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ABSTRACT 

Let f be a continuous function and s, be the polynomial of degree at most n of best Lz(p)- 

approximation to f on [ - 1, I]. Let Z,(f):= {XE [ - 1, 1] :f(x) -s,,(x) =O}. Under mild conditions 

on the measure p, we prove that U Z,(f) is dense in [ - 1, 11. This answers a question posed in- 

dependently by A. Kroo and V. Tikhomiroff. It also provides an analogue of the results of Kadec 

and Tashev (for 15,) and Kroo and Peherstorfer (for L,) for least squares approximation. 

1. INTRODUCTION 

Let f be a continuous real-valued function on [ - 1, 11. Let .Y;, denote the set 

of algebraic polynomials of degree at most n and let s,,~ be the polynomial of 

best approximation to f from 9, in the norm of the space L,(p). It is well- 

known (cf. [Si]) that this polynomial satisfies the orthogonality condition: 

for all q E 9,. As an immediate consequence of (1.1) we see that if the support 

of ,D contains infinitely many points, then for each n =O, 1, . . . the error 

f(x) -s&x) vanishes in at least n + 1 points of the interval [ - 1, 11; i.e., s&x) 

interpolates f(x) at n + 1 points of [ - 1, 11. 

This property raises the natural question of the denseness of such points. For 

p = 03, it was proved by Kadec [Ka] that for a subsequence of integers nj, these 
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interpolation points are dense in the interval [ - 1, l] (in fact, he showed they 

have the arcsine distribution). On the other hand, Lorentz [L] gave an example 

showing that there exists a function f and a subsequence {nk} such that the 

zeros of f(x) -s,,, .A x avoid a subinterval of [ - 1, 11. Further investigations ) 
of the case p = 03 can be found in [BL], [BKGS], [KS], [BST], [Ta]. 

For p= 1 this problem was addressed by Kroo and Peherstorfer [KPl], 

[KP2]. They observed that in this case the zeros of f(x) - snx,, (x) are dense on 

[ - 1, l] for any subsequence nk. Moreover, this result holds if the subspaces 

9, are replaced by an arbitrary sequence of subspaces U,CL,(p) such that 

every function f ELI(p) is a limit of a sequence {un}, u, E U,. 

The analogous question for Lz(p) was posed independently by A. Kroo and 

V. Tikhomiroff (cf. [Kr], [Ti]). In this paper we show that, under mild condi- 

tions on the measure ,D, the zeros of {f(x) -s,,,(x>}rz, are indeed dense in 

[ - 1, 11. Moreover we prove that, as in the case p = 03, this result cannot be ex- 

tended to an arbitrary subsequence { nk} . Furthermore, we give an example of 

a complete orthonormal sequence u, E &(.u) and a function CrCp_, a,u, E &(,u) 
such that the remainders I,“=, ak&, n = 1,2, . . . ,are all positive on a fixed 

subinterval of [ - 1, 11. 

2. MAIN THEOREM 

Throughout this section p denotes a finite, positive Bore1 measure on [ - 1, l] 

such that &>O a.e. (with respect to Lebesgue measure) on [ - 1, 11. Let p,, = 
p,(x,p) be the sequence of orthonormal polynomials with respect to the 

measure p. For f EL&) we let 

%=%,2(f):= i akpk, ak=ak(f) := i fpkdp, 
k=O -1 

denote the n-th partial sum of the Fourier expansion C,” akpk off. As is well 

known, 

i If-s,12dps ), If-Pi2dp, for all PEY,,. 
-I 

THEOREM 2. I. Let f E L2(11(), with f not dp-a.e. equal to a polynomial. Let 
[a, b] be an arbitrary subinterval of [ - 1, l] having positive length. Then there 
exists a subsequence of integers { nj},“= , , n, < n2 < . . . , such that f(x) - sg (x) 
changes sign on the interval [a, b]. 

The proof requires several lemmas. 

LEMMA 2.2. [MNT] For each subinterval [a, b] c [ - 1, l] (a f b), there exists a 
constant T > 0, depending only on b - a, such that the orthonorrnal polynomials 
pn satisfy 

51 Ipn12dp=, n=0,1,2 ,.... 
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LEMMA 2.3. Let [a, b] C [ - 1, I]@# 6). Then 

lim sup 
[ 

cs: lPn12#Y2 r/n< 1 

n-m s,” IPA& 1 - . 
PROOF. Since ,D’>O a.e. on [a, b], the restricted measure ,U 1 Ia,bl is a regular 

measure on [a, b]. Hence by the result of [ST, Lemma 2.11, we have 

lim sup 
I 

max{ lp,(x)l :XE [~,b]} r/n 

n-m S: Ip,l& 1 51. 

From this, the lemma immediately follows. n 

Combining Lemmas 2.2 and 2.3 we get 

COROLLARY 2.4. Let [a,6]c[- 1, l] (a#b). Then 

lim inf (i lpnIdp)““z 1. 
n-m 0 

The next lemma is in the spirit of the “contamination principle” introduced 

by Saff (cf. [S], [LSS]). For a fixed function f and for - 1 <a’< b’s 1, let 

G=&(f):= Is-&,,,=( j, lf-d244'2, 

and 

r,=r,(f,a’,b’):=i y If--s,idp. 
n a’ 

LEMMA 2.5. For any f E L2(p), with f not dp-a.e. a polynomial, the exists a 
subsequence {n;} C N such that for any - 15 a’< b’s 1, 

(2.1) max{r,,, r”, - I > 2 $ “s Ip&b 
J ” 

PROOF. We have 

b’ 

!, lw.l&=~~ Ib,s,-,ld~~~~ If-A&+ ir lf-snpM 

=r,E,+r,_,E,_,Imax(r,,r,_,). [E,+J!?,_~]. 

On the other hand, 
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Now observe that the positive sequence {E,,} decreases to zero as n + 00; 

thus from elementary properties of series, it follows that 

m En-,-E, 

.;, E,_,sE,, =03. 

Consequently there exists a subsequence {nj} C N such that 

&-I -En, 1 
2- 

E,,++E,,, nj2’ 
j= 1,2 

“*” 

Combining this with (2.2) we get the desired result. W 

The next lemma is a slight modification of [BKGS, Lemma 2.11. 

LEMMA 2.6. Given -lsa<bll and n~tN, let r:=(b-a)/4 and set 
a’:=a+q, b’:=b-rl. Then there exists a q,,EY” such that 

(2.3) max{lq,(x)I:xE[-l,a]U[b,1]}11, 

(2.4) qn(x)20 on kbl, 

(2.5) qn(x)l f(l +fi)n’22c,eC2” on [a’, b’], 

where c,,c,> 0 are constants independent of n (but dependent on a and b). 

PROOF. Let 

T,(x) : = cos(m arccos x) 

denote the Chebyshev polynomial of degree m. For m := [n/2], r~ := 
2~ = (b - a)/2, set 

q,Jx):=;Tm(l+;-(2+;);), 

wherey=x-(b+a)/2. It is easy to see that, forxE[-l,a]U[b,l]; 

and so Iqn(x)j 5 1. On the other hand, on the interval [a’, b’], the polynomial 

q,, attains its minimum at one of the endpoints x= a+ q or x= b - q. 
Substituting these values of x we get 

PROOF OF THE THEOREM 2.1. Let - 1 I a< 611 and suppose to the contrary 

that for all n sufficiently large the functions 

f(x) - s,(x) 
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do not change sign on [u, 61. Let a’, b’ and qn be as in Lemma 2.6. In what 

follows it suffices to assume that f(x) -s,(x) 2 0 dp-a.e. on [a, b] (otherwise we 

can use - qn(x)). By the orthogonality condition (1.1) we have 

O= i qn(f-Sn)d~=j)4n(f-Sn)dL(+ S qn(f-Sn)d~ 
-I u [FLll\hbl 

2 Zq,(J-s,)WW ; lf-sn12dd’2, 
-1 

where M:= I/-. Hence 

and so for all n large, 

M 
(2.6) -=n(Aa’,b’):=+j If-s,jdp. 

c, eCZn n 0’ 

Observe that from Lemma 2.5 we can find a sequence (nj};” such that 

From this and Corollary 2.4 we see that there exists a (possibly different) sub- 

sequence {nj} such that 

(2.7) lim inf (r,,)“” 2 1. 
1-m 

Combining (2.7) with (2.6) we obtain 

M 
l>$=limsup - 

( > 

l/n, 
1 lim inf (r,,)““] = 1, 

J-m 
cl ecznJ 

1-m 

which yields the desired contradiction. n 

REMARK. Corollary 2.4 and hence Theorem 2.1 hold, more generally, for 

regular measures p; that is, measures for which the leading coefficients y,, of 

p,(x, ,D) satisfy lim,,, y:‘” = 2. 

3. SHARPNESS 

In this section we analyze the sharpness of Theorem 2.1. Our first result 

shows that the conclusion of Theorem 2.1 does not, in general, hold for all suf- 

ficiently large integers n. 

THEOREM 3.1. Given E > 0 there exists an entire function g and a subsequence 
{nj} C iN such that for the Legendre expansion of g on [ - 1, l] all the zeros of 
{g-s,(g)},“_ 1 lie outside of the interval ( - 1,l - E). 
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PROOF. Choose /?>O such that 

(3.1) &E<_..__ w2 
2 (2+/?)2 l9 

and for k= 1,2, . . . . select a sequence of positive integers m, < m2 < .*a such that 

(3.2) limy=/3. 
k-m 

Consider the Jacobi polynomials Pk(“‘mk) (x) =: Qk of degree k corresponding 

to the weight (x+ 1)““. From (3.1) and (3.2) it is known (cf. [MSV], Corollary 

1) that all the zeros of Qk lie in the interval (1 -E, l), for all sufficiently large 

k, say k> /co. Hereafter we consider only even indices k 2 k. so that Qk > 0 for 

XE(-1,1-E). 

Let P,, denote the Legendre polynomial of degree n. Then 

,nk + k 
(X+ l)““Qk(X)= c Cnpn(X)> 

II=0 
where 

C *= y j (X+ l)““Qk(X)P,(X)dX. ?I* 

I 

Notice that from the definition of Qk we have c,=O for n<k. Hence 

mi+k 

(3.3) (X+ l)““Qk(X)= c c,P,(X). 
n=k 

Choose integers kj SO that mk,+ kj< kj+ 1 and set 

Rj(X) :=(X+ l)“k,Qk,(X). 

Next choose positive constants aj so small that the function 

g(X):= i ajRj(X) 
J=I 

is entire. From (3.3) it follows that the (kj+ m,,)-th partial sum of the Legen- 

dre expansion of g is given by 

Sk,+mk,(X)= i aiR;(x) 
i=l 

and so 

g(X)-Sk,+mk,(X)= i a;&(X). 
i=,+, 

Since, for all i, we have ai>0 and R;(x)>0 for XE (- 1,l -E), we see that the 

sequence nj : = kj + mk, verifies the theorem. n 

REMARK. Similar examples can be constructed using the approach in [KP2]. 

Next we give an example of a complete orthonormal sequence of functions 

in L2[ - 1, l] for which the appropriate differences g-s, do not change sign on 
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[ - l,O]. Hence (unlike the L, case) the polynomial spaces 9n cannot be re- 

placed by an arbitrary sequence of subspaces U, with U U,, = L2. 

THEOREM 3.2. There exists a complete orthonormal sequence u, E L2[ - 1, l] 

and a function 

g= i akuk 
k-0 

such that C,“,, akuk is positive on [ - l,O] for all n. 

PROOF. Define a sequence of functions {V)k} by po= 1, 1 0, 1, if ifxE xE [ 

%2(x>:= b,, ifxE(+,$] 
( 

~ -L$ 1 31 1 

2”-I 1 
where b,:=-(2”+1),n=l,2 ,.... 

It is easy to see that pn is an orthogonal sequence of functions in L2[ - 1, l] 

and that p,(x) > 0 for all x E [ - 1, 01, n = 0, 1, . . . . Let { pk} be an orthonormal 

basis in [span{ pk}]’ . 
Define 

~k&&~ if n=2k 

ul,, if n=2k+l. 

Then u, is an orthonormal basis in L2[ - 1, 11. Set 

g:= i ckU2k’ , ck>o; i c;<m. 

k=O k-0 

Then g E L2[ - 1, l] and verifies the theorem. n 

REMARK. For most of the standard approximating families such as 

trigonometric polynomials, Walsh functions and various spline functions the 

analog of the Theorem 2.1 holds. The trigonometric case follows from the 

algebraic case by the standard change of variable. The other two cases follow 

from the existence of locally supported functions. 

REMARK. It is interesting to compare Theorems 3.1 and 3.2 with the Theorem 

3 of [KPl]. 

4. TWO CONJECTURES 

We conclude with the discussion of two bold conjectures. 
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CONJECTURE 1. Let f E C[-1, l] and let s,,~ ~9, be the best L,(u), 1 <p< 03, 
approximation to f from 9,. Let { t,!"'}T= , be an n-point Fekete subset of the 
zero set Z( f - s,,_,). Then there exists a subsequence nk such that 

# { tj(nk) : tj(nc) E (a, 6)) 1 

nk 

+ n (arcsin b - arcsin a) 

for all intervals (a, b)~ [ - 1, 11. 

In support of this conjecture we present the following theorem for Jacobi ex- 

pansions (cf. [Sz], [N]). 

THEOREM 4.1. Let dp=(l-~)~(l+x)Pdx, o> -1,/I> -1 and letfeLL,( 
with f not du-a.e. equal to a polynomial. Zf s,(x) is the best L2(p) approxima- 
tion to f from 9,,, then there exists a subsequence nj and a positive constant 
c > 0 such that 

(a) Either f (x) - s,,(x) or f (x) - s,,- 1 (x) changes sign on every interval (a, b) 
with 

log nj 
b-arc.- 

nj * 

(b) Zf b is sufficiently close to 1, then either f(x) -s,,(x) or f(x) -s,,_ 1(x) 

changes sign on the interval (a, b) if 

b-ale 

PROOF. Using the asymptotic properties of Jacobi polynomials ([Sz, 

p. 167-1691) it is easy to conclude that 

for b -a> k, log n/n and for b - a2 k,(log n/n)* if b is sufficiently close to 1. 

(Here k, k,, k2 and o are positive constants that depend on a, p.) The estimates 

then follow from (2.6), (2.1) and (2.5) by straightforward computations. n 

REMARK. At present we are unable to prove the analog of the Theorem 2.1 

for p # 1,2,03. The best we can do is 

PROPOSITION 4.2. Let f E L,(u) and assume that f is not du-a.e. equal to a 
function analytic in a 2-dimensional neighborhood of [ - 1, 11. Then for every 
interval (a, b)~ [ - 1, 11, there exists a subsequence {nj} C N such that 

f(x) -srl,,p (x) changes sign on (a, b). 

PROOF. Suppose that for all n large f(x) -.s,,~(x) does not change sign on 

[a, b]. Then using the equation (1 .l) with q,, from Lemma 2.6 we obtain (as in 

the proof of the Theorem 2.1) 
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Since IV- ~n,pllpL,~p~ --t 0, we see that the sequence s,,~ converges to f geometri- 

cally fast on [a/,6’] in the L,_,(,LI)-norm. Hence (cf. [ST]) the function f is 
analytic on [a’, b’] and the sequence s,,~(z) converges uniformly to f(z) in 

some ellipse containing [a’, b’]. However, since f is not analytic on [ - 1, 11, it 

is known (cf. [LSS]) that the sequence {.s,,~}~=~ does not converge uniformly 

in any open disk containing a point of [ - 1, 11. This yields the desired contradic- 

tion. n 

CONJECTURE 2. Let I Ipl oo, f l C[ - 1, 11, and s,,~E~,, be its best L,(p) 
approximation. If there exists a subsequence {nk} such that f -s,,,,~ is zero- 
free on some interval (a, b)c [ - 1, 11, then {nk} is in some sense lacunary. 
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