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a b s t r a c t

An ancient Chinese mathematical method is briefly introduced, and its application
to nonlinear oscillators is elucidated where He’s amplitude–frequency formulation is
outlined. Three examples are given to show the extremely simple solution procedure and
remarkably accurate solutions.
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1. Introduction

An ancient Chinese mathematics book The Nine Chapters on the Mathematical Art (2nd century BC) introduced several
ancient algorithms [1–7]. In this paper we will introduce one of those methods, the Ying Buzu Shu, which is the oldest
method for solving algebraic equations [1,2].

Consider an algebraic equation

f (x) = 0. (1)

The basic idea of the Ying Buzu Shu is to guess two initial solutions, x1 and x2, which lead to the remainders f (x1) and
f (x2), respectively, and the approximate solution is updated as [1]

x =
x2f (x1) − x1f (x2)
f (x1) − f (x2)

. (2)

This solution procedure was further developed by a Chinese mathematician, Ji-Huan He, to solve nonlinear differential
equations [8].

2. He’s amplitude–frequency formulation

According to the above ancient Chinese mathematical method, He’s amplitude–frequency formulation first appeared in
Ref. [8]. To illustrate the basic solution procedure, we consider the following general nonlinear oscillator

u′′
+ f (u)u = 0, u(0) = A, u′(0) = 0, (3)

where f (u) > 0 is a known function of u.
According to the ancient Chinese mathematical method, we should choose two trial solutions. We can begin with [8]

u1 = A cosω1t (4)
u2 = A cosω2t (5)
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where ω1 and ω2 can be freely chosen, generally we choose ω1 = 1 and ω2 = ω, where ω is the frequency of the nonlinear
oscillator. Substituting u1 and u2 into Eq. (3) results in reminders R1(t) and R2(t), respectively. Ji-Huan He suggested the
following amplitude–frequency formulation in Ref. [8]

ω2
=

ω2
1R2(0) − ω2

2R1(0)
R2(0) − R1(0)

. (6)

Geng and Cai suggested a modification, which is [9]

ω2
=

ω2
1R2


T2
N


− ω2

2R1


T1
N


R2


T2
N


− R1


T1
N

 (7)

where T1 and T2 are the periods of the trial solutions, u1 and u2, respectively, N is generally chosen as N = 12.
In 2008, Ji-Huan He improved the formulation, which reads [10,11]

ω2
=

ω2
1
R2 − ω2

2
R1R2 − R1

(8)

where

R1 =
4
T1

∫ T1/4

0
R1(t) cos tdt, (9)

R2 =
4
T2

∫ T2/4

0
R2(t) cosωtdt. (10)

Due to its simplicity, many authors applied the amplitude–frequency formulation to various nonlinear oscillators [12–18]
with great success.

3. Examples

Example 1. We consider a problem of some importance in plasma physics concerning an electron beam injected into a
plasma tube where the magnetic field is cylindrical and increases towards the axis in inverse proportion to the radius. The
governing equation reads [19,20]:

u′′
+

1
u

= 0, u(0) = A, u′(0) = 0. (11)

We re-write Eq. (11) in the form

R(t) = u′′u + 1 = 0, u(0) = A, u′(0) = 0. (12)

According to He’s amplitude–frequency formulation, we choose two trial functions u1(t) = A cos t and u2(t) = A cosωt ,
where ω is assumed to be the frequency of the nonlinear oscillator. Using Eqs. (9) and (10), we have

R1 =
4
T1

∫ T1/4

0
R1(t) cos tdt = −

4A2

3π
+

2
π

, (13)

and R2 =
4
T2

∫ T1/4

0
R2(t) cosωtdt = −

4ω2A2

3π
+

2
π

. (14)

Applying He’s amplitude–frequency formulation, Eq. (8), yields the following result

ω2
=

ω2
1
R2 − ω2

2
R1R2 − R1

=
3

2A2
. (15)

The exact frequency reads [19]

ωex(A) =
2π

Tex(A)
=

2π

2
√
2πA

=

√
2π
2A

=
1.2533141

A
. (16)

The 2.28% accuracy is remarkably good as illustrated in Fig. 1.
A = 1, ωapp = 1.224744871 A = 10, ωapp = 0.1224744871.

Example 2. We consider a nonlinear oscillator of the form [20,21]:

u′′
+

u3

1 + u2
= 0, u(0) = A, u′(0) = 0. (17)
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Fig. 1. Comparison of the approximate solution with the exact solution of Eq. (11) (dashed line: the approximated solution and solid line: the exact
solution).

Similarly we choose u1(t) = A cos t and u2(t) = A cosωt as trial solutions, this leads to the following residuals

R1(t) = −A cos t +
A3 cos3 t

1 + A2 cos2 t
, (18)

and

R2(t) = −Aω2 cosωt +
A3 cos3 ωt

1 + A2 cos2 ωt
. (19)

In view of Eq. (7), we have

ω2
=

ω2
1R2


T2
12


− ω2

2R1


T1
12


R2


T2
12


− R1


T1
12

 =

3
4A

2

1 +
3
4A

2
. (20)

The result obtained is the same as those in Refs. [21,22]. Fig. 2 shows excellent agreement between the approximate solution
and the exact one.

A = 10, ωapp = 0.9934 A = 100, ωapp = 0.9999.

Example 3. We consider the nonlinear oscillator with high nonlinearities [23]:

u′′
+ αu + γ u2n+1

= 0, α ≥ 0, γ > 0, n = 1, 2, 3, . . . , u(0) = A, u′(0) = 0. (21)

Proceeding in the same way as Example 2, we have

ω2
=

ω2
1R2


T2
12


− ω2

2R1


T1
12


R2


T2
12


− R1


T1
12

 = α + γ A2n

√
3
2

2n

(22)

where

R1(t) = −A cos t + Aα cos t + γ A2n+1 cos2n+1 t (23)

and

R2(t) = −Aω2 cosωt + Aα cosωt + γ A2n+1 cos2n+1 ωt. (24)

The exact frequency reads [12]

ωex =
2π

4
 π/2
0

dθ
α+

γ
n+1 A

2n(1+sin2 θ+sin4 θ+···+sin2n θ)

. (25)
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Fig. 2. Comparison of the approximate solution with the exact solution of Eq. (17) (dashed line: the approximated solution and solid line: the exact
solution).

Fig. 3. Comparison of the approximate solution with the exact solution of Eq. (26) (dashed line: the approximated solution and solid line: the exact
solution).

In order to verify the accuracy of the obtained frequency, we consider the following special case.

u′′
+ 10u + u9

= 0, u(0) = A, u′(0) = 0. (26)

The approximate frequency agrees very well with the exact one as shown in Fig. 3.

A = 0.1, ωapp = 3.16228 A = 1, ωapp = 3.23831.

4. Conclusion

He’s amplitude–frequency formulation was derived using the basic solution procedure of an ancient Chinese
mathematical method, the formulation was proved to be very effective to various nonlinear oscillators. It can be used in
engineering to determine the period of a nonlinear oscillator using only pencil and hand.
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