
Theoretical Computer Science 410 (2009) 1564–1572

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Dynamic mechanism designI

Davide Bilò a,∗, Luciano Gualà b, Guido Proietti c,d
a Institut für Theoretische Informatik, ETH, Zürich, Switzerland
b Dipartimento di Matematica, Università di Tor Vergata, Roma, Italy
c Dipartimento di Informatica, Università di L’Aquila, Italy
d Istituto di Analisi dei Sistemi ed Informatica ‘‘A. Ruberti’’, CNR, Roma, Italy

a r t i c l e i n f o

Keywords:
Algorithmic mechanism design
Truthful mechanisms
Approximate mechanisms
On-line problems
Dynamic algorithms

a b s t r a c t

In this paper we address the question of designing truthful mechanisms for solving
optimization problems on dynamic graphs with selfish edges. More precisely, we are given
a graph G of n nodes, and we assume that each edge of G is owned by a selfish agent. The
strategy of an agent consists in revealing to the system – at each time instant – the cost
at the actual time for using its edge. Additionally, edges can enter into and exit from G.
Among the various possible assumptions which can be made to model how this edge-cost
modifications take place, we focus on two settings: (i) the dynamic, in which modifications
can happen at any time, and for a given optimization problem on G, the mechanism has to
maintain efficiently the output specification and the payment scheme for the agents; (ii)
the time-sequenced, inwhichmodifications happens at fixed time steps, and themechanism
has to minimize an objective function which takes into consideration both the quality and
the set-up cost of a new solution. In both settings, we investigate the existence of exact and
approximate truthful (w.r.t. to suitable equilibrium concepts) mechanisms. In particular,
for the dynamic setting, we analyze theminimum spanning tree problem, andwe show that
if edge costs can only decrease and each agent adopts a myopic best response strategy (i.e.,
its utility is onlymeasured instantaneously), then there exists an efficient dynamic truthful
(inmyopic best response equilibrium)mechanism for handling a sequence of kdeclarations
of edge-cost reductions having runtime O((h+ k) log n), where h is the overall number of
payment changes.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Algorithmicmechanismdesign (AMD) is concernedwith the computational complexity of implementing, in a centralized
fashion, truthful mechanisms for solving optimization problems in multi-agents systems [15]. AMD is by now one of the
hottest topics in theoretical computer science, especially since the game-theoretic nature of the Internet. As a result, many
classic network optimization problems have been resettled and solved under this new perspective [3,4,7–9]. Apparently,
however, the canonical approach is that of dealing with Internet problems by means of one-shot mechanisms, whose
natural computational counterpart are static graph problems. This is in contrast with the intrinsic dynamicity of the Internet
infrastructure, where links and node can rapidly appear, disappear, or even change their characteristics. Thus, surprisingly
enough, there is a lack of modeling for those situations in which agents need to adapt their strategies over time, according

I Work partially supported by the Research Project GRID.IT, funded by the Italian Ministry of Education, University and Research. A preliminary version
of this paper was presented at the 2nd International Workshop on Internet and Network Economics (WINE), December 15–17, 2006, Patra, Greece.
∗ Corresponding author.
E-mail addresses: davide.bilo@di.univaq.it (D. Bilò), guala@di.univaq.it (L. Gualà), proietti@di.univaq.it (G. Proietti).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.12.029

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82504522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:davide.bilo@di.univaq.it
mailto:guala@di.univaq.it
mailto:proietti@di.univaq.it
http://dx.doi.org/10.1016/j.tcs.2008.12.029

D. Bilò et al. / Theoretical Computer Science 410 (2009) 1564–1572 1565

to sudden changes in their owned components. To the best of our knowledge, the only effort towards this direction has been
done in the framework of the so-called on-line mechanism design (OMD) [6,16]. There, the dynamic aspect resides in the fact
that agents arrive and depart once over time, and their strategy consists of a single announcement of a bidding value for a
time interval included between the arrival and the departing time. However, the limitation of OMD is that agents are not
allowed to play different strategies over time, thus preventing to model those situations in which bidding values need to be
continuously adjusted.
In this paper, we aim to exactly fill this gap, by exploring the difficulties and the potentialities emerging in this new

challenging scenario. In doing that, we combine some of the theoretical achievements of the AMD with techniques which
are proper of dynamic and on-line algorithms. The result of this activity is what we call as dynamic mechanism design (DMD).
As a paradigmatic framework, we consider the situation in which each agent owns an edge of a given underlying graph G
of n nodes, and its strategy consists in revealing to the system the cost (which can change over time) for using its edge. We
focus on two main realistic scenarios:

(1) In the first scenario,we consider the case – sounding very realistic in the Internet setting – inwhich edge costs are subject
to sudden changes, due to boundary condition variations. In the extreme case, an edge might become unavailable to the
system, due to a failure for instance. On the opposite side, some new edge might become available. All these variations
are presented on-line to the system, which is completely unaware of possible future changes. In the rest of the paper,
we will refer to this as the dynamic scenario.
From an algorithmic point of view, this scenario translates into a continuously evolving input graph, over which a

feasible (possibly optimal) solution to a given optimization problem has to be maintained. On the other hand, from
a game-theoretic point of view, this scenario models a situation where agents play an infinitely repeated game, for
which very little is known in terms of mechanism designing, though. Thus, in this paper we make the simplifying
yet reasonable assumption that agents are bounded rational, and they only measure their utility instantaneously. In
this way, the standardly adopted notion of dominant strategy equilibrium can be relaxed to that of myopic best
response equilibrium (see also [10]). With this equilibrium concept in mind, we can easily prove the existence of
a corresponding fully dynamic truthful mechanism (i.e., a mechanism which updates efficiently both the output
specification and the payment scheme for the agents), as soon as the one-shot counterpart of the game admits a
truthful (in dominant strategies) mechanism. What is algorithmically interesting in this type of mechanisms is that
while classic dynamic graph algorithms can be used for the maintenance of the output specification, as far as the
payment scheme updating is concerned, this defines novel dynamic graph problems, which would make no sense in
a canonical centralized framework. To make things more concrete, we face a basic graph problem that has served
as a case study for several papers on AMD, namely the minimum spanning tree (MST) problem. After observing that
efficient dynamic MST algorithms [11] can be turned into an efficient dynamic mechanism for handling a sequence of k
edge-cost modifications having runtime O(k n log4 n), we will show that for the case in which edges can only become
less expensive, then the mechanism runtime drops to O((h + k) log n), where h is the overall number of payment
changes. We emphasize that this edge-cost lowering scenario is interesting because of the competitive nature of
Internet.

(2) In the second scenario, we consider the case in which the graph evolves in a sequence of time steps, and every
agent has a specific cost for using its edge in each of these steps. Here, the time-depending modifications of the
graph suggest that the mechanism’s goal should now be the composition of two objectives: maintaining a good
(not necessarily optimal) solution at a low (not necessarily minimal) cost of setting it up. Thus, on a sequence of
graph changes, the objective function is now given by the overall cost of the sequence of solutions, plus the overall
set-up cost. This approach is inspired to that proposed in the past in [12] to model the fact that on an on-line
sequence of changes, it is important to take care of the modifications on the structure of the solution, since radical
alterations might be too onerous in terms of set-up costs. In the rest of the paper, we will refer to this as the time-
sequenced scenario. Here, on a positive side, we will show that: (i) if each set-up cost is upper bounded by the
initial one and changes are presented on-line to the system, then a ρ-approximate monotone algorithm for a given
optimization problem Π on G, translates into an approximate equilibria-truthful mechanism (see [14]) for Π which
on a sequence of graph changes of size k has an approximation ratio of max{k, ρ} (see Section 2 for the formal
definition of equilibria-truthfulness); (ii) if the underlying graph optimization problem is utilitarian and polynomial-
time solvable, and changes are presented off-line to the system, then there exists a VCG-like truthful mechanism for
solving optimally the sequence, which can be computed in polynomial time by means of a dynamic programming
technique. On the other hand, on a negative side, we will show that even if graph changes are presented off-line
to the system and set-up costs are uniform, then any truthful mechanism which solves the problem by means of a
divide et impera paradigm (as explained in more detail in Section 6) cannot achieve a better than k approximation
ratio.

The paper is organized as follows: in Section 2 we give preliminary definitions; after, in Section 3 we present the
dynamic mechanism for the MST problem, while in Section 4 we define formally the time-sequenced model; finally, in
the last two sections we give, respectively, positive and negative results on the existence of time-sequenced truthful
mechanisms.

1566 D. Bilò et al. / Theoretical Computer Science 410 (2009) 1564–1572

2. Preliminaries

In this section we recall basic definitions and results of mechanism design theory for one-shot games, which will be then
used and extended to our dynamic scenarios in the following sections.
Let a communication network be modeled by a graph G = (V , E) with n nodes and m edges. We will deal with the case

in which each edge e ∈ E is controlled by a selfish agent ae holding a private information te, namely the true type of ae. Only
agent ae knows te. Each agent has to declare a public bid be to themechanism.Wewill denote by t the vector of types, and by
b the vector of bids. For a given optimization problemΠ defined on G, let Sol(Π) denote the corresponding set of feasible
solutions. We will assume that Sol(Π) does not depend on the agents’ types. For each x ∈ Sol(Π), an objective function
is defined, which depends on the agents’ types. A mechanism for Π is a pairM = 〈g(b), p(b)〉, where g(b) is an algorithm
that, given the agents’ bids, computes a solution forΠ , and p(b) is a scheme which describes the payments provided to the
agents. For each solution x, ae incurs a cost νe(te, x) for participating to x (also called valuation of ae w.r.t. x). Each agent tries
to maximize its utility, which is defined as the difference between the payment provided by the mechanism and the cost
incurred by the agent w.r.t. the computed solution. On the other hand, the mechanism aims to compute a solution which
minimizes the objective function of Π w.r.t. to the agents’ types, but of course it does not know t directly. In a truthful
(in dominant strategy equilibrium) mechanism this tension between the agents and the system is resolved, since each agent
maximizes its utility when it declares its type, regardless of what the other agents do. Aweaker notion of truthfulness is that
of equilibria truthfulness in which truth-telling is a Nash equilibrium (i.e., each agent maximizes its utility if it bids truthfully
whenever the other agents bid truthfully).
Given a positive real function ε(n) of the input size n, an ε(n)-approximatemechanism returns a solution whosemeasure

comes within a factor ε(n) from the optimum. A mechanism has a runtime of O(f (n)) if g(·) and p(·) are computable
in O(f (n)) time. Moreover, a mechanism design problem is called utilitarian if the objective function of Π is equal to∑
e∈E ν(te, x). For utilitarian problems, there exists a well-known class of truthful mechanisms, i.e., the Vickrey–Clarke–

Groves (VCG) mechanisms.
In [2], Archer and Tardos have shown how to design truthful mechanisms for another well-known class of mechanism

design problems called one-parameter. A problem is said one-parameter if (i) the true type of each agent ae can be expressed
as a single parameter te ∈ R, and (ii) each agent’s valuation has the form νe(te, x) = te ωe(b), where ωe(b) is called thework
curve for agent ae, i.e., the amount of work for ae depending on the output specified by the mechanism algorithm, which in
its turn is a function of the bid vector b. When, for each agent ae, ωe(b) can be either 0 or 1, then the problem is also called
binary demand [13]. In [2] it is shown that for one-parameter problems, a sufficient condition for truthfulness is given by a
monotonicity property of the mechanism algorithm. In particular, for a binary demand problem, such property reduces to
the following. Let b be the vector of bids of the agents, and let b−e denote the vector of all bids besides be; the pair (b−e, be)
will denote the vector b. If we fix b−e, a monotone algorithm A defines a threshold value θe(b−e,A) such that if ae bids no
more than θe(b−e,A), then e will be selected, while if ae bids above θe(b−e,A), e will not be selected.1 Sometimes, we will
write θe(b−e)when the algorithmA is clear from the context. The results in [2] imply that the only truthful mechanism for
a binary demand problem using an algorithm A is the one-parameter mechanismM = 〈A, pA(·)〉, where A is required
to be monotone, and the payment pAe (b) for each agent ae is defined as its threshold value if it owns a selected edge, and 0
otherwise.

3. An efficient dynamic mechanism for the MST problem

We start by addressing the problem of designing an efficient mechanism for the fully dynamic MST problem. Since we
assume that agents’ types change over time, we allow the agents to do a new bid to the mechanism at any time. Recall that
edge-cost changes are presented on-line to the system, which is unaware of possible future changes.
In this scenario, all the ingredients of the game (i.e., types, payments, utilities, etc.) must bemade dependant on the time.

Consequently, to provide positive results in terms of mechanism design, we need to adopt a suitable equilibrium concept
in order to avoid falling in the intractability of infinitely repeated games. To this aim, we assume that each agent is now
bounded rational, and that at any time it only tries to maximize its instantaneous utility, which is defined as the difference
between the current payment and its cost in the current solution. In other words, we assume that each agent follows a
myopic best response strategy, namely it only chooses the best response to the current situation without considering the
effect that such a strategy will have on the future of the game. In this setting, instead of the standard dominant strategy
equilibrium, it makes sense to consider the myopic best response equilibrium concept [10], for which a dynamic truthful
mechanism is immediately obtained by repeatedly applying a truthful mechanism in dominant strategies for the one-shot
counterpart of the game, if any. Since this is the case for the dynamic MST problem, this implies the existence of a dynamic
mechanism such that at any time τ each agent ae maximizes its instantaneous utility when it bids be(τ) = te(τ), regardless
of what the other agents do, i.e., a myopic best response truthful mechanism.
In the rest of the section, we will therefore focus on a snapshot of the dynamic mechanism, and thus we can avoid

specifying the time variable. The dynamic mechanism then works as follows: At any time, whenever it receives a new bid

1 As usual, we will assume that there always exists a feasible solution not containing e, which implies θe(b−e) < +∞.

D. Bilò et al. / Theoretical Computer Science 410 (2009) 1564–1572 1567

from an agent, it computes a newMST w.r.t. the new bid profile, and it updates the payments exactly as the one-parameter
mechanism for the MST problem. Therefore, concerning the time complexity, the mechanism has to maintain: (i) an MST of
G, and (ii) the corresponding payments. Moreover, it has to support a payment query in O(1) time.
To dynamicallymaintain anMST, one can use the algorithm proposed in [11], which takesO(k log4 n) time for processing

k edge-cost updates (deletions of edges are simulated by setting to+∞ the cost of an edge). Thus, it remains to manage the
payment scheme.We remind that for binary demand problems, the payment provided to ae is equal to θe(b−e) if e is selected,
and zero otherwise. Thismeans it suffices tomaintain the threshold value θe(b−e) for each ebelonging to the current solution.
We emphasize that the algorithm in [11] can be straightforwardly used to accomplish such a task, and from this it follows
that there exists a truthful mechanism for the fully dynamic MST which runs inO(k n log4 n) time for processing k updates.
Improving this latter result is a challenging open problem. In the following, we show that for the edge-cost decreasing case,
in which edge costs are only allowed to decrease, a significant improvement is possible. We argue this is not a very special
case, as it includes the well-known partially dynamic scenario, where only edge insertions are allowed.

How to maintain the payments. Let G be a graph, and let T be an MST of G. For each non-tree edge f = (u, v) ∈ E \ E(T),
T (f) will denote the set of tree edges belonging to the (unique) path in T between u and v. For each e ∈ E(T), let
CT (e) = {f ∈ E \ E(T) | e ∈ T (f)}. We denote by swap(e) the cheapest non-tree edge in CT (e).2 Note that θe(b−e) = bswap(e).
Clearly, if a tree edge decreases its cost, no payment changes. Consider now the situation in which a non-tree edge f

decreases its cost from bf to b′f . Denote by T
′ the new MST, i.e., the MST computed w.r.t. the cost profile b′ = (b−f , b′f). We

have two cases:

Case 1: T ′ = T ; Clearly, only the threshold of edges in T (f) may change, since for each e′ /∈ T (f), no edge in CT (e′) has
changed its cost. Moreover

Fact 1. Let e ∈ T (f). Then, the threshold of e changes iff θe(b−e) > b′f . In this case the new threshold value becomes
θe(b′−e) = b

′

f .

Case 2: T ′ 6= T . Clearly T ′ = T \{e}∪{f }. Moreover, the payment for ae becomes 0, while that for af becomes θf (b′−f) = be,
since CT ′(f) ⊆ CT (e) ∪ {e}.

Lemma 3.1. For every e′ ∈ E(T ′) \ T ′(e), θe′(b′−e′) = θe′(b−e′).

Proof. The lemma trivially follows from the fact that for each e′ ∈ E(T ′)\T ′(e), CT ′(e′) = CT (e′) and f /∈ CT (e′). �

Lemma 3.2. The threshold of an edge e′ ∈ T ′(e) changes iff θe′(b−e′) > be. In this case, θe′(b′−e′) = be.

Proof. Let e′ ∈ T ′(e) be such that θe′(b−e′) > be. Since e ∈ CT ′(e′), then θe′(b′−e′) ≤ be. We have to show that
@f ′ ∈ CT ′(e′) with bf ′ < be. For the sake of contradiction, suppose that ∃f ′ ∈ CT ′(e′) such that bf ′ < be. Then, we
show T was not an MST by proving that f ′ ∈ CT (e). Suppose that f ′ /∈ CT (e); then T (f ′) = T ′(f ′), which implies
θe′(b−e′) < be.
It remains to show that if θe′(b−e′) ≤ be, then θe′(b′−e′) = θe′(b−e′). Notice that if swap(e′) ∈ CT (e), then

θe′(b−e′) ≥ be from the minimality of T , which implies θe′(b−e′) = be. Otherwise, swap(e′) ∈ CT ′(e′). In both cases
θe′(b′−e′) ≤ θe′(b−e′). Moreover, since CT ′(e

′) ⊆ CT (e′) ∪ CT (e) ∪ {e}, then

θe′(b′−e′) = min
f∈CT ′ (e

′)
{bf } ≥ min

f∈CT (e′)∪CT (e)∪{e}
{bf }

= min{bswap(e′), be} = θe′(b−e′). �

Implementation. To update the payments, we use a top tree, a data structure introduced by Alstrup et al. [1] to maintain
information about paths in trees. More precisely, a top tree represents an edge-weighted forestF withweight function c(·).
Some operations defined for top trees are:

• link((u, v), x), where u and v are in different trees. It links these trees by adding the edge (u, v) of weight c(u, v) = x
to F .
• cut(e). It removes the edge e from F .
• update(e, x), where e belongs to F . It sets the weight of e to x.
• max(u, v), where u and v are connected in F . It returns the edge with maximum weight among the edges on the path
between u and v in F .

2 If there are more than one such cheapest edges, we pick one of them arbitrarily.

1568 D. Bilò et al. / Theoretical Computer Science 410 (2009) 1564–1572

In [1,5,17], it is shown how to implement a top tree (by using O(n) space) for supporting each of the above operations in
O(log n) time.
To our scopes, we use two top trees, say T1 and T2, as follows. Both T1 and T2 maintain the current MST where the cost

of each edge e ∈ E(T) is be in T1 and θe(b−e) in T2. Concerning Case 1, we only need to update the threshold of some edges
in T (f). So, let f = (x, y) be the edge which has decreased its cost. We update T2 as follows. While c(e′) > b′f , where e

′
=

max(x, y), then we (i) update the payment for ae′ to b′f , and (ii) perform update(e′, b′f). For what concerns Case 2, we first
locate the edge e = (x′, y′) in T not in T ′ by performing max(x, y) in T1, where f = (x, y) is the edge which has decreased
its cost. Then, we update the MST by performing cut(e) in both T1 and T2, and link(f , b′f) in T1 and link(f , be) in T2.
Next, we update the payment for ae (resp., af) to 0 (resp., be). Finally, we update T2 as follows. While c(e′) > be, where e′ =
max(x′, y′), then (i) we update the payment for ae′ to be, and (ii) we perform update(e′, be).
The above discussion yields the following:

Theorem 3.1. There exists a dynamic truthful (in myopic best response equilibrium) mechanism for the MST problem supporting
a sequence of k edge-cost decreasing operations in O((h+ k) log n) time, where h is the overall number of payment changes. �

4. Time-sequenced scenario: Problem statement

Let G = (V , E) be a graph with a positive real weight w(e) associated with each edge e ∈ E. Henceforth, unless
stated otherwise, byΠ we will denote a communication network problem on (G, w), which asks for computing a subgraph
H ∈ Sol(Π) of G by minimizing an objective function φ(H, w) of the form

φ(H, w) =
∑
e∈E(H)

w(e) · µH(e),

where µH(·) is any positive real function depending only on H . Notice that this definition embraces the quasi-totality of
communication network problems, like the MST problem, the shortest-paths tree problem, and so on.
Let k be a positive integer. We assume that the type of each agent ae is te = 〈t1e , . . . , t

k
e 〉, while its bid is be = 〈b

1
e , . . . , b

k
e〉.

Intuitively, t ie represents the true cost incurred by ae for using its link e at time i. We will denote by t
i
∈ Rm the vector of

agents’ types at time i, and by t the vector 〈t1, . . . , tk〉.
Given a communication network problemΠ , we want to design a truthful mechanism for the optimization problem that

we will denote by Seq(Π). This latter problem asks for computing a sequence H = 〈H1, . . . ,Hk〉, where Hi ∈ Sol(Π),
i = 1, . . . , k, by minimizing the following objective

Ψ (H, t) = Φ(H, t)+ Γ (H),

whereΦ(H, t) is a function measuring the quality of the solutionH , and Γ (H) is a function measuring the overall set-up
cost. For a given sequenceH , we will naturally assume that the valuation of ae w.r.t.H is:

νe(H, te) =
k∑
i=1

ν ie(Hi, t
i
e), where ν ie(Hi, t

i
e) =

{
t ie if e ∈ E(Hi);
0 otherwise.

Depending on the cost model to be adopted, the functions Φ(·) and Γ (·) can be defined accordingly. In this paper, we
will consider the prominent additive cost model, in which

Φ(H, t) =
k∑
i=1

φ(Hi, t i), Γ (H) =
k∑
i=1

γ (i,H),

where

γ (i,H) =

γ1 ∈ R+ if i = 1;
γi ∈ R+ if Hi 6= Hi−1,
0 otherwise.

i = 1, . . . , k;

For any 1 ≤ i ≤ j ≤ k, by [i, j] we will denote the interval {i, . . . , j}. We will write [i, j) instead of [i, j − 1]. Given two
intervals [i, j], [i′, j′], wewrite [i, j] ≺ [i′, j′] if j < i′. An interval vector s = 〈I1, . . . , Ih〉 is a vector of pairwise disjoint intervals
whose union is {1, . . . , k}, and such that I1 ≺ · · · ≺ Ih. Given an interval I , let bI be the vector defined as bIe =

∑
i∈I b

i
e, for

each edge e ∈ E. Moreover, we will denote by H∗I an optimum solution for Π when the input is (G, b
I). Finally, given two

sequencesH = 〈H1, . . . ,Hi〉,H ′ = 〈H ′1, . . . ,H
′

j 〉, byH �H ′ we denote the sequence 〈H1, . . . ,Hi,H ′1, . . . ,H
′

j 〉.

D. Bilò et al. / Theoretical Computer Science 410 (2009) 1564–1572 1569

5. Time-sequenced mechanisms: Positive results

In this section we first define the class of time-sequenced single-parameter (TSSP) mechanisms, and we prove that any
mechanism in this class is truthful for Seq(Π) when graph changes are presented off-line to the system. Moreover, for the
case inwhich each set-up cost is upper bounded by γ1, we show that there exists amax{k, ρ}-approximate TSSPmechanism,
where ρ is the approximation ratio of a monotone algorithm forΠ . We point out that such mechanism can also be used for
the on-line version of Seq(Π) for which we prove that it enjoys the property of being equilibria-truthful. Then, we turn our
attention to the special case in whichΠ is utilitarian and polynomial-time solvable, and we show that if the graph changes
are presented off-line to the system, then there exists a VCG-like truthful mechanism for solving optimally Seq(Π), which
can be computed in polynomial time by means of a dynamic programming technique.

5.1. On-line sequences with bounded set-up costs

From now on, by s̃we will denote the interval vector 〈[1, 1], . . . , [k, k]〉.

Definition 5.1. Given a communication network problem Π , and a monotone algorithm A for Π , a TSSP mechanism
M(s) = 〈gs(b), p(b)〉 with interval vector s = 〈I1, . . . , Ih〉 for Seq(Π) is defined as follows:

(1) gs(·) returns a sequenceH = H1 � · · · �Hh, in which

∀j = 1, . . . , h, Hj = 〈Ĥj, . . . , Ĥj〉 has size |Ij|,

where Ĥj is the solution returned byAwith input (G, bIj);
(2) For each agent ae

pe(b) =
h∑
j=1

pAe
(
bIj
)
,

where pAe (b
Ij) is the payment provided to ae by the one-parameter mechanism 〈A, pA(·)〉 for the problemΠ when the

input is (G, bIj).

We can state the following:

Proposition 5.1. M(s) is a truthful mechanism for Seq(Π) when graph changes are presented off-line to the system.

Proof. The mechanism breaks the problem in h instances (G, bI1), . . . , (G, bIh) which are independent each other. Then it
uses the one-parameter mechanism 〈A, pA(·)〉 for each of them in order to locally guarantee the truthfulness. �

Notice that, by definition,M(s̃) is the only TSSP mechanism that can be used for the on-line version of Seq(Π). In such an
on-line setting, we allow each agent to choose its bid at a given step based on what happened in the previous ones. Now
we analyzeM(s̃) and we show that (i) unfortunately for the on-line scenarioM(s̃) turns to be not truthful even when the
agents cannot observe the other agents’ strategies, (ii)M(s̃) however enjoys the property of being equilibria-truthful, and
(iii)M(s̃) had an approximation guarantee of max{k, ρ}when all the setup costs are upper bounded by the initial one γ1.
Let us consider the mechanismM(s̃)when k = 3 andΠ is the MST problem. Let G be a graph consisting of two parallel

edges e1 and e2, and assume that the types of the agents controlling e1 and e2 are te1 = 〈1, 1, 1〉 and te2 = 〈3, 3, 3〉,
respectively. We remind that in this caseM(s̃) reduces to the following mechanism. At each step, the mechanism takes the
two bids of the agents as input, selects the cheapest edge and pays 0 the non-selected agent, while provides a payment to
the selected agent that is equal to the bid of the non-selected one. Now, consider the following on-line strategy for a2: a2
bids truthfully at step 1, and then it bids b2e2 = b

3
e2 = 3 if it belongs to the solution computed at step 1, b

2
e2 = b

3
e2 = 0

otherwise. It is easy to see that in this case, ae1 has convenience to bid be1 = 〈4, 1, 1〉 (by obtaining an overall utility of 4)
instead of bidding truthfully (from which it would obtain an overall utility of 2).
However, for the on-line version of Seq(Π), we have the following:

Proposition 5.2. M(s̃) is an equilibria-truthful mechanism for Seq(Π)when graph changes are presented on-line to the system.

Proof. Let ae be an agent, and let us assume that all the other agents bid truthfully at all time steps. It is clear that at any
time step i, the strategy of the other agents does not depend on what ae does at steps j ≤ i. Thus, in order to maximize the
overall utility, ae has to maximize its utility at each step. Then the claim follows form the fact thatM(s̃) uses a (truthful)
one-parameter mechanism forΠ , which implies that ae maximizes its utility at each step when it bids truthfully. �

We are now ready to prove the following:

Theorem 5.1. Given a ρ-approximate monotone algorithm A for Π , the on-line mechanismM(s̃) applied to Seq(Π) with the
assumption that each set-up cost is upper bounded by γ1, has a performance guarantee ofmax{k, ρ}.

1570 D. Bilò et al. / Theoretical Computer Science 410 (2009) 1564–1572

Proof. Equilibria-truthfulness follows from Proposition 5.2. Concerning the approximation ratio of the mechanism, let
H∗ = 〈H ′1, . . . ,H

′

k〉 be the optimal sequence. By H
∗

i we denote an optimal solution for Π with input (G, t
i). It is easy to

see that

Ψ (H∗, t) ≥ γ1 +
k∑
i=1

φ(H ′i , t
i) ≥ γ1 +

k∑
i=1

φ(H∗i , t
i).

If byH = 〈H1, . . . ,Hk〉we denote the sequence computed by the algorithm of the mechanismM(s̃), then we have that

Ψ (H, t)
Ψ (H∗, t)

≤
kγ1 +

∑k
i=1 φ(Hi, t

i)

Ψ (H∗, t)
≤
kγ1 + ρ

∑k
i=1 φ(H

∗

i , t
i)

Ψ (H∗, t)
≤
k+ ρ x
1+ x

,

where x = 1
γ1

∑k
i=1 φ(H

∗

i , t
i). Since the function σ(x) = k+ρx

1+x is non-increasing when k ≥ ρ, and it is increasing when
ρ > k, then the approximation ratio achieved by the mechanism is max{k, ρ}. �

5.2. Off-line utilitarian problems

In this sectionwe showhow to design an exact off-linemechanismwhenΠ is utilitarian. Before defining ourmechanism,
we show how to compute an optimal sequence by using dynamic programming.
LetH∗ denote an optimal solution for Seq(Π), and letH∗

[1,i] be an optimal solution for Seq(Π)when the input is restricted
to the interval [1, i], i.e. we have i time steps and the bid vector is 〈b1, . . . , bi〉. In order to lighten the notation, we will write
Ψ (H[1,i], b) instead of Ψ (H[1,i], 〈b1, . . . , bi〉), where H[1,i] is a solution for Seq(Π) restricted to the interval [1, i]. Notice
thatH∗

[1,1] = 〈H
∗

[1,1]〉, and Ψ (H
∗

[1,1], b) = φ(H
∗

[1,1], b
1)+ γ1. Moreover,H∗[1,k] = H∗.

The dynamic programming algorithm computes H∗
[i,j], for every 1 ≤ i ≤ j ≤ k. Next, starting from i = 1 to k, it computes

H[1,i] = H[1,hi) � 〈H
∗

[hi,i]
〉, with

hi = arg min
h=1,...,i

{
Ψ ′(b, h, i) := Ψ (H[1,h), b)+ φ

(
H∗
[h,i], b

[h,i])
+ γh

}
,

whereH[1,1) is the empty sequence, and Ψ (H[1,1), b) is assumed to be 0.

Lemma 5.1. For any i = 1, . . . , k, the dynamic programming algorithm computes a solution H[1,i] such that Ψ (H[1,i], b) =
Ψ (H∗

[1,i], b).

Proof. The proof is by induction on i. The basic case i = 1 is trivial.
Let i > 1, and assume that for every j < i, we have Ψ (H[1,j], b) = Ψ (H∗

[1,j], b). Now we prove the claim for i. Let
H∗
[1,i] = 〈H1, . . . ,Hi〉, and let j

∗ be the largest index such that Hj∗−1 6= Hj∗ . If j∗ is undefined, we assume j∗ = 1. Clearly
〈H1, . . . ,Hj∗−1〉 = H∗

[1,j∗). Since j
∗
− 1 < i, by the inductive hypothesis we have that Ψ (H[1,j∗), b) = Ψ (H∗[1,j∗), b). Hence,

we have that

Ψ (H∗
[1,i], b) = Ψ (H

∗

[1,j∗), b)+ φ
(
H∗
[j∗,i], b

[j∗,i])
+ γj∗

= Ψ (H[1,j∗), b)+ φ
(
H∗
[j∗,i], b

[j∗,i])
+ γj∗ = Ψ

′(b, j∗, i).

To conclude the proof, notice that Ψ ′(b, j, i) ≥ Ψ (H∗
[1,i], b),∀j ≤ i, as γj ≥ 0. �

We are now ready to define our VCG-like mechanism. LetMvcg be a mechanism defined as follows:

(1) The algorithmic output specification selects an optimal sequence (w.r.t. the bids b)H∗G ;
(2) Let G− e = (V , E\{e}), and letH∗G−e be an optimal solution (w.r.t. the bids b) in G− e. Then, the payment function for
ae is defined as

pe(b) = Ψ (H∗G−e, b)− Ψ (H
∗

G , b)+ νe(H
∗

G , be).

Theorem 5.2. LetΠ be utilitarian and solvable in polynomial time. Then,Mvcg is an exact off-line truthfulmechanism for Seq(Π)
which can be computed in polynomial time. �

6. Time-sequenced mechanisms: Inapproximability results

In this section we consider a natural extension of TSSP mechanisms named adaptive TSSP mechanisms, and we prove a
lower bound of k to the approximation ratio that can be achieved by any truthful mechanism in this class.

Definition 6.1. Let δ be a function mapping bid vectors to interval vectors. An adaptive time-sequenced single-parameter
(ATSSP) mechanismMδ forΠ is the mechanism which, for a given vector bid b, is defined exactly asM(δ(b)).

Lemma 6.1. Let t i be a type profile forΠ , and letA be an optimal algorithm forΠ . Then, ∀η ∈ R+, θ ie(η · t
i
−e) = η · θ

i
e(t
i
−e).

D. Bilò et al. / Theoretical Computer Science 410 (2009) 1564–1572 1571

Proof. Observe that ∀H ∈ Sol(Π)

φ(H, η · t i) =
∑
e∈E(H)

η · t ie µH(e) = η
∑
e∈E(H)

t ie µH(e) = η · φ(H, t
i). �

Theorem 6.1. For any mapping function δ, for any optimal algorithmA forΠ , and for any c < k, there exists no c-approximate
truthful ATSSP mechanism usingA for Seq(Π), even when set-up costs are uniform.

Proof. The proof is by contradiction. Let M = γ1 = · · · = γk. LetMδ be a c-approximate truthful ATSSP mechanism for
Seq(Π). For the sake of clarity, we denote by H(w) an optimum solution for Π with input (G, w). Let t1 = (t1

−e, t
1
e), with

t1
−e = 〈0, . . . , 0〉, and t

2
= (t2

−e, 0) be two type vectors forΠ such that the following three conditions hold:

(i) 2t1e < θ2e , t
1
e > 0, where θ

2
e = θe(t

2
−e);

(ii) φ(H(t2
−e,+∞), (t

2
−e,+∞)) ≥ (k

2
− 1)M;

(iii) φ(H(t2
−e, x), (t

2
−e, x)) does not depend onM , for any x < θ2e not depending onM .

Lemma 6.2. There always exist t1e and t
2
−e satisfying the above conditions.

Proof. Let H ∈ Sol(Π) be such that E(H ′) 6⊂ E(H),∀H ′ ∈ Sol(Π). Let e be an edge of H . Now for each e′ ∈ E(H) \ {e}, let
t2e′ =

1
µH (e′)

. Moreover, for each e′ ∈ E \ E(H), let t2e′ be defined as follows

t2e′ = max
H ′∈Sol(Π)

(k2 − 1)M
µH ′(e′)

.

By construction, condition (ii) holds. For M large enough, it is easy to see that θ2e is at least (k
2
− 1)M − |E(H)| > 0, from

which (i) follows as well. Finally, condition (iii) follows by observing that µH(e) does not depend onM . �

Let t be the type profile defined as follows:

∀i = 1, . . . , k, t i =
{
t1 if i is odd;
t2 otherwise.

Lemma 6.3. For M large enough, δ(t) 6= s̃.

Proof. The proof is by contradiction. Let H be the solution computed by the mechanism corresponding to the interval
vector s̃. Notice that Ψ (H, t) ≥ kM , since H(t1) 6= H(t2). Consider now the solution H ′ corresponding to the interval
vector 〈[1, k]〉. It is easy to see that for t1e small enough,Ψ (H

′, t) = M+φ
(
H
(
t [1,k]

)
, t [1,k]

)
≤ M+ kφ(H(t2

−e, t
1
e), (t

2
−e, t

1
e)).

It follows that the approximation ratio achieved by the mechanism is at least

Ψ (H, t)
Ψ (H ′, t)

≥
kM

M + kφ(H(t2−e, t1e), (t
2
−e, t1e))

,

which, from (iii), goes to kwhenM goes to+∞. This contradicts the fact thatMδ is c-approximate. �

Lemma 6.4. For M large enough, the utility of ae in the solution gδ(t)(t) computed by the mechanismMδ is less than
⌊ k
2

⌋
θ2e .

Proof. Let δ(t) = 〈I1, . . . , Ih〉 be the interval vector computed by δ, and let H be the corresponding solution. For each
j = 1, . . . , h, let Ij = [xj, yj] be the j-th interval, and let ηj be the number of occurrences of t2 in 〈txj , . . . , tyj〉. Notice that
t Ij = (ηj t2−e, (|Ij| − ηj) t

1
e). It is easy too see that (|Ij| − ηj) ≤ ηj + 1. Moreover, notice that e belongs to H

(
t Ij
)
iff ηj > 0.

Indeed, whenever ηj > 0, (ηj+1) t1e < ηj θ
2
e holds from (i), and from Lemma 6.1 this implies that e belongs toH

(
t Ij
)
. Finally,

notice that whenever |Ij| > 1, ae incurs a cost of at least t1e .
Then, from Lemma 6.1, the payment provided to ae is

∑h
j=1 ηj θ

2
e =

⌊ k
2

⌋
θ2e , while concerning the cost incurred by ae, it

is at least t1e > 0, since from Lemma 6.3 there must exist an index j
∗ such that |Ij∗ | > 1. �

Consider now the following new type profile t̂ which is equal to t except for t̂ ie that is set to+∞ for every odd i.

Lemma 6.5. For M large enough, δ(t̂) = s̃.

Proof. For the sake of contradiction, assume that δ(t̂) 6= s̃. Then, there must exist an index j for which the solution H

computed by the mechanism does not change at time j. Hence, since either t̂ je = +∞ or t̂
j−1
e = +∞, from (ii) it must be

Ψ (H, t̂) ≥ k2M . Consider the solutionH ′ corresponding to the interval vector s̃. Then, the approximation ratio achieved by
the mechanism is at least

Ψ (H, t̂)
Ψ (H ′, t̂)

≥
k2M

kM + kφ(H(t2), t2)
,

which, from (iii), goes to kwhenM goes to+∞. This contradicts the fact thatMδ is c-approximate. �

1572 D. Bilò et al. / Theoretical Computer Science 410 (2009) 1564–1572

To conclude the proof, observe that when the type profile is t , ae has convenience to bid be defined as

∀i = 1, . . . , k, bie =
{
t2e if i is even;
+∞ otherwise.

Indeed, in this case, from Lemma 6.5, its utility becomes equal to
⌊ k
2

⌋
θ2e , which is better than the utility it gets by bidding

truthfully (see Lemma 6.4). �

Notice that, since in the uniform set-up cost case each set-up cost is upper bounded by γ1, and sinceM(s̃) belongs to the
class ATSSP, then Theorem 6.1 implies that the upper bound in Theorem 5.1 is tight, whenA is optimal (i.e., ρ = 1).

References

[1] S. Alstrup, J. Holm, K. de Lichtenberg, M. Thorup, Minimizing diameters of dynamic trees, in: Proc. 24th International Colloquium on Automata
Languages and Programming, ICALP’97, in: Lecture Notes in Computer Science, vol. 1256, Springer-Verlag, pp. 270–280.

[2] A. Archer, É Tardos, Truthful mechanisms for one-parameter agents, in: Proc. 42nd IEEE Symp. on Foundations of Computer Science, FOCS’01, 2001,
pp. 482–491.

[3] D. Bilò, L. Gualà, G. Proietti, On the existence of truthful mechanisms for the minimum-cost approximate shortest-paths tree problem, in: Proc. 13th
Coll. on Structural Information and Communication Complexity, SIROCCO’06, in: Lecture Notes in Computer Science, vol. 4056, Springer-Verlag, 2006,
pp. 295–309.

[4] P. Briest, P. Krysta, B. Vöcking, Approximation techniques for utilitarian mechanism design, in: Proc. 37th Ann. ACM Symp. on Theory of Computing,
STOC’05, 2005, pp. 39–48.

[5] G.N. Frederickson, Data structures for on-line updating of minimum spanning trees, with applications, SIAM J. Comput. 14 (4) (1985) 781–798.
[6] E.J. Friedman, D.C. Parkes, PricingWiFi at Starbucks: Issues in online mechanism design, in: Proc. 4th ACM Conf. on Electronic Commerce EC’03, 2003,
pp. 240–241.

[7] L. Gualà, G. Proietti, A truthful (2–2/k)-approximation mechanism for the Steiner tree problem with k terminals, in: Proc. 11th Int. Computing and
Combinatorics Conference, COCOON’05, in: Lecture Notes in Computer Science, vol. 3595, Springer-Verlag, 2005, pp. 390–400.

[8] L. Gualà, G. Proietti, Efficient truthful mechanisms for the single-source shortest paths tree problem, Concurrency and Computation: Practice and
Experience 19 (17) (2007) 2285–2297.

[9] J. Hershberger, S. Suri, Vickrey prices and shortest paths: What is an edge worth? in: Proc. 42nd IEEE Symp. on Foundations of Computer Science,
FOCS’01, 2001, pp. 252–259.

[10] B. Heydenreich, R. Müller, M. Uetz, Decentralization and mechanism design for online machine scheduling, in: Proc. 10th ScandinavianWorkshop on
Algorithm Theory, SWAT’06, in: Lecture Notes in Computer Science, vol. 4059, Springer-Verlag, 2006, pp. 136–147.

[11] J. Holm, K. de Lichtenberg, M. Thorup, Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and
biconnectivity, J. ACM 48 (4) (2001) 723–760.

[12] B. Kalyanasundaram, K. Pruhs, On-line network optimization problems, in: Online Algorithms: The State of the Art, in: Lecture Notes in Computer
Science, vol. 1442, Springer-Verlag, 1998, pp. 268–280.

[13] M.-Y. Kao, X.-Y. Li, W. Wang, Towards truthful mechanisms for binary demand games: A general framework, in: Proc. 6th ACM Conf. on Electronic
Commerce, EC’05, 2005, pp. 213–222.

[14] R. Lavi, C. Swamy, Truthful and near-optimal mechanism design via linear programming, in: Proc. 46th IEEE Symp. on Foundations of Computer
Science, FOCS’05, 2005, pp. 595–604.

[15] N. Nisan, A. Ronen, Algorithmic mechanism design, Games Econom. Behav. 35 (2001) 166–196.
[16] D.C. Parkes, S.P. Singh, D. Yanovsky, Approximately efficient online mechanism design, in: Proc. 18th Annual Conf. on Neural Information Processing

Syst. 17, NIPS’04, 2004.
[17] D.D. Sleator, R.E. Tarjan, A data structure for dynamic trees, J. Comput. Syst. Sci. 26 (3) (1983) 362–391.

	Dynamic mechanism design
	Introduction
	Preliminaries
	An efficient dynamic mechanism for the MST problem
	Time-sequenced scenario: Problem statement
	Time-sequenced mechanisms: Positive results
	On-line sequences with bounded set-up costs
	Off-line utilitarian problems

	Time-sequenced mechanisms: Inapproximability results
	References

