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The molecule serotonin (5-hydroxytryptamine or 5-HT) is involved in numerous biological processes both
inside and outside of the central nervous system. 5-HT signals through 5-HT receptors and it is the diversity
of these receptors and their subtypes that give rise to the varied physiological responses. It is clear that plate-
let derived serotonin is critical for normal wound healing in multiple organs including, liver, lung heart and
skin. 5-HT stimulates both vasoconstriction and vasodilation, influences inflammatory responses and pro-
motes formation of a temporary scar which acts as a scaffold for normal tissue to be restored. However, in
situations of chronic injury or damage 5-HT signaling can have deleterious effects and promote aberrant
wound healing resulting in tissue fibrosis and impaired organ regeneration. This review highlights the di-
verse actions of serotonin signaling in the pathogenesis of fibrotic disease and explores how modulating
the activity of specific 5-HT receptors, in particular the 5-HT2 subclass could have the potential to limit fibro-
sis and restore tissue regeneration. This article is part of a Special Issue entitled: Fibrosis: Translation of basic
research to human disease.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Serotonin (5-hydroxytryptamine or 5-HT) is an ancient signaling
molecule which is found in simple single cell eukaryotes such as
Paramecium and Tetrahymena where it regulates growth and swim
behavior [1]. 5-HT is also found in molds and plants as well as higher
order multicellular organisms such as worms and insects where it
controls diverse physiological functions such as swarming, ovulation
and insulin secretion [2–4]. In humans 5-HT is perhaps best charac-
terized for its role in the central nervous system (CNS) where it
operates as a neurotransmitter at neuronal synapses influencing a
broad range of neurophysiological functions including learning and
memory, mood, pain and appetite. However, the majority of 5-HT is
found outside of the CNS with the major site of synthesis in entero-
chromaffin cells of the gut where it helps to control smooth muscle
contraction and digestion of food. 5-HT can be taken up from the
serum by platelets and mast cells via the serotonin transporter
(SERT). These cells transport 5-HT to a wide number of tissues and
importantly will accumulate within injured tissues releasing 5-HT
upon appropriate stimulation. Functions of 5-HT outside the CNS
include vasoconstriction/vasodilation, cardiac development and func-
tion, respiratory drive, metabolic rate and temperature control,
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mammary gland development and milk release, uterine contraction,
Oocyte maturation and in males the control of penile flaccidity and
detumescence [5].

The ability of 5-HT to influence such a wide variety of CNS and
systemic physiological functions can be attributed to its diverse
receptor system. The 5-HT receptor family consists of 13 distinct
genes encoding G-protein coupled seven-transmembrane receptors
(GPCRs) and in addition 1 ligand-gated ion channel (the 5-HT3 recep-
tor). The GPCRs are divided into three major groupings according to
whether they signal by coupling to Gαq/11 (5-HT2A, 5-HT2B and
5-HT2c), Gαi/o (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F and 5-HT5A/B)
or Gαs (5-HT4, 5-HT6 and 5-HT7) G proteins [6]. However, it should
be noted that GPCRs including the 5-HT receptors are able to couple
to more than one G-protein and to a variety of other types of intracel-
lular signaling molecules. Focusing on the three G-proteins alone,
each is able to trigger distinct downstream signaling events, which
explains the diverse range of physiological responses that are attrib-
uted to 5-HT. Gαq coupled receptors stimulate the formation of
diacylglycerol (DAG) and inositol phosphates leading to activation
of protein kinase C (PKC) and elevation of intracellular calcium
[7,8]. In addition Gαq-coupled 5-HT receptors activate Rho resulting
in formation of stress fibers and focal adhesions which influences
cell migration and adhesion [9]. Activation of the Gαi/o class of 5-HT
receptor causes suppression of adenylyl cyclase and reduced levels
of cAMP which in neurons results in suppression of neuronal firing
[6]. Conversely the activation of Gαs-coupled 5-HT receptors stimu-
lates adenylyl cyclases promoting the accumulation of cAMP and
downstream activation of protein kinase A (PKA) and the cAMP
response element binding protein (CREB). It is therefore critical to

https://core.ac.uk/display/82504818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.bbadis.2012.09.009
mailto:dam2@newcastle.ac.uk
http://dx.doi.org/10.1016/j.bbadis.2012.09.009
http://www.sciencedirect.com/science/journal/09254439
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2012.09.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


906 D.A. Mann, F. Oakley / Biochimica et Biophysica Acta 1832 (2013) 905–910
take into account the importance of cellular context and the expres-
sion profile of the 5-HT receptors when considering the physiological
impact of 5-HT on normal and pathological tissue processes.

2. Serotonin in wound healing

Wound healing is a highly complex coordinated process that can
be separated into four distinct phases beginning immediately after
injury with (i) coagulation and homeostasis, which is rapidly
followed by (ii) inflammation and later by (iii) a fibroproliferative
process characterized by scar tissue formation which can eventually
resolve over weeks/months by (iv) full restorative regeneration of
functional tissue depending on the severity of the wound and the
tissue. Platelets obviously play a central role in coagulation and the
aggregation of platelets at sites of tissue damage leads to the release
of 5-HT which then contributes to homeostasis through its powerful
vasoactive properties. Serotonin can either stimulate constriction or
dilation of microvasculature depending on the tissue in question. In
the liver, 5-HT appears to mainly promote constriction of hepatic
sinusoids, since mice lacking peripheral serotonin (Tph−/−) display
enhanced sinusoidal perfusion under both normal and diseased states
[10]. By contrast, platelet-derived 5-HT coordinates the formation of
gaps between endothelial cells in the joint microvasculature, which
in arthritic conditions may contribute to inflammation [11]. Precisely
how these differential responses are regulated is not well defined but
presumably involves differential signaling via specific 5-HT receptors
expressed on vascular endothelial and smooth muscle cells.

Beyond its homeostatic role which contributes to recruitment and
retention of leukocytes at sites of injury, functions for 5-HT in the
inflammatory response are not well defined; however it is clear that
5-HT can influence the behavior and function of many types of im-
mune cell. 5-HT has chemotactic actions onmast cells and eosinophils
[12,13] and mature dendritic cells (DCs) respond to 5-HT via 5-HT3,
5-HT4 and 5-HT7 receptors to increase their expression of IL-6
[14,15]. Human monocytes primed with LPS respond to 5-HT via
5-HT3, 5-HT4 and 5-HT7 receptor subtypes to increase their secretion
of IL-1β, IL-6, IL-8, IL12p40 and TNF-α [16]. 5-HT also inhibits mono-
cyte apoptosis via the 5-HT1 and 5-HT7 receptors allowing monocytes
to persist in tissues and to promote inflammation [17]. Tph1−/−
mice are less susceptible to experimental colitis, which is associated
with depressed cytokine expression and macrophage infiltration to
the bowel suggesting a key role for 5-HT in GI inflammation [18]. T
cells display a concentration dependent response to 5-HT, with low
levels stimulating proliferation and IL-2 expression [19], whereas
high concentrations inhibit the mitogenic stimulation of T cell prolif-
eration and IL-2 receptor expression [20]. Tph−/− mice are less
susceptible to steatosis-induced hepatic inflammation, although in
this case there was no influence of 5-HT on cytokine expression and
instead the inflammatory properties of 5-HT were attributed to pro-
duction of intracellular ROS in hepatocytes following 5-HT uptake
and degradation. As IL-1β and TNF-α can induce the expression of
the serotonin transporter SERT [21], uptake of 5-HT and production
of ROS may be part of an inflammatory positive feedback mechanism.

3. Serotonin, a stimulator of tissue fibrosis

Mechanistic links between fibrosis and 5-HT were first reported in
the 1960s for the condition called carcinoid syndrome, which is
caused by neuroendocrine carcinoid tumors that secrete vast quanti-
ties of 5-HT [22]. The syndrome is characterized by tissue fibrosis that
particularly affects cardiac valves but also impacts on other organs in-
cluding the lung and skin [23,24]. In the 1980s it was determined that
retroperitoneal fibrosis caused by the ergot methysergide is due to
the metabolism of this compound into methylergonovine which con-
verts it from a 5-HT2B receptor antagonist to agonist [25]. Subse-
quently agonism of 5-HT2B has been implicated in fibrosis caused by
fenfluramine used in the treatment of obesity [26] and psychiatric
disorders [27] and the hallucinogenMDMA [28], both of which trigger
5-HT2B signaling. Dopamine agonists with structural similarity to
5-HT such as pergolide and cabergoline that are used in the treatment
of Parkinson's disease have also been associated with development of
fibrosis in heart valves involving 5-HT2B agonism, thus limiting their
clinical utility [29]. Studies with animal models have confirmed the
necessity to screen serotonergic compounds for activation of 5-HT2B
activation and promotion of valvulopathy [30].
4. Serotonin signaling in hepatic regeneration and fibrosis

The adult mammalian liver is a highly regenerative organ. It is
capable of rapidly and effectively restoring lost liver mass and re-
building complex tissue structures such as hepatic sinusoids and
bile ducts that are vital for normal liver function. Recent investiga-
tions employing experimental rodent models of liver regeneration
have led to the discovery of autocrine and paracrine hepatic 5-HT sig-
naling pathways that help to regulate the growth and regeneration of
parenchymal liver cells. Moreover there appears to be important
cross-talk between these 5-HT-driven epithelial cell growth mecha-
nisms and 5-HT signaling pathways that act on myofibroblasts to
stimulate hepatic fibrosis. Since there is growing evidence of an
inverse relationship between the efficiency of epithelial regeneration
and development of tissue fibrosis, manipulating 5-HT pathways that
cross-talk between these processes may offer therapeutic opportuni-
ties in chronic liver disease.

Seventy percent partial hepatectomy (PHx) provides a model of
liver regeneration in which lost mass and tissue architecture is
completely restored within 14 days [31]. Intestinal 5-HT is rapidly
mobilized and accumulates in the remnant liver following PHx.
Early studies demonstrated enhanced regeneration of hepatocyte
proliferation following administration of 5-HT to PHx mice and
indicated a requirement for 5-HT1A/1B and 5-HT2B receptors, although
these early studies suffered from limited availability of receptor-
specific agonists and antagonists. In 2006, Lesurtel et al. identified
platelets as the primary source of 5-HT in the regenerating liver and
demonstrated profound impairment of hepatocyte regeneration in
Thp1−/− mice recovery from PHx [32]. Further experiments
suggested a role for 5-HT2A, and to a lesser extent 5-HT2B receptors
as mediators of 5-HT-driven hepatocyte regeneration. Subsequent
studies by the same group of investigators have confirmed a pro-
inflammatory and pro-regenerative role for 5-HT in post-ischemic
liver repair [33], they discovered that serotonin agonism of 5-HT2B re-
ceptors improves animal survival in small liver graft transplantation
[34] and age-associated impairments in regenerative capacity [35].
However, of note a different team of investigators working with
SERT-deficient rats which lack platelet-derived 5-HT due to absence of
uptake from the gut failed to demonstrate a role for this source of
5-HT in liver regeneration [36]. This latter finding may suggest that
low levels of free 5-HT in the serum or possibly 5-HT produced by
cells resident in the liver may be involved. In this regard a recent
study by Omenetti and colleagues is of interest since it reported an un-
expected source and role for 5-HT in the hepatic biliary tract [37].
Cholangiocytes are epithelial cells of the bile duct, which have a
variety of roles in liver homeostasis and immunity. The study by
Omenetti revealed that cholangiocytes express neural-restricted TPH2
and can produce 5-HT, which upon secretion represses cholangiocyte
proliferation by a negative feedback mechanism. However, in response
to biliary injury 5-HT triggers production of TGFβ1 by wound healing
myofibroblasts and in turn soluble TGFβ1 acts on cholangiocytes to
repress THP2 expression and enable their proliferation. It will be inter-
esting to learn which 5-HT receptor subtypes transmit the growth sup-
pressive effects of 5-HT on cholangiocytes given that hepatocytes
predominantly utilize 5-HT2A to stimulate their proliferation. It will
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also be of interest to determine if cholangiocyte-derived 5-HT contrib-
utes to hepatocyte regeneration following liver damage.

In 2006 our group reported that sinusoidal hepatic stellate cells
(HSC) strongly upregulate expression of 5-HT2A and 5-HT2B upon
their transdifferentiation to a myofibroblast phenotype [38]. HSC are
the major contributor to fibrogenesis in liver disease, producing vast
quantities of extracellular matrix and the collagenase inhibitor
TIMP-1, as such they are considered important targets for prevention
and treatment of fibrosis in chronic liver disease. HSC also express
SERT and are able to uptake, release and respond to 5-HT by this au-
tocrine route as well as via paracrine routes such as platelet-derived
and cholangiocyte-derived 5-HT [38]. 5-HT2 receptor-selective antag-
onists inhibit HSC proliferation and induce apoptosis which impli-
cates 5-HT/5-HT2 signaling in the regulation of fibrosis, since the
balance between myofibroblast proliferation and apoptosis is an im-
portant determinant of fibrosis progression. Taking this work further,
we have more recently proposed that signaling through the 5-HT2B
receptor on HSC-derived myofibroblasts is both pro-fibrogenic and
anti-regenerative in the diseased liver [39]. Specific genetic (5-HT2B
knockout) or pharmacological blockade of 5-HT2B stimulates hepato-
cyte proliferation and suppresses fibrosis in multiple distinct injury
models. A common pathway may be responsible for these dual
functions of 5-HT/5-HT2B signaling since it triggers ERK- and JunD-
dependent activation of TGFβ1 expression, the latter being a potent
suppressor of hepatocyte proliferation as well as being a powerful
stimulator of fibrogenic gene expression [40,41].

As illustrated in Fig. 1, based on current available knowledge there is
substantial complexity in the mechanisms by which 5-HT influences
liver injury and repair, with multiple effects on different cell types and
the activation of cell-cell signaling pathways that link epithelial cell re-
generation and fibrosis. At present, the available data suggest that 5-HT/
5-HT2A signaling in hepatocytes is pro-regenerative whereas 5-HT/
5-HT2B signaling via HSC in a fibrogenic microenvironment is
anti-regenerative. However, this current model may be refined by the
future availability of more specific 5-HT receptor agonists and
antagonist, and conditional genetic targeting systems that allow 5-HT
receptor genes to be deleted in each of the relevant parenchymal and
non-parenchymal liver cells.

5. Serotonin signaling in the lung

5-HT has been linked to pulmonary fibrosis since the 1960s when
it was documented that the headache medicine methysergide, which
has close structural similarities with 5-HT, caused pleuro-pulmonary
fibrosis that in some patients was reversible upon cessation of meth-
ysergide treatment [42]. Fibrosis is a feature of many different types
of chronic respiratory diseases including idiopathic pulmonary fibro-
sis (IPF), pulmonary arterial hypertension (PAH), chronic obstructive
pulmonary disease (COPD), post-transplant bronchial obliterative
syndrome (BOS) and asthma [43]. In addition, lung fibrosis is a seri-
ous pathological component of systemic sclerosis [44] and can also
be caused by a variety of medications (e.g. methotrexate) [45] as
well as radiation therapy to the chest [46].

The role of 5-HT in these different respiratory pathologies has not
been fully investigated; however evidence is emerging that it can be
secreted locally by many different cell types and in addition to its
powerful vasoactive effects on pulmonary arteries, 5-HT can stimu-
late the proliferation and fibrogenic actions of lung (myo)fibroblasts
[47,48]. Importantly, platelets and mast cells are not the only source
of 5-HT in the respiratory system. In addition, to recruited platelets
and mast cells resident pulmonary neuroendocrine cells synthesize
and secrete 5-HT [49]. These neuroendocrine cells become prolifera-
tive in PAH and this correlates with proliferation of myofibroblasts
in the pulmonary arteries. In some conditions, such as acute
post-operative PAH in children it is suggested that proliferating pul-
monary neuroendocrine cells may be the major source of 5-HT.
Expression of Tph1 is found in pulmonary epithelial cells and levels
are increased in patients with idiopathic PAH [50]. Noteworthy is
that SERT is particularly highly expressed in the lung and has been
postulated to be involved in promoting the proliferation of pulmo-
nary arterial fibroblasts and pulmonary arterial smooth muscle cells
via the activation of ERK and ROS following the internalization of
5-HT [51].

The effects of 5-HT in the respiratory systems are pulmonary arterial
constriction, bronchoconstriction and stimulation of hyperplastic and
hypertrophic alterations in smooth muscle cells and myofibroblasts
[52]. This stimulates sclerotic remodeling of the pulmonary vasculature
and/or airways, with the end result being increased pulmonary vascular
resistance and/or lung fibrosis. There remains uncertainty regarding the
precise contributions to specific 5-HT receptors in PAH and lung fibro-
sis. Prior to 1993 it was assumed that 5-HT2Amediated vasoconstriction
of pulmonary arteries and its antagonist ketanserin were found to have
some clinical utility, particularly in the elderly [53]. However, more re-
cent work has suggested contributions of 5-HT1B and 5-HT2B receptors
[54–56]. The Eickelberg group recently reported increased expression
of 5-HT1A/B and 5-HT2B in the lungs of patients with IPF and in sufferers
of non-specific interstitial pneumonia [57]. 5-HT2A was also increased
selectively in IPF lungs and was localized to fibroblasts, whereas
5-HT2B was chiefly found at the lung epithelium. The authors also dem-
onstrated that the 5-HT2A/B antagonist terugide is a potent repressor of
fibroblast TGFβ1 expression and when administered in vivo the drug
improved lung function and decreased fibrosis when applied in a ther-
apeutic regimen to mice with established bleomycin-induced lung
disease. This latter finding confirmed earlier observations by Fabre et
al. that bleomycin-induced fibrosis is associated with increased seroto-
nin in the lung and can be attenuated by blockade of either 5-HT2A (by
ketanserin) or 5-HT2B (by SB215505) [58]. Although Pferidone has
recently been approved for the treatment of IPF it remains a deadly dis-
easewith rising incidence and as such clinical studies in IPFwith 5-HT2A
and 5-HT2B antagonists are certainly warranted.

6. Serotonin signaling in the heart

In addition to the impact of 5-HT-like drugs and carcinoid tumors on
valvularfibrosis, 5-HT receptors and transportersmay also contribute to
cardiac hypertrophy which is characterized by the loss of cardiac
myocytes, accumulation of interstitial fibroblasts and collagen deposi-
tion [59]. The importance of 5-HT in the regulation of heart structure
was demonstrated in mice lacking the 5-HT2B receptor, which are
susceptible to embryonic and neonatal death due to lack of trabeculae
in the heart [60]. Furthermore, targeted over-expression of 5-HT2B in
cardiomyocytes induces cardiac hypertrophy [61]. Collectively these
observations suggest that 5-HT/5-HT2B signalingmay act either directly
on cardiomyocytes or indirectly through other cell types via the release
of paracrine regulators.

As cardiac hypertrophy can be initiated by processes resulting
from ligands of a variety of other G protein-coupled receptors such
as the AT1 angiotensin II receptor, ETA endothelin 1 receptor and
adrenergic receptors, there is potential for 5-HT/5-HT2B signaling to
cross-talk with other hypertrophic pathways. Jaffré and colleagues
have discovered direct effects of 5-HT on ventricular fibroblasts in-
cluding production of IL-6, IL-1β and TNF-α in a 5-HT2B-dependent
manner. Adrenergic receptor stimulation has also been shown to in-
duce these hypertrophic cytokines from cardiac fibroblasts, which
are found at elevated levels in the diseased heart [62]. The study by
Jaffré modeled β-adrenergic stimulation of cardiac hypertrophy by
perfusion with isoproterenol (ISO) [63]. As expected ISO perfusion el-
evated plasma levels of IL-6, IL-1β and TNF-α, which was not seen in
5-HT2B knockout mice or wild type mice co-administered the 5-HT2B
antagonist SB206553. Moreover, SB206553 treatment or absence of
the 5-HT2B gene protected mice from ISO-induced hypertrophic
remodeling of the heart muscle. Whether these effects result from
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Fig. 1. The fibrogenic and proliferative actions of serotonin in liver homeostasis and disease. Platelet derived 5-HT stimulates hepatocyte proliferation via 5-HT2A receptors whilst in
hepatic myofibroblasts 5-HT signaling via 5-HT2B receptors enhances TGFβ1 production which promotes fibrosis and limits liver regeneration. Local production of 5-HT by
cholangiocytes inhibits their proliferation; however this autocrine negative feedback loop is suppressed by TGFβ1.
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signaling cross-talk between adrenergic ligand/receptor and 5-HT/
5-HT2B pathways in fibroblasts or may instead be due to direct signal-
ing emerging from heterodimer complexes formed between adrener-
gic and 5-HT2B receptors is still to be determined. A potential
mechanism by which 5-HT2B receptors may cross-talk with other G
protein-linked receptors is through pathways leading to ROS genera-
tion. 5-HT2B is coupled to NAD(P)H oxidase [64] which also plays a
pivotal role in physiological responses to angiotensin II/AT1 signaling.
Monassier et al. recently reported that selective antagonism of 5-HT2B
with SB215505 prevented cardiac superoxide generation and hyper-
trophy caused by infusion of either angiotensin II or ISO [65]. Hence,
these studies support the emerging role of the 5-HT2B receptor in
the control of (myo)fibroblast function and add to the growing evi-
dence that 5-HT2B antagonists may be useful in the treatment or pre-
vention of pathological cardiac remodeling.

7. Serotonin signaling in systemic sclerosis (scleroderma)

Systemic scleroderma (SSc) is a rare autoimmune disease of
unknown cause mainly affecting females with an onset between the
ages of 30–50. The disease is characterized by deposition of fibril-
forming collagen in the skin, lungs, stomach, heart and the kidneys,
with the latter being a poor prognostic factor [44]. Most SSc patients
also have vascular disease and Raynaud's phenomenon [66]. Experi-
mental studies in the 1950s revealed that 5-HT can stimulate the pro-
liferation of skin fibroblasts and that when injected subcutaneously in
rodents causes remodeling of skin in a manner that resembles skin
pathology in SSc [67]. Roddie et al. also reported in the mid-1950s
that infusion of 5-HT into brachial arteries of man induces features
of Raynaud's [68]. Scleroderma is reported in patients with carcinoid
tumors [23] and was observed following the treatment of intention
myoclorius with L-5-hydroxytryptophan and carbidopa, which was
associated with high serotonin levels [69].

The pathophysiological basis for involvement of 5-HT in SSc is
unclear; however patients suffer progressive endothelial cell damage
and this is evident before fibrosis is observed. It has been proposed
that loss of anticoagulant properties of the endothelium may trigger
platelet activation and release of 5-HT; this idea being supported by
elevated plasma levels of 5-HT in SSc [70], although others failed to
reproduce this finding [71]. A recent elegant study by Dees and col-
leagues provided stronger experimental evidence for a causative role
of platelet-derived 5-HT in scleroderma [72]. They showed that cul-
tured dermal fibroblasts from SSc patients and healthy individuals re-
spond to 5-HT by increasing their expression of collagen Ia1, collagen
1a2 and fibronectin. These effects of 5-HT on matrix synthesis were
blocked by the 5-HT2B antagonist SB 204741 or by transfected 5-HT2B
siRNAs, whereas the 5-HT2A antagonist ketanserin was without effect.
The authors also showed that broad specificity 5-HT2 inhibitors as
well as the more selective 5-HT2B antagonist SB 204741 prevent
bleomycin-induced dermal fibrosis, this being associated with reduced
numbers ofmyofibroblasts. Furthermore, SB 204741 also reduced fibro-
sis and myofibroblast transdifferentiation in the genetic tight skin1
(Tsk-1) model and similar effects were observed when Tsk-1 mice
were crossed with either 5-HT2B or Tph1 knockout mice. Intriguingly,
5-HT/5-HT2B stimulation of matrix synthesis by dermal fibroblasts
was shown to be dependent on activation of TGFβ1 gene transcription
and subsequent TGFβ1 signaling. The same group later reported that
the AP-1 transcription factor JunD, which is over-expressed in SSc skin
and cultured fibroblasts, mediates TGFβ1-induced fibroblast activation
and bleomycin-induced fibrosis [73]. These data resemble our findings
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in the diseased liver and indicate the 5-HT/5-HT2B-ERK-JunD-TGFβ
pathway in fibroblastic wound healing cells may be a core fibrogenic
signaling route in multiple organs.

8. Summary

There is now a clear pattern emerging from independent studies
in distinct organ systems that the 5-HT system activated during the
earliest phases of wound repair has a major influence on fibrogenesis.
In the context of acute injury the pro-fibrogenic and pro-regenerative
influences of 5-HT will combine to ensure optimal repair and restora-
tion of tissue architecture and function. However, in the context of
chronic disease it may be desirable to tone down the fibrogenic
actions of 5-HT. The latter may be achieved by modulating the activ-
ities of specific 5-HT receptors that trigger the activation of fibrogenic
signal transduction. While there is still much more to be learned
about the way in which the different 5-HT receptors combine to
regulate tissue repair there is already sufficient pre-clinical data to
warrant clinical investigations with antagonists of the 5-HT2 recep-
tors. As discussed, 5-HT2 receptors have been strongly implicated as
drivers of fibrosis in heart valves, lung, skin and liver, plus they are
stimulators of the expression of TGFβ. 5-HT2 receptor antagonists
are safe in man, are already in clinical trials for PAH [74] and should
now be advanced into trials for fibrosis.
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