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Although the chiral dotted spinor superfield should describe a Massive Superspin One Half multiplet, 
it has not been obvious how to derive this from an action. In this paper this is done by including a chiral 
undotted spinor superfield, finding the BRST transformations that govern both of these, and then finding 
the action as an invariant of the transformations. It turns out that both kinds of spinor superfields are 
needed. Moreover, the BRST transformations for the two kinds of chiral spinor superfields are generated 
from each other by a special involution that exchanges Grassmann odd (even) sources with Grassmann 
even (odd) fields.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. In some suitable limit for the superstring [21], the massive 
modes might be described by massive supersymmetric actions, 
coupled in some way to each other. As noted in [9] and as em-
phasized rather recently by Gates and Koutrolikos [7], massive su-
persymmetric theories possess a rich off shell structure and there 
is still much to learn about them. In [1] the authors posed the ‘Off 
Shell Susy Problem’ in a simple and general way, and pointed out 
that the answer is not likely to be simple, but that it is proba-
bly important. This has generated the adinkra approach which is 
making progress on this complicated problem [2].

Assembling interacting actions is a significant problem when 
one has only ‘on-shell closure’ since this necessarily implies some 
particular action of course, and that makes it tricky to generalize 
the action to include other couplings. It is usually taken for granted 
that the best way to approach the problem of generating actions 
and couplings is to look for auxiliary fields, and actions expressed 
in terms of superfields, so that the SUSY algebra closes on shell and 
the SUSY transformations are then obvious from superspace theory. 
Progress using these ideas has been reported in [3,4] and [6]. Of 
course, the general problem, as noted in [1], is complicated by the 
existence of other symmetries, such as those that must exist in the 
Standard Model of particle theory.

2. The intent in this paper, and its sequel, is to show that the 
BRST approach, using cohomology, offers a different approach to 
some of these problems. The present paper will illustrate some of 
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the issues here by constructing a massive superspin 1
2 action out of 

superfields with spin 1
2 . We will not use superfields here, except 

at the start, but the algebra is closed in the sense that the BRST 
operator is nilpotent. The nilpotence of the BRST operator arises 
as though the auxiliaries have been integrated out. This can hap-
pen even when no auxiliaries exist.1 If there is a nilpotent BRST 
operator, one can use the spectral sequence to discover the coho-
mology [13]. The cohomology then points out where there are new 
invariants.

This BRST approach singles out the physical fields, and any re-
maining auxiliary fields get eliminated from consideration early on 
in the analysis [13]. So the BRST approach generates a different 
set of insights and problems, and it is not simple to sort out the 
relationship between the superfield approach and the BRST coho-
mology approach. They are complementary.

3. For a number of reasons to do with BRST cohomology,2

it is of some interest to construct a well-behaved action start-
ing with a chiral dotted spinor superfield φ̂α̇ . Chirality means 
that D β̇ φ̂α̇ = 0. It is well known [5] that this superfield can be

1 This is probably the case for the present action, and also for 10-D Super Yang–
Mills theory [2,15], for example. This feature is related to the Batalin–Vilkovisky
method, see for example [8] for a simple exposition of the latter.

2 It has been evident for a long time [10,11,14,12] that the BRST cohomology 
of the chiral scalar superfield Â couples naturally to a chiral dotted spinor super-
field φ̂α̇ . The simplest example is ∫ d6 zφ̂α̇ ÂC α̇ . Here C α̇ is a spacetime constant 
supersymmetry ghost. However the superfield φ̂α̇ here needs further constraints, 
which is the progress reported in this paper.
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subjected to a ‘reality constraint’ in addition to chirality, and that 
on-shell it should represent superspin 1

2 . But the problem is that 
no action has been found, until now, that is consistent with both 
the chirality and the reality constraints and which then yields su-
perspin 1

2 .

4. Trying to write down an action for a chiral dotted spinor 
superfield φ̂α̇ meets a problem right at the start, because the most 
obvious action is

A =
∫

d8zφ̂α̇∂αα̇φ̂α + m2
∫

d6zφ̂α̇ φ̂α̇ + m2
∫

d6zφ̂
α
φ̂α (1)

but this immediately leads to higher derivative equations of mo-
tion, and there are tachyons in the spectrum too:(�2 − m4

)
φ̂α̇ =

(� − m2
)(� + m2

)
φ̂α̇ = 0 (2)

This is certainly not a promising start for a model that is supposed 
to be phenomenologically viable.

5. The chiral undotted spinor superfield χ̂α should also yield 
massive superspin 1

2 on shell [5] and this is also puzzling. Here 
chirality means that Dβχ̂α̇ = 0. χ̂α does appear in gauge the-
ory [16], but as a massive matter representation it poses a dif-
ficulty, because the only known way to give it mass, until the 
present action, involves the spontaneous breaking of gauge sym-
metry together with the introduction of Higgs scalars. Such a 
method to construct a massive representation of superspin 1

2 is 
clearly not irreducible, because it mixes χ̂α̇ with the components 
of chiral scalar Higgs multiplets.

6. Here we also want to add another feature, which is phase in-
variance, corresponding to some conserved quantity like Lepton or 
Baryon number. So we add a chirality index L, R to the superfields. 
Then the chirality constraints have the form:

D β̇ φ̂Lα̇ = D β̇ φ̂Rα̇ = Dβχ̂Lα̇ = Dβχ̂Rα̇ = 0 (3)

So the Complex Conjugates satisfy:

Dαφ̂Lβ = Dαφ̂Rβ = Dα̇ χ̂ Lβ = Dα̇ χ̂ Rβ = 0 (4)

Next, in order to get an irreducible representation of supersym-
metry, along with a phase invariance, along the lines of the text-
book [5], we want to also impose the additional ‘reality con-
straints’:

Dαφ̂Lα̇ = Dα̇ φ̂Rα; D
α̇
χ̂Rα̇ = Dαχ̂ Lα (5)

These are designed so that there is a global U(1) phase invari-
ance that is conserved by the action.

7. In the context of BRST [22,8], a theory is defined by its 
BRST transformations, which can be derived from its BRST Poisson 
Bracket. Here is the BRST Poisson Bracket of the present theory:

PTotal[A] = Pχ [A] +Pφ[A] +PSUSY[A] (6)

Pχ [A] =
∫

d4x

{
δA

δU Rα̇

δA
δχα̇

L

+ δA
δU Lα̇

δA
δχα̇

R

(7)

+ δA
δ�αα̇

δA
δV αα̇

+ δA
δ	

δA
δB

(8)

+ δA
δK

δA
δω

+ δA
δ J

δA
δη

+ δA
δ�

δA
δL

+ ∗
}

(9)
Pφ[A] =
∫

d4x

{
δA
δZ α̇

L

δA
δφRα̇

+ δA
δZ α̇

R

δA
δφLα̇

(10)

+ δA
δαα̇

δA
δWαα̇

+ δA
δϒ

δA
δE

(11)

+ δA
δ J ′

δA
δη′ + δA

δK ′
δA
δω′ + δA

δ�′
δA
δL′ + ∗

}
(12)

PSUSY[A] = ∂A
∂hαα̇

∂A
∂ξαα̇

(13)

As emphasized above, in this paper we do not try to keep 
manifest supersymmetry. We decompose the superfields into com-
ponents and look for nilpotent BRST transformations, which then 
generate the action. All the above fields and sources are compo-
nents, not superfields.

We note that each term in the above, such as the first one 
δA

δU Rα̇

δA
δχα̇

L
, contains one Zinn source derivative (here it is U Rα̇ ) and 

one Field derivative (here it is χα̇
L ), and one of them is Grassmann 

even (U Rα̇ here), and the other odd (χα̇
L here). We will discuss the 

meaning of the symbols more fully below after Eq. (24), where we 
write down the action.

The Action A of the theory contains two parts:

A = AZinn +AFields (14)

To start with, one must find an action AZinn such that the 
related BRST Poisson Bracket vanishes identically. This action gen-
erates the transformations. We can define a sort of square root of 
the BRST Poisson Bracket, by

δFirst = δFields + δZinns (15)

where

δFields =
∑

i

∫
d4x

δAZinn

δZinni

δ

δFieldi
(16)

=
∫

d4x

{
δA

δU Rα̇

δ

δχα̇
L

+ δA
δU Lα̇

δ

δχα̇
R

+ · · ·
)

+ ∗ (17)

and where

δZinns =
∑

i

∫
d4x

δAZinn

δFieldi

δ

δZinni
(18)

=
∫

d4x

{
δAZinn

δχα̇
L

δ

δU Rα̇
+ δAZinn

δχα̇
R

δ

δU Lα̇
+ · · ·

)
+ ∗ (19)

If it is true that

P[AZinn] = 0 (20)

then3 it follows that

δ2
First = 0. (21)

Next one looks for an action that satisfies the invariance iden-
tity

δFieldsAFields = 0 (22)

3 In the present case this further reduces to suboperators: δFields = δχ Fields +
δφ Fields and δZinns = δχ Zinns + δφ Zinns and all these suboperators are nilpotent or 
they anticommute: δ2

Fields = δ2
Zinns = {δFields, δZinns} = δ2

χ Fields = δ2
φ Fields = δ2

χ Zinns =
δ2
φ Zinns = 0 etc.
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where the expression AFields is in the cohomology space of δFields
and depends only on Fields and not on Zinns. Since AFields depends 
only on Fields, it follows that

P[A] = P[AFields] = 0 (23)

The expression P[AFields] is trivially zero, because it contains no 
Zinns, and each term of the BRST Poisson Bracket contains one 
Zinn.

8. As we pointed out above, a theory can be constructed from

1. A Form of Poisson Bracket, which describes the Fields, Zinns 
and their pairing;

2. A Zinn Action which describes the transformations of the 
Fields, and, through the BRST Poisson Bracket, also the trans-
formations of the Zinns;

3. A field action which is invariant under the field transforma-
tions.

We will start with the field action, since it is shorter.

9. Here is the action [16] that arises from the chiral undotted 
χ -type superfields referred to above:

AKinetic χ =
∫

d4x
{
χα̇

L ∂αα̇χα
L + χα̇

R ∂αα̇χα
R

+ Gα̇β̇ G
α̇β̇ − 2B B

}
(24)

where

Gα̇β̇ = G(α̇β̇) = 1

2

(
∂α̇
γ V γ β̇ + ∂

β̇
γ V γ α̇

)
G

αβ = G
(αβ) = 1

2

(
∂α
γ̇ V

γ̇ β + ∂
β

γ̇ V
γ̇ α

)
(25)

and also

G
(α̇β̇) = 1

2

(
∂α̇
γ V

γ β̇ + ∂
β̇
γ V

γ α̇
)

G(αβ) = 1

2

(
∂α
γ̇ V γ̇ β + ∂

β

γ̇ V γ̇ α
)

(26)

In the above, χα̇
L and χα̇

R are two-component Weyl spinors, B is 
a complex scalar (it turns out to be an auxiliary field), and G is 
a complex field strength made from a complex vector field V γ β̇ . 
More explicitly we have∫

d4x
{

Gα̇β̇ Gα̇β̇
}

(27)

=
∫

d4xV αα̇

(
�V αα̇ + 1

2
∂αα̇∂γ δ̇ V

γ δ̇
)

(28)

10. Here is the action that arises from the chiral dotted φ-type 
superfields referred to above:

AKinetic φ =
∫

d4x

{
φα̇

L ∂αα̇φα
L + φα̇

R ∂αα̇φα
R

+ Wαα̇W
αα̇ − 1

2
E�E + 1

2
η′ (φδ̇

L C δ̇ + φδ
R Cδ

)
+ 1

2
η′ (φδ

L Cδ + φδ̇
R C δ̇

)}
(29)

In the above, φα̇
L and φα̇

R are two-component Weyl spinors, E is 
a complex scalar field, Wαα̇ is a complex vector field (it turns out 
to be an auxiliary field); η′ is a complex ghost antifield and Cα
is a constant Weyl spinor ghost corresponding to the rigid SUSY 
transformations.

The above kinetic actions are determined as invariants of the 
field transformations. Actually here these split into two:

δχ FieldsAKinetic χ = 0 (30)

δφ FieldsAKinetic φ = 0 (31)

As mentioned above, these transformations δFields follow from 
the Zinn actions. Now we present these Zinn actions and explain 
where they come from.

11. First we have the Zinn Action for the χ sector, which fol-
lows from the textbook treatment of gauged supersymmetry [16]. 
We can write it so that the derivatives with respect to Zinns are 
easy to see, as follows:

AZinn χ (32)

=
∫

d4x
{

U Rα̇

(
BC

α̇ + G(α̇β̇)C β̇ + ξ · ∂ χα̇
L

)
(33)

+ U Lα̇

(
−BC

α̇ + G(α̇β̇)C β̇ + ξ · ∂ χα̇
R

)
(34)

+ 	

(
1

2
∂αα̇χ LαC α̇ − 1

2
∂αα̇χRα̇Cα + ξ · ∂ B

)
(35)

+ �αα̇

(
∂αα̇ω + χα̇

R Cα + χα
L C

α̇ + ξ · ∂ V
αα̇

)
(36)

+ K

(
V

ββ̇
Cβ C β̇ + ξ · ∂ ω

)
(37)

+ J (L + ξ · ∂ η) +�
(

Cβ C β̇ ∂ββ̇η + ξ · ∂ L
)}

(38)

In the above we have some more notation in addition to that 
noted after Eq. (26). In the above, ω is a complex anticommuting 
Faddeev–Popov Ghost, η is the corresponding complex Faddeev–
Popov antighost, and L is a commuting scalar field which is aux-
iliary and useful for dealing with the gauge fixing term, as shown 
below. The Zinn sources U Rα̇ etc. are conjugate under the BRST 
Poisson Bracket to the fields.4

12. The above Zinn action can usefully be rewritten so that the 
derivatives with respect to fields are easy to see:

AZinn χ Form 2 =
∫

d4xχα̇
R

(
−1

2
∂αα̇	Cα (39)

− �αα̇Cα + ξ · ∂ U Lα̇
)

(40)

+ χα̇
L

(
1

2
∂αα̇	Cα − �γ α̇Cγ + ξ · ∂ U Rα̇

)
(41)

+ V αα̇

(
K C α̇Cα − 1

2
∂
γ̇
α U Rγ̇ C α̇ − 1

2
∂
γ̇
α U Rα̇C γ̇

(42)

− 1

2
∂
γ
α̇ U Lγ Cα − 1

2
∂
γ
α̇ U LαCγ + ξ · ∂ �αα̇

)
(43)

4 ξαα̇ is an anticommuting constant ghost field for translations in spacetime. The 
expression ξ · ∂ ≡ ξαα̇∂αα̇ is needed to complete the transformations, since the an-
ticommutator of two SUSY transformations is a translation. Note that there is a 
term linking each source and its field, by a translation, as in U Rα̇ξ · ∂ χα̇

L . This 
yields exactly zero when we combine it with the variation which comes from (13): 
δξαα̇ = CαC α̇ which comes from the action term ASUSY = hαα̇CαC α̇ . Usually we 
can (and do) just ignore these kinds of terms, since they just compensate for total 
derivatives in the variations.
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+ B

(
U Rβ Cβ − U Lβ̇ C

β̇ + ξ · ∂ 	

)
(44)

+ ω
(
∂γ δ̇�γ δ̇ + ξ · ∂ K

)
(45)

+ η
(

Cβ C β̇ ∂ββ̇� + ξ · ∂ J
)

+L
(

J + ξ · ∂ �
)}

(46)

This form AZinn χ Form 2 has another very nice use, explained in 
the next section.

13. The Zinn Action for the φ sector can be derived from the 
action AZinn χ Form 2 in (39) to (46) above simply by changing the 
names of fields and Zinns. Here it is:

AZinn φ =
∫

d4xZ α̇
R

(
−1

2
∂αα̇ ECα − Wαα̇Cα (47)

+ ξ · ∂ φLα̇

)
(48)

+ Z α̇
L

(
1

2
∂αα̇ ECα − W αα̇Cα + ξ · ∂ φRα̇

)
(49)

+ αα̇

(
η′C α̇Cα − 1

2
∂
γ̇
α φRγ̇ C α̇ (50)

− 1

2
∂
γ̇
α φRα̇C γ̇ − 1

2
∂
γ
α̇ φLγ Cα (51)

− 1

2
∂
γ
α̇ φLαCγ + ξ · ∂ W αα̇

)
(52)

+ ϒ

(
φRβ Cβ − φLβ̇ C

β̇ + ξ · ∂ E

)
(53)

+ J ′
(

∂γ δ̇ W
γ δ̇ + ξ · ∂η′

)
(54)

+ K
′ (

Cβ C β̇ ∂ββ̇ L′ + ξ · ∂ ω′) (55)

+ �′ (ω′ + ξ · ∂ L′) (56)

The substitution, to go from (39) to (47) is

χα̇
R → Z α̇

R ; 	 → E,�αα̇ → Wαα̇; · · · etc. (57)

The new fields L′ , ω′ in the above do not do much. The field η′
plays an important role in Eq. (84) below. This generation of the φ
Zinn action from the χ Zinn action is a kind of involution, since 
doing it twice will bring us back to the original χ Zinn action.

It is natural to ask why this happens. The author has no an-
swer to that interesting question. But it works nicely as we will 
see when we look at the spectrum. It seems to be a form of 
‘BRST Recycling’. If one tries this with the chiral superfield and its 
Zinn sources, one gets nothing new, because for that case the Zinn 
sources are also in a chiral multiplet. But there are many situations 
where something new will arise. They need to be examined.

14. The Zinn Action for the φ sector can also be rewritten so 
that it is easy to take the derivatives by the fields. This yields:

AZinn φ Form 2 (58)

=
∫

d4xφRα̇

(
−ϒC

α̇ − ̃(α̇β̇)C β̇ + ξ · ∂ Z α̇
L

)
(59)

+
∫

d4xφLα̇

(
+ϒC

α̇ − ̃
(α̇β̇)

C β̇ + ξ · ∂ Z α̇
R

)
(60)

+
∫

d4xE

(
−1

∂αα̇ Z LαC α̇ + 1
∂αα̇ Z Rα̇Cα + ξ · ∂ ϒ

)
(61)
2 2
+
∫

d4xWαα̇

(
−∂αα̇ J ′ − Z α̇

R Cα − Zα
L C

α̇ + ξ · ∂ αα̇
)

(62)

+
∫

d4xη′ (−ββ̇ Cβ C β̇ + ξ · ∂ J ′) (63)

+
∫

d4xω′ (−�′ + ξ · ∂ K ′) (64)

+
∫

d4xL′ (−Cβ C β̇ ∂ββ̇ K ′ + ξ · ∂ �′) (65)

In the above we define

̃(α̇β̇) = 1

2

(
∂α̇
γ γ β̇ + ∂

β̇
γ γ α̇

)
̃

(αβ) = 1

2

(
∂α
γ̇ γ̇ β + ∂

β

γ̇ γ̇ α
)

(66)

̃
(α̇β̇) = 1

2

(
∂α̇
γ γ β̇ + ∂

β̇
γ γ α̇

)
̃(αβ) = 1

2

(
∂α
γ̇ γ̇ β + ∂

β

γ̇ γ̇ α
)

(67)

Of course the above necessarily is the same as what we started 
with above in AZinn χ in Eq. (32), provided one changes the names 
of the fields and Zinns appropriately.

15. Now we have written down the kinetic terms and the Zinn 
terms. As noted above the two kinetic actions are invariant under 
separate field transformations. But now we want a mass term that 
mixes them. At this point it is not clear whether one exists. But it 
does.5 For now, we can simply write it down:

AMass χφ =
∫

d4x
{

mφLα̇χ α̇
R + mφRαχα

L

+ mE B + mWαα̇ V αα̇ + mη′ω
}

+ ∗ (68)

and it is easy to verify that it satisfies(
δχ Fields + δφ Fields

)
AMass χφ = 0 (69)

16. The χ action in Eq. (24) has gauge invariance, as is evident 
from the transformation of Vαα̇ contained in line (36). This calls 
for a gauge-fixing and ghost action AGGF, and we choose:

AGGF =
∫

d4x δχ Fields

(
η

[
1

2
∂αα̇ V αα̇ + g

4
L

])
+ ∗ (70)

where δχ Fields is the BRST transformation of the theory that arises 
from the Zinn actions above. Here the gauge parameter g can be 
chosen to be real g = g . We can integrate out the auxiliary field L
by completing the quadratic and shifting, which leaves

AGF = − 1

2g

∫
d4x

{(
∂αα̇ V

αα̇
)(

∂ββ̇ V ββ̇
)}

(71)

The other part is

AG =
∫

d4x
{
η�ω + η�ω − gηCβ C β̇ ∂ββ̇η

}
+

∫
d4x

{
−1

2
η∂αα̇

(
χα̇

L Cα + χα
R C

α̇
)

− 1

2
η∂αα̇

(
χα̇

R Cα + χα
L C

α̇
)}

(72)

5 The easiest way to find it is using the spectral sequence, which also shows the 
existence of other interesting terms. This will be the subject of a sequel paper.
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17. So we have found a field action AFields, which is the sum 
of (24), (29), (68), (71) and (72). We want to see what this free 
massive action says about the equations of motion of the various 
fields.

18. First we look at the functional derivatives with respect to 
the scalar fields.6

δAFields

δB
= −2B + mE = 0 (73)

δAFields

δE
= −1

2
�E + mB = 0 (74)

Putting these together yields(� − m2
)

E = 0 (75)

19. For the vector bosons we have:

δAFields

δV αα̇

= 1

2g
∂αα̇∂ · V +

(
�V αα̇ + 1

2
∂αα̇∂ · V

)
+ mW αα̇ = 0

(76)

δAFields

δW αα̇

= W αα̇ + mV αα̇ = 0 (77)

where

∂ · V ≡ ∂γ γ̇ V γ γ̇ ; ∂ · W ≡ ∂γ γ̇ W γ γ̇ (78)

If we choose the Feynman gauge g = −1 then this simplifies to(� − m2
)

V αα̇ = 0 (79)

For other gauges things are more complicated in the longitudi-
nal part of V αα̇ . This would be more interesting in an interacting 
model of course.

20. Next we turn to the ghost and fermion fields. We can eas-
ily evaluate the following functional derivatives, which yield the 
equations of motion for these fields:

δAFields

δχα̇
L

= ∂αα̇χα
L − 1

2
∂αα̇ηCα − mφRα̇ = 0 (80)

δAFields

δχα
R

= ∂αα̇χα̇
R − 1

2
∂αα̇ηC

α̇ − mφLα = 0 (81)

δAFields

δφα
R

= ∂αα̇φα̇
R − 1

2
η′Cα − mχ Lα = 0 (82)

δAFields

δφα̇
L

= ∂αα̇φα
L − 1

2
η′C α̇ − mχRα̇ = 0 (83)

δAFields

δω
= −�η − mη′ (84)

Now define

mφ′
Rα̇ = 1

2
∂αα̇ηCα + mφRα̇ (85)

mφ′
Lα̇ = +1

2
∂αα̇ηCα + mφLα̇ (86)

6 For the field equations we always set the Zinn sources to zero of course.
For nonzero m, we can write the above equations in the form

δAFields

δχα̇
L

= ∂αα̇χα
L − mφ′

Rα̇ = 0 (87)

δAFields

δχα
R

= ∂αα̇χα̇
R − mφ′

Lα = 0 (88)

δAFields

δφα
R

= ∂αα̇φ′α̇
R − mχ Lα = 0 (89)

δAFields

δφα̇
L

= ∂αα̇φ′α
L − mχRα̇ = 0 (90)

Then it is easy to derive that(
−� + m2

)
χα

L = 0;
(
−� + m2

)
χα̇

R = 0 (91)

and(
−� + m2

)
φ′α̇

R = 0;
(
−� + m2

)
φ′α

L = 0 (92)

These fermions φ′α
L and φ′α̇

R are made partly from the antighost, 
but the mass is not gauge dependent.

21. Finally we want to get the mass of the ghost ω. We have

δAFields

δη
(93)

= �ω − gCβ C β̇ ∂ββ̇η − 1

2
∂αα̇

(
χα̇

R Cα + χα
L C

α̇
)

(94)

δAFields

δη′ = 1

2

(
φδ

R Cδ + φδ̇
L C δ̇

)
+ mω (95)

Adding these equations, if we choose the Feynman gauge 
g = −1, with the second multiplied by m, and using definitions 
(86) and (85) together with (87) and (88) yields:(� − m2

)
ω = 0 (96)

22. So, in the Feynman gauge, there are two Dirac fermions, 
one complex scalar boson, one complex vector boson and one 
complex ghost field with its antifield, all of them with mass m. 
These are the irreducible components for this supermultiplet. In 
other gauges, the longitudinal part of the vector boson and the 
ghosts are more complicated, which is the normal state of affairs 
for a vector boson. In an interacting model, we would expect to be 
able to show that the S-matrix is gauge independent.

Note that the gauge symmetry is not broken here, even though 
the gauge boson is massive. There are no ‘Higgs’ multiplets needed 
here, and no gauge symmetry breaking of the U(1) carried by the 
superspin 1

2 multiplet here.
The transformations for the chiral dotted spinor superfield φ̂Lα̇

were obtained by the trick of using the Zinn transformations of the 
χ sector, and the involution map, to convert them to field trans-
formations of the φ sector. It was in this way that we discovered 
that the four original superfields resolve themselves into auxiliaries 
and fields in such a way as to provide an irreducible action formu-
lation for the Dirac Irreducible Superspin 1

2 Massive Multiplet. This 
action has interesting BRST cohomology, as will be discussed in a 
future paper, using spectral sequences to sort things out.
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