
INFORMATION AND CONTROL 71, 87-94 (1986)

An Exponential Lower Bound for Real-Time
Branching Programs

STANISLAV 7-AK

Institute for Computation Techniques, Technical University,
Horsk6 3, 128 O0 Praha 2, Czechoslovakia

Received September 1985; accepted March 3, 1986

Branching programs are a general model of sequential computation. One of their
computational features is their possibility to question (repeatedly) the information
from each input bit. Real-time branching programs make at most n questions when
computing on an input of length n. The restriction "real-time" allows to find a sim-
ple language which requires the lower bound 2 ,/~/8 on memory (= the state
space). © 1986 Academic Press, Inc.

INTRODUCTION

By a branching program we mean an oriented acyclic finite graph with
the following properties:

(a) There is exactly one source.

(b) Every node has outdegree at most 2.

(c) Every node with outdegree 2 is labelled by a number i, 1 <~i<~n,
one of the out-edges is labelled by 0 and the other one by 1.

(d) Every sink is labelled by 0 or 1.

Such a branching program P computes a Boolean function f p ,
fp: {0, 1}n~ {0, 1}, as follows: Given an input a = a I " "an ~ {0, 1}".

The computation starts at the source. If the computation has reached a
node v and only one edge leaves v, then the computation proceeds via this
edge. If 2 edges leave v and v is labelled by i, then the computation
proceeds via the edge whose label equals to al. Once the computation
reaches a sink, the computation ends and fe(a) is defined to be the label of
that sink. Branching programs are known for a long time. Independently
they were introduced by the present author in Pudlfik and Zfik (1982) and
Zfik (1983); as a generalization of sublinear space bounded computations
on Turing machines, with the aim to prove lower space bounds on Tm's.
Let us briefly describe this idea.

87
0019-9958/86 $3.00

Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

88 STANISLAV ~AK

Assume, we have a Turing machine with a unique input tape. The input
head is two-way and read-only. Further the machine may have worktapes,
oracle tapes, pushdowns, stacks and so on. The corresponding branching
program for input words of length n is constructed as follows. By a con-
figuration we shall mean the total state of the machine except of the con-
tent of the input tape. The initial configuration means the state when the
input head is at the leftmost cell of the input tape, the finite control is in
the initial state and the work-storages are empty. The configurations which
are reachable from the initial configuration each during a computation on
a word of length n will be the nodes of the constructed branching program.
Edges are given by the transition function of the machine. Out-degree is at
most 2, since in a configuration the next action depends on the content - 0
or 1 - of the cell scanned by the input head. The initial configuration is the
source. Each branching node is labelled by the position of the input head.
Moreover we suppose that the machine is space bounded--therefore the
resulting graph is finite--and that it has a time counter--therefore the
graph is acyclic. The sinks are labelled according to the state of the finite
control--if the state is rejecting then the sink is labelled by 0, and by 1
otherwise.

Now, it is clear that each S(n)-space bounded Turing machine with Q
states, one one-headed worktape with m work symbols, can be simulated
by a sequence of branching programs {Pn} such that P~ is responsible
for computation on words of length n and Pn has at most
C(n) = n" Q " m s(")" S(n) nodes. For S(n) ~ log n, C(n) <~ 2 c s("). From this
follows: the language which cannot be computed on branching programs
within a bound C(n)>~ n, cannot be computed on Tm's within the space
bound log C(n). In other words, the lower bound C(n) on branching
programs implies the lower space bound log C(n) on Tm's. The present
author thinks that this fact is useful for proving space lower bounds for
Tm' s.

On the other hand, Pudlfik (1982) proved the simulation in the other
direction. Any sequence {Pn} of branching programs each with at most
C(n)>~n nodes can be simulated on a log C(n) space bounded Turing
machine with an oracle where the oracle queries are binary words whose
lengths depend on the lengths of inputs in question and are equal at most
log C(n).

THEOREM. Branching programs of complexity C(n), C(n)>~n, and
log C(n)--space and oracle--bounded Turing machines are equivalent,

R. Aleliunas et al. (1979) use sequences of finite automata which are a
computing device similar to our branching programs. They proved that the
reachability problem for undirected graphs is decidable within the

REAL-TIME BRANCHING PROGRAMS 89

polynomial complexity (= the number of states). Using the above theorem
we may reformulate: the problem is decidable on log--space and
oracle--bounded Turing machines (it is not known whether on log space
bounded). This allows Pudlfik (1982) to prove that the complexity on
branching programs and on contact schemes are polynomially related.

The present author shows in Pudl~k and Zhk (1982) and Z~k (1983)
that the computation on any branching program has also geometrical
aspect. The set of inputs {0, 1 }n is understood as the set of vertices of the n-
dimensional cube. Each node of a branching program is represented by the
set of inputs the computations on them reach it. Therefore each node is
represented by a subset of the cube. Further, we see that the computation
on the branching program can be understood as an iterative application of
two operations

(a) Cutting of a subset of vertices according to a hyperplane perpen-
dicular to an axis,

(b) set-union of the generated subsets.

(One application of the operation (a) corresponds to one branching node.)
The aim of such a computation is to separate two sets of vertices--one are
the vertices to be accepted and the other the vertices to be rejected.

Pudl~k (1982) proved that the complexity of computation on the cube
with operations (a), (b), and on the cube with operations a', b, where a'
allows not only perpendicular but arbitrary hyperplanes, are polynomially
related.

Now, let us turn our attention to lower bounds.
The main goal is to prove a superpolynomial bound on a language

which can be accepted within nondeterministic log-space or within
polynomial time (i.e., to solve the problems LOG = ?NLOG, LOG = ?P).
In general case the largest known bound is nZ/log 2 n-due to Netchiporuk
(1966)--and superl inear~ue to Pudl~k (1984).

Other authors attempt to prove lower bounds for restricted models of
branching programs. Borodin et al. (1983) introduced width-two branching
programs and proved for them an O(n2/log n) bound. Yao (1983) announ-
ced an exponential lower bound for width-two branching programs com-
puting majority function.

The present author Z~ik (1983, 1984) introduced another restricted type
which is now called one-time-only branching programs due to Wegener
(1984). (On such a branching program for each i, l<~i<~n, any com-
putation goes through a branching node labelled by i at most one-time.)
The present author proved an exponential lower bound for one-time-only
branching program computing a simple language of half-cliques which can
be computed within polynomial time. Wegener (1984) proved a slightly

90 STANISLAV ~.~K

weaker bound for the NP-complete language of graphs containing a clique.
Moreover Wegener (in press) found a language which is exponentially hard
on one-time-only branching programs and only polynomially hard on
width-two branching programs--it is a counterpart of the result of Yao
mentioned above (the majority function is only polynomially hard on one-
time-only branching programs).

A motivation for one-time-only branching programs is as follows. In any
general branching program, if a computation goes through a branching
node the information about a bit is remembered. On the other hand, the
joining of computations can be viewed as (in sense) forgetting of an infor-
mation. It seems that there are two kinds of information--the atomic
one--it is the knowledge about the content of bits of the input, and the
general one--it is the knowledge of the kind for example "that part of the
graph forms a tree." Then (maybe) the computation on an input is charac-
terized by a continuous growth of the general information and by the
remembering and forgetting of the atomic information. In this context, one-
time-only branching programs represent the idea that during the growth of
the global information each bit of the input is investigated at most one-
time. The exponential bound shows that the naive hope that one-time-only
branching programs are optimal is false since there is a simple log-space
Turing machine which computes the language of half-cliques investitating
each input cell at most two-times. So, according to the above theorem, this
language is of only polynomial complexity on two-times-only branching
programs. (Two-time-only are better.) Wegener (1984) constructed a two-
times-only branching programs of quadratic complexity for half-cliques.
There are many questions about hierarchies according the number of
allowed investigations.

Another motivation (due to Wegener (1986)) is to consider k-times-only
branching programs as a model of time bounded computations. This
motivation is followed by Ft~t6nik and Hromkovi~ (in press). They
introduced real-time bounded branching programs (during a computation
on an input of length n only n investigations of bits are allowed) and
proved quadratic lower bound. In this paper we prove an exponential
lower bound. The witness language is only slightly more complicated then
for the case of one-time-only branching programs. The method is similar to
those from Z&k (1984), Wegener (1984), and Ftfi~nik and Hromkovi~ (in
press).

2. REAL-TIME BRANCHING PROGRAMS AND EXACT LANGUAGES

A branching program is called "real-time" if each computation on any
input (of length n) goes through at most n branching nodes of the program.

REAL-TIME BRANCHING PROGRAMS 91

The labels of the branching nodes need not be different, i.e., a bit of the
input can be investigated (asked) repeatedly. In this case another bit is not
investigated at all.

A language L, L _ {0, 1 }n, is said to be "exact" if all words from L have
the same number of O's (and l's).

For any real-time branching program computing an exact language the
following three lemma's hold.

LEMMA 1. Each accepting computation asks each bit of the input exactly
one-time.

Proof The computation has to ask each bit of the input since two
inputs which differ in only one bit have to be separated (the language is
exact).

LEMMA 2. Let two computations meet at a node. Suppose they have asked
the same bits and they can be prolonged in accepting computations. Then
each content of the remaining bits causes the input is accepted-rejected in
both cases simultaneously.

Proof Let A be the set of bits asked before the meeting. Let us fix a
content of the remaining bits (,4). We have inputs a,b; a (resp. b)
corresponds to the first (resp. second) computation on A and to the fixed
content on A. If one from computations on a and b is accepting then after
the meeting it can ask only bits from A (Lemma 1). However, on A is can-
not branch with the second computation which is therefore accepting, too.

For the case of meeting of two computations we define the following
sets:

A = {//the ith bit has been asked by the both computations},

B = {//the ith bit has been asked by only the first computation},

C = {//the/the bith has been asked by only the second computation},

D = {//the /the bit has not been asked}.

Lemma 3. Let two computations meet at a node. Suppose that

(a) There are contents of bits non-asked by the first (CUD) and by
the second (B u D) computations which equal on D, and which cause the
inputs are accepted or

(b) There is a content of bits non-asked by the first computation
(= C u D) which causes the first input is accepted, and which is equal to the
second input on C.

92 STANISLAV ZAK

Then before the meeting the computations have asked the same bits
(B=C=;3).

Proof o f the case (a). We have two inputs a, b; a corresponds to the
first computat ion on A u B, and to the first supposed content on C u D.

b corresponds to the second computat ion on A u C and to the second
supposed content on B w D. After the meeting the computat ions on inputs
a, b are not allowed to branch on A w B w C since they are accepting
(Lemma 1), and they cannot branch on D since on D a, b are equal. We see
that the computat ion on a (resp. b) is accepting and does not ask on C
(resp. B). According to Lemma 1, B = C = ~ .

Now we prove the case (b). Suppose B va ~ . We have two inputs a, b; a
corresponds to the first computat ion on A ~ B, and to the supposed con-
tent on C w D.

b corresponds to the second computat ion on A w C, on B b is defined
arbitrarily and on D b equals a. The computat ion on b is also accepting
since after the meeting the computat ions on a, b are not allowed to branch
on A ~ B (Lemma 1) and on C ~ D a, b are equal. We see that the com-
putation on b does not ask the bits from B. According to Lemma 1,
B = ~ - a contradiction.

Now, suppose B = ~ , C ¢ ~ . Let a, b be inputs as above. The com-
putation on a is accepting and therefore after the meeting it does not ask in
A. On C, D, a equals b, hence the computat ion on a, b do not branch.
Therefore the computat ion on b is accepting, too. We see that after the
meeting (a) the computat ion on a, b must not ask in C, since the (accep-
ting) computat ion on b has asked in C before the meeting, and (b) the
computat ion in a must ask in C (Lemma 1). A contradiction.

3. AN EXPONENTIAL LOWER BOUND FOR HALF-CLIQUES WITH A CORONA

Let us first define the language of half-cliques with a corona. Let
G = (V, E); E _ Vx V, be finite nonempty undirected graph. Let us have a
numbering of its vertices V = (Vi)iml, m = c a r d V. By the corresponding

a m matrix we mean the matrix (ij)i,j=l where ai~=af 1 if (vi, v f l eE , and
ao.--df 0 otherwise. This matrix is symmetric since the graph is undirected.
By a code of the graph C = (V , E) we mean the word a,
a = al,2"'" al,ma2,3"'" a2 a,~ l.m" Le__t n be the length of a. We see that
n = m ' (m - 1)/2 and therefore m ~> ~/2n.

By a half-clique with a corona we mean an undirected graph G = (V, E)
where V = V l w V 2 , V t c ~ V 2 = ~ , c a r d V 1 - - c a r d V 2 , G1---df (V1,E~
V1 x V1) is the full graph (the clique). By the size of the corona we mean the
number of edges in G which are not in G1. The degree of each vertice of the

REAL-TIME BRANCHING PROGRAMS 93

half-clique is at least m / 2 - 1. Hence any graph which is a half-clique with a
corona of size v, v < m/2 - 1, can be divided to the clique and the corona
by a unique way. The degree of vertices from the corona is less than
m / 2 - 1.

The exponential lower bound we prove for (the language of codes of)
half-cliques with coronas of size v = m/2 - 2. It is clear that on {0, 1 }~ this
language is exact for each n e N.

For real-time branching programs computing this language the two
following lemma's hold.

LEMMA 4. Let two computations meet at a node. I f they have asked the
same set A of bits then card A >>. m/4.

Proof Suppose card A < m/4. There is a bit in A on which the com-
putation have branched. Assume that the content of this bit is 1 for the
case of the first computat ion (and 0 for the second computation). Let us
choose an input a such that on A it corresponds to the first computation, it
is a code of a half-clique with a corona of size m/2 - 2, and the bit men-
tioned above is an edge of the half-clique. It is possible since there are m/2
vertices with no edge in A. According to Lemma 2 the input such that on A
it corresponds to the second computat ion and on A it equals a is accepted,
too. However, it is not a half-clique with a corona of size m / 2 - 2. A con-
tradiction.

LEMMA 5. Let two computations meet at a node . Then
card (A w B) >>. m/8 or card(A w C) >1 m/8.

Proof (by a contradiction). Let a be the following input. On A, B a
corresponds to the first computation, on C to the second computation, and
on D a is such that a is a half-clique with a corona of size m/2 - 2. Such a
content of bits in D exists, since in A w B u C there is less than m/4 of
possible edges. According to Lemma 3(b), B = C = ~3. This contradicts to
Lemma 4.

THEOREM 6. Real-time branching programs computing the language of
half-cliques with coronas of size m / 2 - 2 have at least 2m/8>>-2 "/~/8 nodes.

Proof According to Lemma 5, the initial part of any such program is a
tree of depth at least m/8.

4. OVEN PROBLEMS

(1) TO prove an exponential lower bound for weaker restriction than
"real-time."

94 STANISLAV Z~,K

(2) To investigate the trade-off between the number of nodes (the
complexity) and the number of asking.

(3) To prove a hierarchy according the number of asking for a
smaller class of programs; e.g., for programs of polynomial complexity
(Wegener, 1986; Ftfi~nik and Hromkovi6, in press).

REFERENCES

ALEL1UNAS, R., KARP, R. M., LIPTON, R. J., LovAcz, L., AND RACKOFF, C., (1979), "Ran-
dom Walks, Universal Traversal Sequences, and the Complexity of Maze Problems," Proc,
20th IEEE Symp. on Foundations of Computer Science, pp. 218-223.

BORODIN, A., DOLEV, D., FICH, F. E., AND PAUL, W. (1983), "Bounds for Width Two
Branching Programs," 15th Annual ACM Symposium on Theory of Computing, pp. 87-93.

CHANDRA, A. K., FURST, M. L., AND LIPTON, R. J. (1983), "Miltiparty Protocols," 15th
Annual ACM Symposium on Theory of Computing, pp. 94-99.

MASEK, W. (1976), "A Fast Algorithm for the String Editing Problem and Decision Graph
Complexity," M. Sci. thesis, MIT, Cambridge, Mass., May 1976.

WEGENER, I. (1984), Optimal decision trees and one-time-only branching programs for sym-
metric boolean functions, Inform. and Control 62, 129-143.

WEaENER, I. (1984), "On the Complexity of Branching Programs and Decision Trees for
Clique Functions," Interner Bericht 5/84.

WEGENER, I. (1986), Time-space trade-offs for branching programs, J. Comput. System Sci. 32,
91-96.

PUDL~K, P., ANI~ Z~,K, S. (1982), "Space complexity of computations, a manuscript, 1982.
PEDLAR, P. (1984), "A Lower Bound on Complexity of Branching Programs," Proc. l l th

Symp. MFCS, pp. 480-489.
YAO, A (1983), "Lower bounds by probabilistic arguments," Twenty-first Symp. on Foun-

dations of Computer Science, pp..420~428.
~.I¢, S. (1983), Information in Computation Structures (preliminary version), Acta Polytecn.

20, (IV. 4), 47-54.
~.K, S. (1984), "An Exponential Lower Bound for One-Time-Only Branching Programs,"

Proc. 1 lth Symp. MFCS, pp. 480~89.
FTA~;N1K, M., AND HROMOKOVI~, J. (in press), "Nonlinear Lower Bound for Real-Time

Branching Programs."
NETCHIPORUK, E. J. (1966), A Boolean function, Dokl. Acad. Nauk SSSR 169, no. (4),

765-766. [-Russian], English translation in Soy. Math. Dokl. 7 (4), 999-1000.

