
Biochimica et Biophysica Acta 1822 (2012) 1553–1561

Contents lists available at SciVerse ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbad is
Neuroprotection by lowering cholesterol: A decrease in membrane cholesterol
content reduces transporter-mediated glutamate release from brain nerve terminals

N. Krisanova, R. Sivko, L. Kasatkina, T. Borisova ⁎
The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine
Abbreviations: MβCD, methyl-β-cyclodextrin; GDH
DL-THA, DL-threo-β-hydroxyaspartate; DL-TBOA, DL-
FCCP, cyanide-p-trifluoromethoxyphenyl-hydrazon
⁎ Corresponding author. Tel.: +380 44 234 3254; fax

E-mail address: tborisov@biochem.kiev.ua (T. Boriso

0925-4439/$ – see front matter © 2012 Elsevier B.V. All
doi:10.1016/j.bbadis.2012.06.005
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 7 March 2012
Received in revised form 22 May 2012
Accepted 11 June 2012
Available online 17 June 2012

Keywords:
Neuroprotection
Cholesterol
Methyl-β-cyclodextrin
Ambient glutamate
Transporter-mediated glutamate release
Synaptosomes
Background: In our earlier work, a reduction of cholesterol content increased the extracellular glutamate
level in rat brain nerve terminals (synaptosomes) that was a result of the lack of transporter-mediated glu-
tamate uptake. The aim of this study was to assess transporter-mediated release of glutamate from
cholesterol-deficient synaptosomes. In stroke, cerebral hypoxia/ischemia, and traumatic brain injury, the
development of neurotoxicity is provoked by enhanced extracellular glutamate, which is released from
nerve cells mainly by glutamate transporter reversal — a distinctive feature of these pathological states.
Methods: Laser scanning confocal microscopy, spectrofluorimetry, radiolabeled assay, and glutamate de-
hydrogenase assay. Results: Cholesterol acceptor methyl-β-cyclodextrin (15 mM) reduced the cholesterol
content in the synaptosomes by one quarter. Transporter-mediated glutamate release from synaptosomes:
1) stimulated by depolarization of the plasma membrane; 2) by means of heteroexchange with competi-
tive transportable inhibitor of glutamate transporters DL-threo-β-hydroxyaspartate; 3) in low [Na+] medi-
um; and 4) during dissipation of the proton gradient of synaptic vesicles by the protonophore cyanide‐p‐
trifluoromethoxyphenyl‐hydrazon (FCCP); was decreased under conditions of cholesterol deficiency by
~24, 28, 40, and 17%, respectively. Conclusions: A decrease in the level of membrane cholesterol attenuated
transporter-mediated glutamate release from nerve terminals. Therefore, lowering cholesterol may be
used in neuroprotection in stroke, ischemia, and traumatic brain injury which are associated with an in-
crease in glutamate uptake reversal. This data may explain the neuroprotective effects of statins in these
pathological states and provide one of the mechanisms of their neuroprotective action. However, beside
these disorders, lowering cholesterol may cause harmful consequences by decreasing glutamate uptake
in nerve terminals.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Glutamate is not only a key excitatory neurotransmitter in the
mammalian CNS, but also a potent neurotoxin. In stroke, cerebral
hypoxia/ischemia, hypoglycemia, and traumatic brain injury, the de-
velopment of neurotoxicity is provoked by an increase in the concen-
tration of extracellular glutamate. Excessive extracellular glutamate
overstimulates glutamate receptors initiating an excessive calcium
entry through mainly N-methyl-D-aspartate ionotropic receptors,
causing excitotoxicity, neuronal injury and death. In norm, extracellu-
lar glutamate between episodes of exocytotic release of the neuro-
transmitter is maintained at a low level, thereby preventing
continual activation of glutamate receptors and protecting neurons
from excitotoxic injury [1]. The enzymes for glutamate degradation
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have not been found in the synaptic cleft, so it is the only possibility
to maintain a low extracellular glutamate concentration that is real-
ized by high-affinity Na+-dependent glutamate transporters through
neurotransmitter uptake in neurons and glial cells. They use Na+/K+

electrochemical gradients across the plasma membrane as a driving
force [2]. However, glutamate transporters can also act in the out-
ward direction, so their function is reversible. Under conditions of en-
ergy deprivation and failure of the electrochemical gradient of the
plasma membrane, glutamate transporters change the direction of
their work and start to release the neurotransmitter into the extracel-
lular space. A decrease in extracellular [Na+] and/or intracellular [K+]
as well as an increase in extracellular [K+] and/or intracellular [Na+]
and/or intracellular [Glu] in nerve terminals thermodynamically favor
glutamate transport in the outward direction. It should be noted that
transporter-mediated release is the main mechanism underlying the
enhancement of the extracellular glutamate concentration under
pathological conditions such as stroke, cerebral hypoxia/ischemia, hy-
poglycemia, and traumatic brain injury [3–5]. Kinetic data predicts
that glutamate release through reverse transport can be dramatic be-
cause 1 μm2 of neuronal cell membrane can release 140,000
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molecules of glutamate per second at an elevated extracellular [K+]
of 50 mM and reduced [Na+] of 50 mM (Vm=−40 mV) [6]. Neuro-
nal glutamate transporters are more reversible in comparison with
the glial ones. While the neuronal glutamate transporters are
functionally converted from an uptake-predominant to a release-
predominant state by a reduction in [Na+] from 145.2 mM to about
60 mM, uptake of glutamate by glial GLT-1 is maintained [7]. There-
fore, transporter-mediated glutamate release from the neurons main-
ly contributes to an increase in ambient glutamate concentration
under pathological conditions.

As glutamate transporters are integralmembrane proteins, their func-
tion is tightly associated with the plasma membrane, and thus can be
modulated by changes in its physical and chemical properties. Certain
level of membrane cholesterol, which is an abundant constituent of
eukaryotic membranes, is very important for normal functioning of a
number of membrane proteins involved in synaptic transmission, such
as ion channels, pumps, receptors and transporters [8–10]. Cholesterol
depletion differently influences transporter-mediated glutamate uptake
inmouse brain plasmamembrane vesicles, rat brain nerve terminals, pri-
mary cortical cultures and in hippocampal astrocytes [8,11,12]. Exocytotic
release of glutamate from nerve terminals is significantly decreased after
depletion of membrane cholesterol [10,13,14].

So, the changes in glutamate uptake and exocytotic release of glu-
tamate in nerve terminals as well as the functioning of ion channels
under conditions of cholesterol deficiency are well documented in
the literature. In contrast, non-exocytotic transporter-mediated glu-
tamate release from nerve terminals, the main mechanism of gluta-
mate release in stroke, cerebral hypoxia/ischemia, and traumatic
brain injury, is not yet assessed. It is clear that a delay in elevation
of ambient glutamate has a potential for preventing brain damage
under these pathological states. The main question we ask is how re-
duced cholesterol content of neuronal membrane can modulate the
pathogenic mechanisms underlying neurotoxicity? In addition, as
cholesterol depletion decreases glutamate uptake, whether it also
influences glutamate transporter reversal. In cholesterol-deficient
nerve terminals, we assessed transporter-mediated release of gluta-
mate: (*) stimulated by the depolarization of the plasma membrane;
(**) by heteroexchange with transportable inhibitor of glutamate
transporters DL-threo-β-hydroxyaspartate (DL-THA); (***) in low-
Na+ medium; (****) during dissipation of the proton gradient of syn-
aptic vesicles; (*****) under conditions of energy deprivation.

This study is also of interest because of increasing evidence that
statins (widely applicable cholesterol-reducing drugs that reduced
the membrane cholesterol level in the brain [15,16]) have neuro-
protective features under several pathological conditions, including
stroke, cerebral ischemia, traumatic brain injury, and excitotoxic
amino acid exposure [17–20]. The exact molecular mechanisms un-
derlying these findings remain poorly understood.

2. Materials and methods

2.1. Isolation of rat brain nerve terminals (synaptosomes)

Wistar rats (males; 100–120 g body weight from the vivarium of
M.D. Strazhesko Institute of Cardiology, Medical Academy of Sciences
of Ukraine) were maintained in accordance with the European Guide-
lines and International Laws and Policies. Animals were kept in the
animal facilities of the Palladin Institute of Biochemistry National
Academy of Sciences of Ukraine, Kiev. They were housed in a quiet,
temperature-controlled room (22–23 °C) and were provided with
water and dry food pellets ad libitum. All procedures conformed to
the guidelines of the Palladin Institute of Biochemistry. The cerebral
hemispheres of decapitated animals were rapidly removed and ho-
mogenized in ice-cold 0.32 M sucrose, 5 mM HEPES–NaOH, pH 7.4
and 0.2 mM EDTA (Sigma, U.S.A.). Synaptosomes were prepared by
differential and Ficoll-400 (Amersham, UK) density gradient
centrifugation of rat brain homogenate according to the method of
[21] with slight modifications. All manipulations were performed at
4 °C. The synaptosomal suspensions were used in experiments during
2–4 h after isolation. The standard salt solution was oxygenated and
contained (in mM): NaCl 126; KCl 5; MgCl2 2.0; NaH2PO4 1.0 (all
salts were from Reachim, Ukraine); HEPES 20 (Sigma, U.S.A.); pH
7.4 and D-glucose 10 (Sigma, U.S.A.). The Ca2+-supplemented medi-
um contained 2 mM CaCl2 (Reachim, Ukraine). The Ca2+-free medi-
um contained 1 mM EGTA (Sigma, U.S.A.) and no added Ca2+.
Protein concentration was measured as described by [22].

2.2. The treatment of nerve terminals with methyl-β-cyclodextrin
(MβCD) and the determination of cholesterol concentration

The treatment of synaptosomes with 15 mM MβCD (Sigma, U.S.A.)
(37 °C, 30 min) was carried out in standard oxygenated salt solution,
then synaptosomal suspension was washed with 10 volumes of ice-cold
standard salt solution, sedimented, and then the pellet was resuspended
in this solution to a final concentration of 1 mg protein/ml and immedi-
ately used in the experiments. Control synaptosomeswere simultaneous-
ly incubatedwithoutMβCD for 30 min at 37 °C, and then also subjected to
washing procedure similarly with MβCD experiments. MβCD complexed
with cholesterol (15 mM MβCD and 2.3 mM cholesterol; Sigma, U.S.A.)
was prepared as described by [23]. The treatment of synaptosomes by
MβCD/cholesterol complex was similar with the abovementioned.

The extraction of lipids from the aliquots of synaptosomal suspen-
sion of untreated (control), MβCD-treated and MβCD/cholesterol-
treated samples was performed according to [24]. Quantitative deter-
mination of cholesterol level was carried out according to [25].

2.3. Confocal imaging of filipin-labeled nerve terminals

We used the fluorescent probe filipin, which binds to membrane
cholesterol [26], to clarify the alterations in membrane cholesterol
content of synaptosomes. The fluorescent dye filipin (50 μg/ml)
(Sigma, U.S.A.) was administered to synaptosomal suspension (final
protein concentration of 0.2 mg/ml). Filipin-labeled synaptosomes
were evaluated under the confocal laser scanning microscope LSM
510 META, Carl Zeiss, objective Plan-Apochromat 100×/1.4 Oil DIC,
405 nm excitation and >505 nm emission. For confocal imaging,
1 μl of filipin-labeled synaptosomal suspension (0.2 mg/ml) was
squashed and spread between two glass surfaces. Filipin-labeled
synaptosomes were viewed in the absence of MβCD, then 1 μl of
MβCD stock solution (30 mM) was added to the thin layer of
synaptosomal suspension through the hole in the upper glass at 5 s
time point after starting the time series and fluorescence images
were captured with camera in each 5 s.

2.4. L-[14C]Glutamate release experiments

Control, MβCD- or MβCD/cholesterol-treated synaptosomes were
diluted in standard salt solution to 2 mg of protein/ml and after pre-
incubation at 37 °C for 10 min were loaded with L-[14C]glutamate
(1 nmol/mg of protein, 238 mCi/mmol) (Amersham, UK) in Ca2+-
supplemented oxygenated standard salt solution at 37 °C for
10 min. After loading, the suspension was washed with 10 volumes
of ice-cold oxygenated standard salt solution; the pellet was
resuspended in this solution to a final concentration of 1 mg pro-
tein/ml and immediately used for release experiments. Release of L-
[14C]glutamate from synaptosomes was performed in Ca2+-free incu-
bation medium according to the following method: samples (125 μl
of the suspension, 0.5 mg of protein/ml) were incubated for different
time intervals within the range 0–6 min at 37 °C and rapidly
sedimented in a microcentrifuge (20 s at 10,000×g). Release was
measured in the aliquots of the supernatants (100 μl) and the pellets
by liquid scintillation counting with scintillation cocktail ACS (1.5 ml)
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(Amersham, UK). Total synaptosomal L-[14C]glutamate content was
equal to 200,000±15,000 cpm/mg protein. Release of the neuro-
transmitter from synaptosomes incubated without stimulating agents
was used for assay of tonic (basal) release. Stimulated release of the
neurotransmitter was calculated by subtracting the basal value from
the value of total release.

2.5. Glutamate dehydrogenase assay: the assessment of the extracellular
level and release of endogenous glutamate from nerve terminals

The changes in the extracellular level of glutamate in the synapto-
somes were detected using glutamate dehydrogenase assay [27,28].
In the presence of glutamate, glutamate dehydrogenase reduced β-
nicotinamide adenine dinucleotide (NAD+) to NADH, a product that
fluoresces, when excited with UV light. Synaptosomes (0.5 mg/ml of
final protein concentration) were added to an enzymatic assay solu-
tion, which was composed of the standard salt saline, glutamate de-
hydrogenase (20 U/ml) (Sigma, U.S.A.) and NAD+ (1 mM) (Sigma,
U.S.A.) and preincubated at 37 °C for 10 min. Fluorescence intensity
of NADH was measured in a stirred thermostated cuvette (37 °C) at
Hitachi MPF-4 spectrofluorimeter at excitation and emission wave-
lengths of 340 and 460 nm, respectively (slit bands were of 5 nm).
Endogenous glutamate released from the synaptosomes to the incu-
bation media was detected as an increase in NADH fluorescence.

To analyze transporter-mediated glutamate release, synapto-
somes were preloaded with cold glutamate (50 μM) at 37 °C for
10 min, then the procedures were similar with those in the experi-
ments with L-[14C]glutamate. The concentration of cold glutamate in
the aliquots of the supernatants was determined based on the value
of NADH fluorescence in each probe.

In all experiments, glutamate was added to the synaptosomes at
the end of the measurements to calibrate the activity of glutamate
dehydrogenase.

2.6. Statistical analysis

Results were expressed as mean±S.E.M. of n independent experi-
ments. Difference between two groups was compared by two-tailed
Student's t-test. Differences were considered significant when Р≤0.05.

3. Results

3.1. Cholesterol concentration in nerve terminals after treatment with
methyl-β-cyclodextrin (MβCD)

Cyclic oligosaccharide MβCD, which is composed of a lipophilic
cavity and hydrophilic outer surface, effectively extracts cholester-
ol from the membranes of a variety of cells [8,12,14,29–31]. We
used isolated brain nerve terminals (synaptosomes), which retain
all features of intact nerve terminals, e.g., ability to maintain the
membrane potential, exocytotic and transporter-mediated release
as well as accomplish uptake of neurotransmitters. Quantitative as-
sessment of cholesterol concentration (see Materials and methods)
showed that the treatment of synaptosomes with 15 mM MβCD for
half an hour reduced the cholesterol level from 0.095±0.004 μmol
of cholesterol/mg of protein in the control to 0.075±0.002 μmol of
cholesterol/mg of protein after the treatment with the acceptor
(Р≤0.05, Student's t-test, n=4) (Fig. 1, A). Whereas, cholesterol
content of synaptosomes treated with MβCD complexed with cho-
lesterol (2.3 mM cholesterol in 15 mM MβCD) was not changed
considerably, thereby making these synaptosomes appropriate for
using as an additional control in the analysis of changes associated
with cholesterol deficiency. We confirmed the above data using
confocal laser scanning microscopy with the fluorescent probe
filipin, which binds to membrane cholesterol [26]. The profiles of
the fluorescence intensity of filipin represented in Fig. 1, B showed
that MβCD quickly and effectively extracted cholesterol from the
synaptosomes.

3.2. The extracellular level of glutamate in cholesterol-deficient nerve
terminals

As it wasmentioned in the Introduction, the certain level of ambient
glutamate is very important for proper synaptic transmission, whereas
an increase in this level causes neurotoxicity [1,32,33]. In our recent
studies, we revealed that the extracellular level of preloaded L-[14C]glu-
tamate became one third higher after the treatmentwith 15 mMMβCD
and consisted of 0.193±0.013 nmol/mg protein in the control and
0.282±0.013 nmol/mg protein in MβCD-treated synaptosomes
(Р≤0.05, Student's t-test, n=8) [12]. The extracellular glutamate con-
centration is determined by a balance between glutamate uptakemedi-
ated by Na+-dependent glutamate transporters and tonic release of
glutamate. Tonic release of L-[14C]glutamate (in the presence of DL-
threo-β-benzyloxyaspartate (DL-TBOA) in the incubation media) was
decreased from0.075270±0.005785 nmol/mg of protein in the control
to 0.047285±0.005785 nmol/mg of protein in MβCD-treated synapto-
somes (Р≤0.05, Student's t-test, n=4). Glutamate dehydrogenase
assay (see Materials and methods) was also used for the assessment
of the extracellular level and tonic release of endogenous glutamate in
cholesterol-deficient nerve terminals. As shown in Fig. 2, A, the ambient
level of endogenous glutamatewas ~35%higher in cholesterol-deficient
nerve terminals in comparison with the control ones. Tonic release of
endogenous glutamate from the synaptosomes was measured starting
from 3 min time point when the most of ambient glutamate was
converted to α-ketoglutarate by glutamate dehydrogenase. In
cholesterol-deficient nerve terminals, tonic release of endogenous glu-
tamate was decreased by ~25% at 1 min time point in comparison
with the control (Fig. 2, B). For the analysis of the effect of MβCD per
se irrespective to cholesterol accepting capacity, we used 15 mM
MβCD complexed with cholesterol (2.3 mM). The application of this
complex caused insignificant changes in the extracellular glutamate
level and tonic release of glutamate from the synaptosomes as com-
pared to the control. Thus, the results of the assessment of the extracel-
lular level and tonic release of glutamate from cholesterol-deficient
synaptosomes obtained with glutamate dehydrogenase assay were in
accordance with our data on radiolabeled glutamate.

3.3. Stimulated by depolarization of the plasma membrane transporter-
mediated release of glutamate from cholesterol-deficient nerve terminals

Depolarization of the plasmamembrane of nerve terminals by high-
KCl in Ca2+-free medium causes reversal of glutamate transporters and
release of glutamate from the cytosol. The value of transporter-
mediated release of L-[14C]glutamate from the synaptosomesmeasured
at 3 min time point was decreased by ~24% after cholesterol extraction
with 15 mM MβCD that equals to 0.101325±0.006750 nmol/mg of
protein in the control and 0.0772±0.0048 nmol/mg of protein in cho-
lesterol deficiency (Р≤0.05, Student's t-test, n=5) (Fig. 3, A). (Howev-
er, at 6 min time point it was equal to 0.141855±0.008865 nmol/mg of
protein in the control and 0.136065±0.008865 nmol/mg of protein in
MβCD‐treated synaptosomes). Similar to the previous section, the ap-
plication of 15 mM MβCD complexed with cholesterol (2.3 mM) did
not induce changes in transporter-mediated release of L-[14C]glutamate
from the synaptosomes as compared to the control. Thus, data on high-
KCl-evoked transporter-mediated release of L-[14C]glutamate from the
synaptosomes showed that the initial velocity of this release was de-
creased under conditions of cholesterol deficiency.

To measure net transporter-mediated release of glutamate from
cholesterol-depleted synaptosomes in these experiments, it
was plausible to inhibit glutamate uptake in order to neglect its
contribution. It is so because released glutamate is continuously re-
moved from the extracellular medium by glutamate transporters



Fig. 1. (А) A decrease in the concentration of cholesterol in nerve terminals after treatment with MβCD (15 mM) at 37 °C for 30 min. Quantitative determination of cholesterol level
was carried out according to Zlatkis et al. [25]. Data are means±SEM of four independent experiments. *, Р≤0.05 as compared to the control. (B) The profiles of the fluorescence
intensity of cholesterol-sensitive fluorescent dye filipin recorded from the confocal images of filipin-labeled synaptosomes following the addition of MβCD.
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with different effectiveness in the control and cholesterol deficiency. In
this case, the application of glutamate transporter inhibitors is not
possible because non-transportable one DL-TBOA attenuates as direct
as reversed transport of glutamate, whereas transportable inhibitor
DL-threo-beta-hydroxyaspartate (DL-THA) causes release of glutamate
by means of heteroexchange. Weak uptake shown in cholesterol-
depleted nerve terminals should increase the extracellular glutamate
concentration, and thus the apparent release of L-[14C]glutamate.
Therefore, it was reasonable to analyze depolarization-evoked
transporter-mediated release of endogenous glutamate from cholester-
ol‐deficient synaptosomes using glutamate dehydrogenase assay. Un-
fortunately, we clarified that this release could not be registered in the
synaptosomes after the treatment with MβCD (however, the rest of
the tonic release was detected under these conditions, see the previous
section). It is so because the treatment with MβCD for 30 min followed
by washing procedure with 10 volumes of standard solution (see
Materials and methods) led to the removal of the large amount of en-
dogenous glutamate from the synaptosomes. This data is in accordance
with our recent study that the addition of 15 mMMβCD caused dissipa-
tion of the proton gradient of synaptic vesicles andmassive release of L-
[14C]glutamate from the synaptosomes [14].

So, we preloaded cold (non-radioactive) glutamate to MβCD-treated
synaptosomes and measured depolarization-evoked transporter-
mediated release of the neurotransmitter using glutamatedehydrogenase
assay. As shown in Fig. 3, B, stimulated by high-KCl synaptosomal gluta-
mate release in Ca2+-free medium for 6 min was decreased after choles-
terol depletion and consisted of 3.3333±0.3400 nmol/mg of protein in
the control and 1.5606±0.1600 nmol/mg of protein in cholesterol defi-
ciency (Р≤0.05, Student's t-test, n=5). This data was in accordance
with the above results obtained with radioactive L-[14C]glutamate
(Fig. 3, A), where we demonstrated a significant decrease in the velocity
of transporter-mediated L-[14C]glutamate release at 1 and 3 min time
points under conditions of cholesterol deficiency. However, the difference
in this release between the control and cholesterol-deficient synapto-
somes presented in Fig. 3, A (6 min point) was not so significant as in
Fig. 3, B. It is so because of the existence of L-[14C]glutamate uptake,
which, in addition, is more effective in the control than in MβCD‐treated
synaptosomes [12,14]. In contrast, glutamate dehydrogenase experi-
ments showed “pure” transporter-mediated release,when releasedgluta-
mate was metabolized by the enzyme.

3.4. Release of glutamate from cholesterol-deficient nerve terminals by
means of heteroexchange

In this set of the experiments, we evaluated the release of L-[14C]
glutamate by means of heteroexchange with transportable inhibitor
of glutamate transporters DL-THA, which is a substrate for glutamate
transporters that competitively inhibits glutamate uptake, but does



Fig. 2. (A) The extracellular level of endogenous glutamate in control (black line) and
cholesterol-deficient (gray line) rat brain synaptosomes; (B) Tonic release of endoge-
nous glutamate from control (black line) and cholesterol-deficient (gray line) rat
brain synaptosomes assessed with glutamate dehydrogenase assay. Control and
15 mMMβCD-treated synaptosomal suspension (0.5 mg/ml of final protein concentra-
tion) was added to an enzymatic assay solution containing glutamate dehydrogenase
(GDH). The extracellular level and tonic release (starting from 3 min time point) of en-
dogenous glutamate in synaptosomes were measured by the changes in NADH fluores-
cence (excitation and emission wavelengths of 340 and 460 nm, respectively). Trace is
representative of three independent experiments.

Fig. 3. Stimulated by high-KCl (35 mM) transporter-mediated release of preloaded
L-[14C]glutamate (A) and cold glutamate (glutamate dehydrogenase assay)
(B) from control synaptosomes (solid line in A; empty column in B) and synapto-
somes preliminary treated with 15 mM MβCD (dashed line in A; dotted column
in B). Control and MβCD-treated synaptosomes were loaded with L-[14C]glutamate
(1 nmol/mg of protein, 238 mCi/mmol) (A) or 50 μM cold glutamate (B) as
described in Materials and methods. After loading, samples (0.5 mg of protein/
ml) were preincubated for 8 min at 37 °C, then at different time points the aliquots
of the samples were centrifuged and L-[14C]glutamate radioactivity was determined
(A) or fluorescence intensity of NADH was measured at 6 min time point using glu-
tamate dehydrogenase assay (B). Data are means±SEM of five independent exper-
iments, each performed in triplicate. *, Р≤0.05 as compared to the control.
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not prevent molecular transport mechanism. Heteroexchange and
transporter-mediated release of glutamate have a common rate-
limiting step in the transport process, and so heteroexchange may
be used for the evaluation of transporter-mediated release of gluta-
mate [34].

It was revealed that release of L-[14C]glutamate by heteroexchange
with 100 μM DL-THA was decreased (by ~28%) at 6 min time point from
0.137995±0.009650 nmol/mg of protein to 0.099395±0.008680 nmol/
mg of protein as a result of the treatment of nerve terminals with
15 mM MβCD (Р≤0.05, Student's t-test, n=4) (Fig. 4). Using MβCD
complexed with cholesterol (2.3 mM cholesterol in 15mM MβCD), it
was shown that the treatment with the complex did not change signifi-
cantly heteroexchange of L-[14C]glutamate with DL-THA in comparison
with the control (Fig. 4). As release of glutamate by heteroexchange is
justified for the evaluation of transporter-mediated glutamate release,
we confirmed that the latest was decreased under conditions of cho-
lesterol deficiency. This result is in accord with the above data on stimu-
lated by depolarization transporter-mediated release of glutamate from
cholesterol-depleted synaptosomes.

3.5. Glutamate release in low-Na+ medium from cholesterol-deficient
nerve terminals

As was mentioned earlier, Na+/K+ gradient is a driving force for
glutamate uptake by transporters, and thus a reduction in the
extracellular Na+ concentration (up to 21 mM) is expected to inhibit
uptake and facilitate the reversal of transporters resulting in the release
of cytoplasmic glutamate into the extracellular space. Using monova-
lent organic cations N-methyl-D-glucamine (NMDG) to replace
extracellular Na+, we revealed that L-[14C]glutamate release for 6 min
was equal to 0.066585±0.005790 nmol/mg of protein in the control
and 0.039565±0.005790 nmol/mg of protein in the cholesterol-
depleted synaptosomes (Р≤0.05, Student's t-test, n=4) (Fig. 5). In
synaptosomes treated with 15 mM MβCD complexed with cholesterol
(2.3 mM), we did not find changes in L-[14C]glutamate release in low-
Na+ medium as compared to the untreated control. Thus, it was dem-
onstrated that the value of L-[14C]glutamate release from cholesterol-
deficient nerve terminals in low-Na+ medium was lesser than that
from the control.

3.6. Transporter-mediated glutamate release from cholesterol-deficient
nerve terminals during dissipation of the proton gradient of synaptic
vesicles

A principal assumption in the use of the protonophore carbonyl
cyanide-p-trifluoromethoxyphenyl-hydrazon (FCCP) is the ability to

image of Fig.�2
image of Fig.�3


Fig. 4. Release of L-[14C]glutamate by means of heteroexchange stimulated by trans-
portable inhibitor of glutamate transporters DL-THA (100 μM) (Sigma, U.S.A.) from con-
trol synaptosomes (solid line) and cholesterol-deficient synaptosomes (dashed line).
After loading of control and MβCD-treated synaptosomes with L-[14C]glutamate (see
Materials and methods), samples (0.5 mg of protein/ml) were preincubated for 8 min
at 37 °C, at 1, 3 and 6 min time points, the aliquots of the samples were centrifuged.
Data are means±SEM of four independent experiments, each performed in triplicate.
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dissipate the proton gradient and inhibit uptake of glutamate by
synaptic vesicles [35–37]. These conditions should favor an augmen-
tation of transporter-mediated (and also tonic) L-[14C]glutamate
release from nerve terminals. Recently, we have shown that FCCP-
evoked L-[14C]glutamate release from nerve terminals was signifi-
cantly inhibited by DL-TBOA, so this release was mediated by
glutamate transporters [38]. In this set of the experiments, we
assessed L-[14C]glutamate release from the control and cholesterol-
depleted synaptosomes during application of FCCP and revealed
that it was less in cholesterol deficient as compared to the control.
As shown in Fig. 6 (the first pair of columns), FCCP-evoked release of
L-[14C]glutamate for 6 min was equal to 0.101711±0.004300 nmol/mg
of protein in the control and 0.084534±0.004300 nmol/mg of protein
in the cholesterol-deficient synaptosomes (Р≤0.05, Student's t-test,
n=4). We applied high-KCl at 5 min time point after addition of FCCP
to expand further synaptosomal transporter-mediated release of L-[14C]
glutamate. It was revealed that cholesterol deficiency decreased the lat-
est from 0.127187±0.004300 nmol/mg of protein in the control to
Fig. 5. Release of L-[14C]glutamate from control (empty column) and cholesterol-
depleted (dotted column) synaptosomes in low-Na+ (21 mM Na+, 105 mM NMDG;
Sigma, U.S.A.), Ca2+-free incubation media for 6 min. After loading of control and
MβCD-treated synaptosomes with L-[14C]glutamate (see Materials and methods), sam-
ples (0.5 mg of protein/ml) were preincubated for 8 min at 37 °C, then incubated for
6 min, rapidly sedimented in a microcentrifuge. Data are means±S.E.M. of four inde-
pendent experiments, each performed in triplicate. *, Р≤0.05 as compared to the
control.
0.111458±0.004300 nmol/mg of protein in MβCD-treated synapto-
somes (Р≤0.05, Student's t-test, n=4) (Fig. 6, the second pair of
columns).

3.7. Transporter-mediated glutamate release from cholesterol-deficient
nerve terminals under conditions of energy deprivation

In energy deprivation experiments, we used iodoacetate (a potent in-
hibitor of G3P dehydrogenase) and rotenone (inhibitor of mitochondrial
complex I)/oligomycin (inhibitor of ATP synthase). Similar to theprevious
section, we added high-KCl at 7 min time point after addition of
iodoacetate or rotenone/oligomycin to expand transporter-mediated re-
lease of L-[14C]glutamate and measure its initial velocity. As shown in
Fig. 7 (the first and second columns), after application of iodoacetate
(1 mM) and KCl (35 mM) to synaptosomes transporter‐mediated release
of L-[14C]glutamate for 10 min was decreased from 0.14668±
0.01000 nmol/mg of protein in the control to 0.0801±0.00800 nmol/mg
of protein in the cholesterol-deficient synaptosomes (15mM MβCD)
(Р≤0.05, Student's t-test, n=3). The treatment of synaptosomes with
rotenone/oligomycin (4 μM/4 μg/ml, respectively) and KCl (35 mM)
resulted in a reduction of transporter‐mediated release of L-[14C]gluta-
mate from 0.14282±0.00500 nmol/mg of protein in the control to
0.11725±0.00400 nmol/mg of protein in the cholesterol-deficient syn-
aptosomes (Р≤0.05, Student's t-test, n=4) (Fig. 7, the third and fourth
columns).

4. Discussion

In stroke, cerebral hypoxia/ischemia, traumatic brain injury and
energy deprivation, glutamate is released from the nerve terminals
into the extracellular space via glutamate transporters, thereby caus-
ing neurotoxicity, whereas beside these pathological states trans-
porters predominantly operate in the inward direction. An increase
in transporter-mediated release, and thus the extracellular level of
the neurotransmitter may alter the functioning of NMDA receptors,
which contributes to cognitive capacities and pathology [39]. Since
the activity of glutamate transporters in the inward direction is de-
creased in cholesterol deficiency, we hypothesized that their reverse
function could also be attenuated. Using cholesterol-deficient rat
brain nerve terminals and applying radiolabeled technique and gluta-
mate dehydrogenase assay (see Materials and methods), we have
shown a decrease in transporter-mediated release of glutamate: (*)
stimulated by the depolarization of the plasma membrane; (**) by
means of heteroexchange with DL-THA; (***) in low-Na+ medium;
(****) during dissipation of the proton gradient of synaptic vesicles;
(*****) under conditions of energy deprivation. As transporter-
mediated release of glutamate from nerve cells determines the devel-
opment of excitotoxicity in stroke, cerebral hypoxia/ischemia, and
traumatic brain injury, we consider that the lowering of the level of
membrane cholesterol, which attenuates the velocity of release, can
have neuroprotective effect in these pathological states. It is clear
that the lesser the transporter-mediated glutamate release is, the
slower the development of neurotoxicity. The data of Abulrob et al.
[40], who showed the neuroprotective activity of MβCD against
oxygen-glucose deprivation in cortical neuronal cultures, may sup-
port our suggestion.

One of themain uncertainties of this study is the fact that in the exper-
iments with radiolabeled glutamate, a decrease in transporter-mediated
glutamate release from cholesterol-deficient nerve terminals has been
registered against a background of enhanced extracellular glutamate
concentration. Since transporter-mediated release of glutamate depends
from the ratio gluint/gluex, a decrease in the ratio per se may attenuate
this release because of thermodynamic reasons. Also, cholesterol deficien-
cy reduces the initial velocity of glutamate uptake [8,12] that may bring
inaccuracy to the measurements. However, in the pathologies
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Fig. 6. Release of L-[14C]glutamate in the presence of the protonophore FCCP (1 μM) (Sigma, U.S.A.) and FCCP+KCl (1 μM, 35 mM, respectively) from control (empty columns) and
cholesterol-deficient (dotted columns) nerve terminals. After loading of the control and MβCD-treated synaptosomes with L-[14C]glutamate (see Materials and methods), samples
(0.5 mg of protein/ml) were preincubated for 8 min at 37 °C, then incubated for 6 min and rapidly sedimented in a microcentrifuge (FCCP-experiments). In FCCP+KCl experiments,
KCl was added at 5 min time point after addition of FCCP, then synaptosomes were incubated for 6 min and rapidly sedimented. Data are means±S.E.M. of four independent ex-
periments, each performed in triplicate. *, Р≤0.05 as compared to the control.
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accompanied by glutamate uptake reversal, glutamate transporter activi-
ty in the inward direction can be negligible.

We suggest that the attenuation of transporter-mediated gluta-
mate release from nerve terminals in cholesterol deficiency is a result
of the reduction in the activity of glutamate transporters per se in re-
sponse to the changes in the lipid surroundings. Butchbach et al. [8]
reported that a loss of cholesterol led to the disturbance in cluster or-
ganization of glutamate transporters and changes in their trafficking
in primary cortical cultures. Up- and down-regulations of glutamate
transporter activity by exocytosis-like trafficking of transporter-
containing vesicles [41] may be also affected in cholesterol deficiency
because of the changes in the exocytotic process [10,13,14].

Our data may explain neuroprotective properties of widely applica-
ble cholesterol-reducing drugs, statins, which are selective inhibitors of
Fig. 7. Release of L-[14C]glutamate in the presence of iodoacetate (IAA) and KCl (1 mM
and 35 mM, respectively) (the first and second columns) and rotenone/oligomycin
(RO) and KCl (4 μM/4 μg/ml and 35 mM, respectively) (the third and fourth columns)
from control (clear columns) and cholesterol-deficient (dotted columns) nerve termi-
nals. After loading of the control and MβCD-treated synaptosomes with L-[14C]gluta-
mate (see Materials and methods), samples (0.5 mg of protein/ml) were
preincubated for 7 min at 37 °C with iodoacetate or rotenone/oligomycin, then after
addition of KCl were incubated for 3 min and rapidly sedimented in a microcentrifuge.
Data are means±S.E.M. of three independent experiments, each performed in tripli-
cate. *, Р≤0.05 as compared to the control.
3-hydroxyl-3-methyl-glutaryl coenzyme A reductase, the rate-limiting
enzyme of themevalonate pathway for cholesterol biosynthesis. Recent
data of the literature showed that the treatmentwith statins diminished
the level of cholesterol in the brain [15]. Sierra et al. [16] found that
monacolin J derivatives (natural and semi-synthetic statins) were the
best candidates for the prevention of neurodegeneration due to their
high capacity for brain–blood barrier penetration and cholesterol low-
ering effect on neurons. Increasing evidence indicates that statins, e.g.
simvastatin, atorvastatin, and pravastatin, may be beneficial during
acute stroke as well as post-ischemically in animal models and have
neuroprotective features under conditions of cerebral ischemia, trau-
matic brain injury, and excitotoxic amino acid exposure [42–47].
Funck et al. [17] demonstrated that atorvastatin treatment had effects
on pentylenetetrazol-induced seizures. Berger et al. [44] showed that
relatively high dose of pravastatin administered repetitively after stroke
onset improved neurological outcome. Sironi et al. [43] found that the
treatment with statins after induction of focal ischemia in rats reduced
the extent of brain damage. In summary, the data of the literature sug-
gest that statins activate neuroprotective mechanisms, however its na-
ture is far from being clear.

Several hypotheses on the possible mechanisms of the neuro-
protective effect of statins are forwarded. The first ones consider
that the neuroprotective action of statins is independent of cholester-
ol reduction. There are evidences that statins act on the nitric oxide
synthase system [48] and inhibit release of potentially damaging cy-
tokines such as IL-6 in the early phase of cerebral ischemia [44]. It
may involve non-sterol mechanisms based on the effects on the en-
dothelial cells, macrophages, platelets and smooth muscle cells
[44,49]. The other point of view is that statins and MβCDs protect
neurons from death changing excessive stimulation of NMDA recep-
tors [18,39,50,51]. Ponce et al. [52] demonstrated that a decrease in
cholesterol level by simvastatin in primary neuronal cultures protec-
ted from NMDA-induced neuronal damage probably by reducing the
association of NMDA receptors to lipid rafts. Abulrob et al. [40] also
suggested that cholesterol extraction from detergent-resistant micro-
domains affected NMDA receptor subunit distribution and signal
propagation resulting in neuroprotection of cortical neuronal cultures
against ischemic and excitotoxic insults. Modulation of NMDA recep-
tors after simvastatin treatment could explain their anxiolytic-like ac-
tivity and anti-inflammatory mechanisms in experimental model of
Parkinson's disease [53]. Ramirez et al. [54] showed that simvastatin
reduced the deleterious effects caused by kainate, including the
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severity of seizures, excitotoxicity and oxidative damage in the hip-
pocampus and other limbic structures of the brain cortex.

We propose the possible mechanism of the neuroprotective effect
of statins based on our data that the reduction of the level of mem-
brane cholesterol decreases transporter-mediated glutamate release
from nerve terminals. This does not contradict NMDA-dependent
and non-sterol mechanisms of statin action (and even may have addi-
tive or synergetic effect), but seems to be actual for the early phase of
neuroprotection. The data of Berger et al. [44] may be considered in
support of our hypothesis over the others. Using cerebral microdialy-
sis in a temporary middle cerebral artery occlusion model in Wistar
rats, the authors demonstrated that an increase in the extracellular
level of striatal glutamate in the ischemic hemisphere was attenuated
by pravastatin compared to placebo [44]. It may be suggested that in
these experiments a decrease in cholesterol content most likely re-
duced transporter-mediated release of glutamate thereby causing a
reduction in the extracellular glutamate concentration in the ische-
mic hemisphere.

Whether MβCD, which is used for the extraction of cholesterol in
our experiments, may be employed for neuroprotection by direct appli-
cation to injured brain regions. Recently, we showed that the addition of
MβCD to nerve terminals and blood platelets caused dissipation of the
proton gradient of their acidic compartments, i.e. synaptic vesicles and
secretory granules, respectively [14,29]. In nerve terminals, this dissipa-
tion was accompanied with a dramatic increase in glutamate release,
thus the presence of MβCD per se may cause an elevation of extracellu-
lar glutamate concentration. Intravenous administration of MβCD
seems to be not effective because of its low permeability to brain–
blood barrier [16,55,56] and its possible harmful influence on blood
components. We demonstrated that MβCD decreasing the level of cho-
lesterol in blood platelets caused a reduction of glutamate uptake [29].
Consequently, it may result in an increase in the glutamate concentra-
tion in the plasma, and then in the cerebrospinal fluid (because of glu-
tamate balance between them [57]), thereby changing extracellular
glutamate homeostasis in the brain.

Our experimental data showed that a decrease in the level of mem-
brane cholesterol in nerve terminals reduced transporter-mediated glu-
tamate release. The latest is themainmechanism of the enhancement of
neurotoxic extracellular glutamate in stroke, cerebral hypoxia/ische-
mia, hypoglycemia, and traumatic brain injury. Therefore, a reduction
of cholesterol content may be used for neuroprotection under these
pathological conditions, i.e. “neuroprotection by lowering cholesterol”.
Also, our data may explain the neuroprotective effect followed by the
administration of statins in stroke, cerebral hypoxia/ischemia, seizures,
excitotoxicity, oxidative damage and traumatic brain injury. However,
beside these pathologies, the normal level of membrane cholesterol is
very important for proper synaptic transmission and a decrease in
membrane cholesterol content of nerve terminals may cause neurotox-
ic consequences because of weak glutamate uptake and the enlarge-
ment of the extracellular glutamate concentration.
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