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A biologically active preparation of murine recombinant interleukin-18 (mIL-18) from Escherichia coli cell lysates contained two forms of mIL-18

with pl 8.7 and pl 8.1, respectively. Treatment with 0.1' M Tris, pH 8.5, at 37°C for 35 h converted the pl 8.7 form to the pl 8.1 form by the

selective deamidation of an asparagine residue (Asn'*) in the mIL-18 molecule.. Deamidated mIL-18 had 3- to 5-fold lower co-mitogenic activity
and receptor affinity than the unmodified form.

Interleukin-1; Cytokine; Deamidation

1. INTRODUCTION

IL-1! mediates a range of biological activities in-
cluding the activation of cells involved in immune and
inflammatory responses -{1,2]. The two molecular
forms of mature (17 kDa) human IL-1, & (pI~5.0) and
B (pl~7.0); are only about 25% homologous in se-
quence but bind to the same receptor-[3] and share
elements of 3D structure [4~6]. Although most atten-
tion has centered on the human proteins, mIL-1a and
mlIL-14 are valuable research reagents that have been
produced by recombinant expression in E. coli [7-9).
This report describes a modification of the structure of

mIL-18 that was noted during its recovery from
bacterial - lysates .and caused heterogeneity in the-

isolated recombinant product. The heterogeneity was
due to selective -deamidation of a single Asn residue,
and the results are of interest both in terms of
structure—-activity relationships of IL-14 'and with
regard to the structural factors governing deamidation
of amide residues in proteins.

2. MATERIALS AND METHODS

2.1. Protein purification )
mlL-18 was precipitated from bacterial cell lysates with am-
monium sulfate and recovered from the 25-80% saturated fraction
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by centrifugation. The protein was. dissolved in buffer (50-mM Tris,
1 mM EDTA, 1 mM DTT, 1| mM NaNj, pH 7.0), desalted ‘on-a
Sephadex G-25 column, and fractionated on a DE-52 cellulose col-
umn equilibrated in the same buffer.

2.2. Analytical biochemical methods
The procedures used for SDS-PAGE,

analysis have béen described [9]. Protein sequencing was performed
using an Applied Biosystems Model 470A gas-phase sequencer équip-
ped with-a Model 120A on-liné PTH analyzer, Alternatively, PTH

_amino acids were identified in off-line mode using a Zorbax PTH col-

umn (DuPont). Data were acquired, stored and analyzed using a PE
Nelson data system.

3. RESULTS

3.1. Expression,. purification and activity of mIL-18
To obtain mIL-14, a semisynthetic gene encoding an
initiator Met followed by the C-terminal 152 amino
ac1ds~(re51dues 118-269) of the mIL-14 precursor [10]
was expressed in.E. coli as 10—15% of the total cellular

protein. The recombinant cytokine, which was re- -

covered exclusively from the soluble fraction. of cell

lysates, was isolated and purified by ammonium sulfate

fractionation and anion exchange chromatography.

The isolation procedure yielded a product which ap- .

peared homogeneous by SDS-PAGE (Flg 1A) but- was

resolved by IEF into two protein specxes with pIs.of 8 7 ‘

and 8.1 (Fig. 1B).
The two mIL-18 species were: 1solated by cation’ ex-

_.change chromatography (Fig. 1C) and each was analyz-

ed separately. The proteins exhibited identical amino

acid compositions and N-terminal sequences (10 ;
residues), each retaining the initiator methionine:. They1 :

also had the same molar absorptivity (15000 M~ .em™!

at 280 nm). They had identical M; as Judged by
molecular exclusxon HPLC and SDS PAGE and both";
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Fig. 1. (A) SDS polyacrylamide gel electrophoresis showing lsolauon of recombinant m1L-14. Lane 1, total cell lysate; lane 2, soluble fraction’:

FEBS LETTERS

January 1991

High pl

TIME (min)

of lysate; lane 3, 25-80%. saturated ammonium sulfate fraction; lane 4, desalted’ pooled protein fraction; lane 5,"DEAE-52 pooled fractions
(0.47 ug loaded) (B) Isoelectric focussing of mIL-18 after incubation in‘alkaline buffer. Lanes 1 and 4, mlL-1# before MonoS column; lane 2, =

first MonoS peak.(pl-8.1) (see panel C); lane 3, second MonoS peak (pl 8.7); lane 5, IEF standards. (C) Cation excharige chromatography miL-i8
high and low: pl species were isolated on a‘Phatmacia MonoS HR'10/10 cation exchange column using a NaCl gradient in 0.1 M NH4HCO;, L

pH 5.3,

proteins contained a cysteinyl residue which was
detected with DTNB only after denaturation with 6 M
GnHCI.
In the thymocyte co- mrtogemc assay [11], the pl 8:1
.specres was consistently- less active than the pl 8.7
- species. The average specific activity from 6 determina-
tions with 3 separate preparations of each form of the
cytokine were 2.7 + 1.3 X 10° U/mg for the high plI
. species and 0.6 + 0.13 x 10° U/mg for the low pI form

with amean 5.2 + 1.4-fold decrease in activity as deter-.

mined from 6 paired compansons The low: pI form
also exhibited a 3-fold decrease in affinity for the IL-1
receptor..In ‘a:competitive receptor. binding assay.with
28 pM ['¥*I]hIL-1a[11] the average effective concen-
tration causing 50% displacement by the high and low
plmIL-18- specres were 133 = 14 pM- and 356 = 50 pM,
respectlvely

3.2, Formation of the less active form of mIL-1G

= The pl 8.7 protein (0.9 ‘mg/ml) was converted to the
o less biologically: active pI' 8.1 species by incubation at
37°Cin 0.1 M Tris, pH 8.5. The rate of conversion was

_deterzzined by cation exchange chromatography, anda

- reaction half-life of 35 'h was calculated.  IEF analysis

" of reaction mixture aliquots ‘demonstrated the ap-

~ pearance of a diffuse band at plI 8.1 with the concomi-
‘tant disappearance of the pl 8.7 band. However, upon
prolonged mcubatlon the mtensxty of this pI 8.1 band

also decreased with the concomitant appearancc of a ;
third protein band at-pI 7.0. ,

While this observation tenided to support the hypo-'
thesis that deamidation of Asn and/or Gln residue(s)
caused the formation of the low pl species, the alkaline - .-

conditions used in these experiments were too mild to -

effect indiscriminate protein deamidation [12—14].

Selective deamrdatlon of one or more residues appeared
more plausrble and the task of 1dcnt1fymg the: srte(s) of .
deamidation was undertaken. ‘

3.3. Structural analysis of the less acttve form of e

miL-18 s

The primary. structure of mIL-1,6’ mcludes 9 Asn and
11 Gln residues (Fig. 2). Theinitial strategy followed to
identify deamidation at any of these sites was to digest
each protein with: Staphylococcus aureus V8 protease.
In phosphate buffer, §. aureus V8 protease cleaves pro-
teins at the carboxyl sids of both asparty!l and glhitamyl
residues [15]. Therefore, digestion of the two mIL—lﬂ‘
species ‘might have genérated different peptide maps
because deamidation would have produced new peptide

cleavage sites. Comparison of the HPLC peptide maps f

(not shown) failed to reveal any differéence between the

- two forms; but the peptides recoveréd in this analysis
~-accounted for ‘only 57%  of the'total protein. From
- these maps the" first: 13 N-terminal residues (residues
-~ 118-130) and the last 73 C-terminal residues (residues
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SEQUENCE ALTGNHENT OF mIL~12 AND hIL-1J

118 121 125 128 147 149
mIL-1f VP IRQLHYRLRD EQAK SLVLS DPY ELRAL HLNGONINGQ VIFSMSFVQGEFS .
hIL-18 AP VRSLépT?.RD SAQK SLWMS Slfea GPY EL(QA). HLAGADHEQR WFSMég\IEGEES
LT TT

117 120 124 127 146°148

170 168
nll-18 ll«) KIPVALGL KGR NLYLS CVMK DG TPTLQLESV DPKQYPKKKMEKRF VFNKIEV
#R 3 {2 et
hIL-1p D KT OL KEK NLYLS CVLK DO KP' ESV OPKNYPKKIMEKRF WENKIEL
- .
169

224
mIL-10 "(S KVEFES AEFPN WYISTS QAEH KPVFLG -NNSGQ DIIDFTMESVS §

hIL-12 TN &E‘JEES AQFPN WYISTS “IS)IS QAEN MRVFLG #VFEG GI'KGGQ DlTDgTMﬁFVS §

223

Fig. 2. Amino acid sequence alignments of mature miL-18 and
hIL-14. Residues were numbered. according to the respective
precursor - molecules. Portions of the hlL-18 sequence which are
underlined below the amino acid residues correspond to the twelve G-
strands (61-412) [5,6). Residués not underlined correspond to the
connectors between the strands. Residues which upon substitution
result in neutral mutations [21-24] are underlined by an asterisk (+).
‘The initiator Met present in recombinant-derived mlL-18 is not
shown.

193-269) were identified; since the maps were identical,
selective deamidation of any Asn or Gln among these
residues was ruled out. However, the portion of the
protein (43%) encompassing residues 131-196 (Fig. 2)

was not recovered from the HPLC experiment, and this
portion contained 11 of the 20 amrde resrdues in thek
‘protein. .- ' ,
As adirect .malysrs of this: reglon of tie protein, each ‘
pl form was subjected to an éxtended N-termmal se--

. quence . analysis (continuous ‘automated - Edman

degradation through 40 residues). These analyses show-

ed that none of the nine amide residues within this

reglon was deamidated in the hlgh pl:spéecies, but that -
Asn'*® was deamidated (cycle 33) in the low pI protein

(Fig. 3). This was the only residue seen ‘to be

deamidated, but its deamrdatron was iricomplete; in the

sequence analysis  of this step, Asp ‘and Asn were

detected in-a'65:35 ratio (Fig. 3b).

Isoelectric focusing of the low pl preparation showed
no evidence of contamination with the high pl species.
Thus, it appeared likely that-the remaining 35% of pl
8.1 molecules resulted from partial deamidation at
another specific site or at multiple additional sites. The
observation that a form with a pI less than 8.1 could be
generated during the alkaline incubation (see: above)
supported the contention that limited deamidation oc-
curred ‘at additional sites.

CNBr digestion followed by covalent chromatog-
raphy on thropropyl Sepharose (not shown) was used to
isolate the Cys'®® containing peptide - encompassing
residues 162-191; this peptide contained the three
amide residues (GIn'®®, Asn'® and Asn'®®) unac-
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“Hcounted for in the analysxs Sequencrng of each Cys

"*"contammg frag ment from both high and low pl specles -

‘failed to reveal any deamldatron
-+ Because of the critical nature of the expenment the
_ extended N-terminal sequencmg of the two pl forms
-was performed twice using different methods. On the
: flrst occasion, PTH amino acids were analyzed using
an’ off-line. HPLC. procedure based on an isocratic
separauon In the second experiment (Fig. 3), n-lme
gradrent HPLC was employed.. Data from the two e
penments were in full agreement, so that the assrgn-
ment of Asn'4’
.- made with confidence.

4. DISCUSSION

- Deamidation of Asn or Gln residues in polypeptides

occurs- through formation of a cyclic intermediate
~which- is hydrolyzed to yield one of two possible pro-
‘ ‘ducts [12]. In the case of Asn residues, these products
--are (i) a normal peptide in which the native Asn has
been replaced by Asp or (i) a peptrde isomer in which
Asn has been replaced by an 1soaspartyl re51due [12].In
either case, a carboxyl group is present in.the residue

that replaces the original neuiral Asn and the modified

proteinhas a lower pl than the native protem Sequence
and local conformation are both factors in governing
the susceptrb:hty of any mdmdual Asn to deamrdatlon
16l
Automated Edman sequencmg revealed that the ex-
‘ceptnonal lability to deamldanon of bacterrally express-
ed mIL-1@ was mainly due to the ease with which: this
“modification occurred at -Asn'*® (residue 33 of the
methionyl mature cytokme) The pl 8.1 form ‘of the
molecule was at least 65% deamidated to. Asp at this
position, while a further fraction of Asn'*®> may have
been converted 'to ‘an 1soaspartyl residue which- could
not have been detected by the methods applied. Edman
sequencing is arrested in chains where the’ latter event
‘has:occurred [17], so that the estimate of 65:35
" distribution between Asp and Asn for résidue 149 of
the pI 8.1 form does not take into account the possxble
presence of molecules in which Asn'*® has been con-

- yverted to nsoaspartrc ‘acid. The fact that sequencing con-.-

tinued past the deamidation site withiout major loss of
yleld is consrstent with the interpretation that conver-
sion to Asp“was the principal product of the alkali-
- induced chemical modification in the present case. This

result contrasted with that observed with hurman

_growth hormone in which ' isoaspaityl ‘was by far

- (70-80%) ‘the. maJor product of deamrdatron of an Asn
residue [18).
 Because'Asn!
quence of mIL- 18, precedent identified it ds the most
likely candtdate for enhanced susceptlbthty to deamida-

149

- tion [19,20]. Formation of-the cyclic imide intermediate _
~involved in the reaction is favored by the presence of a
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is located within the only Asn-Gly se-
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small. resvdue (especrally Gly) 1mmed1ately after Asn

(12,18=20]. ‘
mlIL-148 and: hIL-lﬁ’ share 84% prrmary sequence

homology and . their, btologtcal activities are in-

~ distinguishable. Because the two proteins are so similar

in sequence and in function, their tertiary structures are

likely also to.be closely similar. The tertiary structure
for mIL-18: has not been solved nor have site-directed
mutagenesxs studies been’ reported for the murine

- cytokine: However, the c¢rystal structure ‘of hIL-18 has

been refined'to 2 A,resolution [5,6]; and several muta-
tions have been introduced into this molecule (Fig. 2),
some of which negatively affect cytokine function. The
point mutations shown to" produce RhIL-14 miolecules
with decreased biological activity 'correspond to
substitutions at_the following residues: Arg'? [23],

.Cys'# [21], Arg'?" [24] and His'*® [22]. Upon sequence

ahgnment of the two proteins, these residues corres-:
pond to Arg'?!, Tyr'?’; Arg'? and His'*” in the murine
polypeptide (Fig. 2). In the hIL-13 structure, Cysm

inaccessible to solvent whereas Arg'?® and Arg'?’ are

‘exposed [5,6]. While these 3 residues are located within

the first @-sheet of the hIL-14 molecule, His'*® forms
part of the conmnecting loop between:@-sheets 3 and 4 -

[5,6]. Clearly, mutations: which affect binding to the

receptor, for example at His'“®, must affect biological

activity because internalization of IL- 18 is required for
expression of its activity [25,26]. Loss of cytokine func-

. tion, however, does not necessarily imply loss of recep-

tor binding. In fact, receptor binding and biological
activity have been uncoupled in‘an R127G hIL-18 mu-
tant protein [24]. This mutation resultsin a biologically

- inactive molecule which essentially retains its ability to

bind to the;receptor [24]. Our: results show that in-
troduction ofa negative charge at Asn'* resulted in a
murine cytokine with' significantly. reduced receptor

“binding affinity and thymocyte co-mitogenic activity.

The homologous residue to Asn'*® in the human species

is GIn'*® which, like His!*é, is exposed to solvent and
forms part of the connector between G-sheets 3 and 4

"[5,6]. This connecting loop in hIL-14 includes thiree se-

quentral type II1 8-turns, forming : a 310-helical structure
encompassing residues Gly'*” through Gly'* [5]. Based
on our observations with mIL-14 deamidated at Asn™?
and observations ‘of others on hIL-14 {21~-24] we sug-
gest that, in addition to @-sheet 1, the loop connecting’
GB-strand '3 and ﬂ-strand 4 may be required to preserve
the brologlcal activity of IL-15 and that this loop could -
represent an 1mportant site for receptor bmdmg to the
cytokme
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