in a comparablemetabolic disorder also in
patients with polycystic ovary syndrome [39,40].

Further large epidemiologic and functional studies must be per-
formed in order to shed more light on the role of afamin in metabolic
syndrome-related pathologies such as diabetes, obesity and subsequent
clinical endpoints of cardiovascular diseases (Fig. 3).

6. Conclusions and future perspectives

Afamin is a human plasma vitamin E-binding glycoprotein primarily
expressed in the liver and secreted into the bloodstream. Our current
knowledge of afamin's possible physiological or pathophysiological
functions is still very limited and is summarized in Fig. 3.

Previously, a comprehensive analytical characterization and clinical
evaluation of an enzyme-linked immunosorbent assay for quantitative
measurement of afamin in human plasmawere performed and demon-
strated that this afamin assay meets the quality specifications for
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play a regulatory role in bone metabolism and signaling pathways. Finally, afamin exerts
ier and is expressed in nervous tissue. A role of afamin as marker for neurological disease
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reproducibility. To our knowledge, there is currently one other afamin
ELISA assay from Uscn Life Science Inc., Wuhan China commercially
available. However, there is no published data on an analytical evalua-
tion of this afamin ELISA assay.

Future research efforts regarding this pleiotropic glycoprotein will
range from extended epidemiological studies including genetic associa-
tion studies, other phenotypes related to metabolic syndrome and clin-
ical endpoints to functional studies using appropriate liver cell culture
and genetically modified animal models. Finally, structure–function
studies of purified human afamin will unravel further physiological li-
gands and binding partners, which will eventually lead us to discover
hitherto unknown (patho)-physiological functions of afamin.
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