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Positive and elementary stable nonstandard numerical methods
with applications to predator–prey models
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Abstract

Positive and elementary stable nonstandard (PESN) finite-difference methods, having the same qualitative features
as the corresponding continuous predator–prey models, are formulated and analyzed. The proposed numerical
techniques are based on a nonlocal modeling of the growth-rate function and a nonstandard discretization of the
time derivative. This approach leads to significant qualitative improvements in the behavior of the numerical solution.
Applications of the PESN methods to a specific Rosenzweig–MacArthur predator–prey model are also presented.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The interspecies interaction is among the most intensively explored fields of biology. The increasing
amount of realistic mathematical models in that area helps in understanding the population dynamics of
analyzed biological systems. Mathematical models of predator–prey systems, characterized by decreasing
growth rate of one of the interacting populations and increasing growth rate of the other, consist of systems
of differential equations. In most of the interactions modeled all rates of change are assumed to be time
independent, which makes the corresponding systems autonomous. The positivity of the sizes of both
interacting populations requires the mathematical models to preserve the invariance of the first quadrant.
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Numerical methods that approximate predator–prey systems are expected to be consistent with the
original differential system, to be zero-stable and convergent. Nonstandard finite-difference rules for de-
signing methods that preserve the physical properties, especially the stability properties of equilibria, of
the approximated system have been developed in [14,16]. Many researchers have worked on develop-
ing nonstandard schemes that deal with these issues, including [2,12,8] among others. All of them have
designed elementary stable nonstandard (ESN) methods for different classes of dynamical systems. An
important number of contributions have also been made to guarantee the positivity of the numerical solu-
tion of those nonstandard numerical methods [3,9]. Marcus and Mickens [13] have constructed positive
nonstandard methods that suppress numerically induced chaos for a system of three ordinary differential
equations that models photoconductivity of semiconductors. Piyanwong et al. [17] and Jansen and Twizell
[11] have designed positive and unconditionally stable schemes for the SIR and SEIR models, respec-
tively. Many researchers have also worked on positive and bounded nonstandard finite-difference schemes
for partial differential equations [1,15]. In this paper, we develop a new class of positive and elemen-
tary stable nonstandard (PESN) finite-difference methods for a general class of Rosenzweig–MacArthur
predator–prey systems with a logistic intrinsic growth of the prey population.

The paper is organized as follows. In Section 2, we provide some definitions and preliminary results
as well as a mathematical analysis of the general Rosenzweig–MacArthur predator–prey systems with
a logistic intrinsic growth of the prey population. In Section 3, we design the PESN numerical methods
for the considered class of predator–prey systems. In the last two sections we illustrate our results by
numerical examples and outline some future research directions.

2. Definitions and preliminaries

The general Rosenzweig–MacArthur predator–prey model [4, p. 182] with a logistic intrinsic growth
of the prey population has the following form:

dx

dt
= bx(1 − x) − ag(x)xy, x(t0) = x0 �0,

dy

dt
= g(x)xy − dy, y(t0) = y0 �0, (1)

where x and y represent the prey and predator population sizes, respectively, b > 0 represents the intrinsic
growth rate of the prey, a > 0 stands for the capturing rate and d > 0 is the predator death rate. In (1) it
is reasonable to assume

g(x)�0, g′(x)�0, [xg(x)]′�0 (2)

and that xg(x) is bounded as x → ∞. These assumptions express the idea that as prey population
increases the consumption rate of prey per predator increases but that the fraction of the total prey
population consumed per predator decreases [4].

The equilibrium points of System (1) are defined as the solutions of the system:

bx(1 − x) − ag(x)xy = 0,
g(x)xy − dy = 0. (3)
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Depending on the values of the parameters and the functional response xg(x) System (1) has the following
equilibria:

(1) E0 = (0, 0);
(2) E1 = (1, 0) and
(3) E∗ = (x∗, y∗), where x∗ is the solution of xg(x) = d and y∗ = bx∗(1−x∗)

ad
. The equilibrium E∗ exists

if and only if g(1) > d.

According to the stability theory for general nonlinear systems [6], the following statements about the
stability of the equilibria of System (1) are true:

(1) The equilibrium E0 is always linearly unstable;
(2) The equilibrium E1 is linearly stable if g(1) < d and linearly unstable if g(1) > d;
(3) The equilibrium E∗ is linearly stable if b+ay∗g′(x∗) > 0 and linearly unstable if b+ay∗g′(x∗) < 0;

A general one-step numerical scheme with a step size h, that approximates the solution z(t)=(x(t), y(t))T

of the system:

dz

dt
= F(z); z(t0) = z0 �0, (4)

at tk = t0 + kh can be written in the form

Dh(zk) = Fh(F ; zk), (5)

where

Dh(zk) ≈
(

dx

dt
,

dy

dt

)T

,

Fh(F ; zk) approximates the right-hand side of System (4) and zk ≈ z(tk).
Throughout this article, we assume that System (4) has a finite number of hyperbolic equilibria, i.e.,

Re(�) �= 0, for � ∈ �, where � =⋃
z∗∈� �(J (z∗)) and � represents the set of all equilibria of System (4).

Definition 1. Let Ē = (x̄∗, ȳ∗) be a fixed point of Scheme (5) and the equation of the perturbed solution
zk = Ē + �k , where �k = (�k, �k) is small, be linearly approximated by

Dh�k = Jh�k . (6)

Here the right-hand side of Eq. (6) represents the linear term in �k of the Taylor expansion ofFh(F ; Ē+�k)
around Ē. The fixed point Ē is called stable if ‖�k‖ → 0 as k → ∞, and unstable otherwise, where �k is
the solution of Eq. (6).

We introduce the next two definitions based on definitions given in [2].

Definition 2. The finite difference method (5) is called elementary stable, if, for any value of the step
size h, its only fixed points Ē are those of the differential system (4), the linear stability properties of
each Ē being the same for both the differential system and the discrete method.
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Definition 3. The one-step method (5) is called a nonstandard finite-difference method if at least one of
the following conditions is satisfied:

• Dh(zk) = zk+1−zk

�(h)
, where �(h) = h + O(h2) is a nonnegative function;

• Fh(F ; zk) = f (zk, zk+1, h), where f (zk, zk+1, h) is a nonlocal approximation of the right-hand side
of System (4).

Elementary stable nonstandard (ESN) methods for System (4) can be designed using the following
theorem [8]:

Theorem 1. Let 	 be a real-valued function on R that satisfies the property:

	(h) = h + O(h2) and 0 < 	(h) < 1 for all h > 0. (7)

Let q = max�(|�|2/2|Re(�)|), where � ∈ � and � represents the union of the spectrums of the Jacobians
at the equilibria of System (4). Then the following numerical schemes for solving System (4) represent
ESN methods:

(a) explicit ESN Euler method given by

zk+1 − zk

	(hq)/q
= F(zk), (8)

(b) implicit ESN Euler method given by

zk+1 − zk

	(hq)/q
= F(zk+1), (9)

(c) second-order ESN Runge–Kutta method given by

zk+1 − zk

	(hq)/q
= F(zk) + F(zk + (	(hq)/q)F (zk))

2
. (10)

Remark 1. There exists a variety of functions 	 that satisfy condition (7), e.g., 	(h) = 1 − e−h, i.e.,
�(h) = 	(hq)/q = (1 − e−hq)/q.

3. Main results

ESN methods for solving Rosenzweig–MacArthur predator–prey systems with logistic intrinsic growth
of the prey population can be design directly, based on the results of Theorem 1. However, to guarantee
positivity of the discrete solution it is necessary not only to replace the traditional denominator function
h with a new function �(h), but also to approximate the right-hand side of System (4) nonlocally. When
done in a proper way, the resulting numerical methods are positive and elementary stable nonstandard
(PESN) methods.

Let us first consider the case when the interior equilibrium E∗ of System (1) does not exist:
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Theorem 2. Assume the function g(x) satisfies (2) and g(1) < d. Then the following scheme for solving
System (1) represents a PESN method:

xk+1 − xk

h
= bxk − bxkxk+1 − ag(xk)xk+1yk ,

yk+1 − yk

h
= g(xk)xkyk − dyk+1. (11)

In the case when the interior equilibrium E∗ of System (1) does exist the following theorem holds:

Theorem 3. Let 	 be a real-valued function on R that satisfies property (7). Assume the function g(x)

satisfies (2), g(1) < d and q >
bd|1−2x∗|

|b+ay∗g′(x∗)|x∗ , where (x∗, y∗) is the interior equilibrium of System (1).
Then the following scheme for solving System (1) represents a PESN method:

xk+1 − xk

	(hq)/q
= bxk − bxkxk+1 − ag(xk)xk+1yk ,

yk+1 − yk

	(hq)/q
= g(xk)xkyk − dyk+1. (12)

Remark 2. To guarantee positivity in the PESN methods (11) and (12) we keep the positive terms
of the right-hand side of System (1) at the old-time level and discretize the negative terms by a non-
local expression, linear at the new-time level. Similar idea has been applied in the discretization of
production–destruction systems in [5].

4. Proofs of the main results

Let us first consider the following general two-dimensional system of difference equations:

xk+1 = F(xk, yk),
yk+1 = G(xk, yk). (13)

If Ē is a fixed point of System (13) then the equation for the perturbed solution �k , around Ē, has the form

�k+1 = J (Ē)�k ,

where J (Ē) denotes the Jacobian

⎛
⎜⎜⎜⎜⎝

�F

�x

�F

�y

�G

�x

�G

�y

⎞
⎟⎟⎟⎟⎠ at Ē.

The solution �k → 0 when k → ∞ if and only if all eigenvalues of J (Ē) are less than one in absolute
values.
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Proof (Theorem 2). Scheme (11) can be written in the following explicit form:

xk+1 = (1 + hb)xk

1 + hbxk + hag(xk)yk

,

yk+1 = (1 + hg(xk)xk)yk

1 + hd
. (14)

Since the constants a, b, d and the function g are all positive then System (14) is unconditionally positive
and its fixed points are exactly the equilibria E0 and E1 of System (1). Therefore, Eq. (6) for the perturbed
solution of Scheme (14) around an equilibrium Ē = (x̄, ȳ) has the form

�k+1 = J (Ē)�k ,

where

J (Ē) =

⎛
⎜⎜⎜⎜⎜⎝

(1 + hb)(1 + haȳ(g(x̄) − g′(x̄)x̄)

(1 + hbx̄ + haȳg(x̄))2 − (1 + hb)hax̄g(x̄)

(1 + hbx̄ + haȳg(x̄))2

hȳ(g(x̄) + x̄g′(x̄))

1 + hd

1 + hx̄g(x̄)

1 + hd

⎞
⎟⎟⎟⎟⎟⎠

.

The Jacobian

J (E0) =

⎛
⎜⎜⎜⎜⎝

1 + hb 0

0
1

1 + hd

⎞
⎟⎟⎟⎟⎠

has eigenvalues �1 = 1 + hb and �2 = 1/(1 + hd). Since |�1| > 1 for h > 0 then the unstable equilibrium
E0 is also an unstable fixed point of Scheme 11. The Jacobian

J (E1) =

⎛
⎜⎜⎜⎝

1

1 + hb
−hag(1)

1 + hb

0
1 + hg(1)

1 + hd

⎞
⎟⎟⎟⎠

has eigenvalues �1 =1/(1+hb) and �2 =1+hg(1)/(1+hd). If the equilibrium E1 is stable then g(1) < d

and therefore |�1| < 1 and |�2| < 1. Thus E1 is a stable fixed point of Scheme (11). If the equilibrium E1
is unstable then g(1) > d and |�2| > 1. Therefore E1 is an unstable fixed point of Scheme (11). Since E0
and E1 are the only equilibria of System (1), then the nonstandard Scheme (11) is elementary stable and
represents a PESN method. �

Proof (Theorem 3). Let us denote h1 = �(h) = 	(hq)/q. Since 0 < h1 < 1
q

then

h1 <
|b + ay∗g′(x∗)|x∗

bd|1 − 2x∗| . (15)
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The explicit expression of the nonstandard Scheme (12) has the form

xk+1 = (1 + h1b)xk

1 + h1bxk + h1ag(xk)yk

,

yk+1 = (1 + h1g(xk)xk)yk

1 + h1d
. (16)

Since the constants a, b, d and the function g are all positive then System (16) is unconditionally positive
and its fixed points are exactly the equilibria E0, E1 and E∗ of System (1). Therefore, Eq. (6) for the
perturbed solution of Scheme (14) around an equilibrium Ē = (x̄, ȳ) has the form

�k+1 = J (Ē)�k ,

where

J (Ē) =

⎛
⎜⎜⎜⎜⎝

(1 + h1b)(1 + h1aȳ(g(x̄) − g′(x̄)x̄)

(1 + h1bx̄ + h1aȳg(x̄))2 − (1 + h1b)h1ax̄g(x̄)

(1 + h1bx̄ + h1aȳg(x̄))2

h1ȳ(g(x̄) + x̄g′(x̄))

1 + h1d

1 + h1x̄g(x̄)

1 + h1d

⎞
⎟⎟⎟⎟⎠ .

The fact that Scheme (12) preserves the stability of E0 and E1 can be established similarly to the proof
of Theorem 2.

The eigenvalues �1 and �2 of the Jacobian

J (E∗) =

⎛
⎜⎜⎜⎜⎝

1 − h1x
∗(b + ay∗g′(x∗)

1 + h1b
− h1ad

1 + h1b

hy∗(g(x∗) + x∗g′(x∗))
1 + hd

1

⎞
⎟⎟⎟⎟⎠

are roots of the quadratic equation

�2 − (C + 1)� + C + AB = 0, (17)

where

A = h1ad

1 + h1b
, B = h1y

∗(g(x∗) + x∗g′(x∗))
1 + h1d

and C = 1 − h1x
∗(b + ay∗g′(x∗))

1 + h1b
.

Therefore, the stability of E∗ as a fixed point of Scheme (12) depends of the absolute values of �1 and
�2. The following fact is true for the roots of a general quadratic equation:

Fact. For the quadratic equation �2 + 
� + � = 0 both roots satisfy |�i | < 1, i = 1, 2 if and only if the
following conditions are satisfied [4, p. 82]:

• 1 + 
 + � > 0;
• 1 − 
 + � > 0; and
• � < 1.
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Applying the above result on Eq. (17) we obtain that E∗ is a stable fixed point of Scheme (12) if and
only if the following conditions are true:

(a) AB > 0;
(b) 2 + 2C + AB > 0; and
(c) AB < 1 − C.

E∗ is an unstable fixed point if at least one of the above conditions fails. Since

A = h1ad

1 + h1b
> 0 and B = hy∗(g(x∗) + [xg(x)]′|x=x∗)

1 + hd
> 0

then the condition (a) is always true. Calculations yield that

C = 1 + h1b(1 − x∗) − h1ay
∗g′(x∗)x∗

1 + h1b
,

which is positive, because 0 < x∗ < 1 and g′(x∗) < 0. Therefore the second condition (b) is always true,
as well. The third condition, AB < 1 − C, is equivalent to the following inequality:

h1bd(1 − 2x∗) < x∗(b + ay∗g′(x∗)). (18)

Assume that E∗ = (x∗, y∗) is a stable equilibrium of System (1). Therefore b + ay∗g′(x∗) > 0. If x∗� 1
2 ,

Inequality (18) is satisfied because the left-hand side is nonpositive, while the right-hand side is positive.
If x∗ < 1

2 , Inequality (18) is satisfied because of Inequality (15). Therefore E∗ is a stable fixed point of
Scheme (12). If E∗ = (x∗, y∗) is an unstable equilibrium of System (1) then b + ay∗g′(x∗) < 0. In the
case when x∗� 1

2 , Inequality (18) is not satisfied because the left-hand side is nonnegative, while the
right-hand side is negative. If x∗ > 1

2 , Inequality (18) is not satisfied because of Inequality (15). Therefore
E∗ is an unstable fixed point of Scheme (12). �

5. Numerical examples

To illustrate the advantages of the designed PESN finite-difference methods, we consider the
Rosenzweig–MacArthur predator–prey system (1) with a Holling-type II predator functional response of
the form xg(x) = x/(c + x) [10], which satisfies (2). System (1) becomes

dx

dt
= bx(1 − x) − axy

c + x
,

dy

dt
= xy

c + x
− dy. (19)

We first examine System (19) in the case when the constants are a = 2.0, b = 1.0, c = 0.5 and d = 6.0,
i.e., g(1) = 2

3 < d. Mathematical analysis of the system shows that there exist two equilibria E0 = (0, 0)

and E1 = (1, 0), with the equilibrium (1, 0) being globally stable in the interior of the first quadrant. The
eigenvalues of J (0, 0) are given by �1 = 1 and �2 = −6.0 and the eigenvalues of J (1, 0) are given by
�3 = −1 and �4 = −16

3 . Comparison of numerical approximations of the solution of System (19) with
the PESN method (11), the explicit ESN Euler method (8) using �(h) = 	(hq)/q = (1 − e−hq)/q with
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Fig. 1. Numerical approximations of the solutions of System (19) supporting the results of Theorem 2: (a) h = 0.2, x0 = 1,
y0 = 6.5; (b) h = 0.2, x0 = 1, y0 = 6.5; (c) h = 0.2, x0 = 0.3, y0 = 7.5; (d) h = 2.5, x0 = 0.4, y0 = 0.4.

q = 3.1 and the explicit Euler method supports the results of Theorem 2. The nonstandard (ESN and
PESN) methods preserve the stability of the equilibrium (1, 0), while the approximation obtained by the
standard method diverges (Fig. 1(a)). However, a drawback of the ESN method is that it is not positive
(Fig. 1(b)). Similar behavior is observed when the standard second-order Runge–Kutta method is used
to numerically solve System (19) (see Fig. 1(c)). In some cases, for relatively large step-size h = 2.5, the
Runge–Kutta numerical solution approaches an artificially created nonexisting equilibrium (Fig. 1(d)).

Next, we examine System (19) in the case when the constants are a = 2.0, b = 1.0, c = 1.0 and
d = 0.2, i.e., g(1) = 1

2 > d . Mathematical analysis of the system shows that there exist three equilibria
E0 = (0, 0), E1 = (1, 0) and E∗ = (1

4 , 15
32 ), with the interior equilibrium E∗ being globally stable in the

interior of the first quadrant. Comparison of numerical approximations of the solution of System (19)
with the PESN method (11) using �(h) = 	(hq)/q = (1 − e−hq)/q with q = 1.2, the Patankar Euler
scheme [5, p. 17], the modified Patankar Euler scheme [5, p. 18], and the second-order Runge–Kutta
method supports the results of Theorem 3. The nonstandard (PESN) method preserves the stability of
the equilibrium E∗ (Fig. 2(b),(d),(f)), while the approximations obtained by the other three numerical
methods diverge (Fig. 2(a),(c),(e)). Moreover, the modified Patankar Euler scheme (Fig. 2(c)) and the
second-order Runge–Kutta method (Fig. 2(e)) produce nonpositive approximations.
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Fig. 2. Numerical approximations of the solutions of System (19) supporting the results of Theorem 3: (a) h = 1.3, x0 = 0.4,
y0 = 0.4; (b) h = 1.3, x0 = 0.4, y0 = 0.4; (c) h = 2.1, x0 = 0.1, y0 = 0.2; (d) h = 2.1, x0 = 0.1, y0 = 0.2; (e) h = 4.6, x0 = 0.4,
y0 = 0.4; (f) h = 4.6, x0 = 0.4, y0 = 0.4.

6. Discussion and conclusions

In this article, we applied the theory of nonstandard numerical methods to a general class of
Rosenzweig–MacArthur predator–prey systems with logistic intrinsic growth of the prey population,
which has a finite number of hyperbolic equilibria. Positive and elementary stable nonstandard (PESN)
schemes for solving the above models were designed and analyzed. They preserve essential physical prop-
erties of exact solutions of the approximated differential systems. The proposed new methods were com-
pared to standard numerical methods, e.g., the explicit Euler method and the second-order Runge–Kutta
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method, to Patankar-type methods, as presented in [5], and to the explicit ESN Euler method (8). Numer-
ical results confirm the advantages of the new PESN method. The PESN method preserves the positivity
of solutions and the stability of the equilibria for arbitrary step sizes, while the approximations obtained
by the other numerical methods experience difficulties with either preserving the stability, or preserving
the positivity of the solutions, or both (see Figs. 1 and 2).

The proposed new PESN numerical schemes can also be applied to other two-dimensional autonomous
dynamical systems [7]. Future research directions include the construction of similar nonstandard schemes
for the general case of biological systems with nonhyperbolic equilibria.
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