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© 2010 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

1.1. Introduction

Let k be a number field, fixed once and for all as our base field, let K/k be a cubic extension of k,
and let N be a Galois closure of K/k. When K/k is not cyclic we have Gal(N/k) � S3 � D3, and the
field N contains a unique quadratic subextension K2/k.

When K/k is cyclic we have N = K and Gal(N/k) � C3. Although this case has already been treated
in [5], since the methods are almost identical we include it in the present paper by setting K2 = k,
which by abuse of language we will still call a quadratic extension of k, even though [K2 : k] = 1.

We fix the quadratic extension K2/k, and we call F (K2) the set of cubic extensions K/k (up to k-
isomorphism) such that the quadratic subextension of the Galois closure of K/k is isomorphic to K2.
Our goal is to compute an asymptotic formula for

N(K2/k, X) = ∣∣{K ∈ F (K2), Nk/Q

(
d(K/k)

)
� X

}∣∣,
where d(K/k) is the relative discriminant ideal of K/k and Nk/Q denotes the absolute norm.
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By a well-known theorem (see for example Theorem 9.2.6 of [1]), the conductor of the cyclic
extension N/K2 is of the form f(N/K2) = f(K/k)ZK2 , where f(K/k) is an ideal of the base field k
(when K/k is noncyclic this is of course not a conductor in the usual sense). When k = Q we will
write f (K ) for the positive integer generating the ideal f(K/Q) of Z.

Since d(K/k) = d(K2/k)f(K/k)2, it is clear that

N(K2/k, X) = M
(

K2/k,
(

X/Nk/Q

(
d(K2/k)

))1/2)
,

where

M(K2/k, X) = ∣∣{K ∈ F (K2), Nk/Q

(
f(K/k)

)
� X

}∣∣,
so we will in fact only study M(K2/k, X). When k = Q, we will omit the letter k from the notation.

Some results of this paper are obtained using tools which are similar to the ones used (in a slightly
different context) in previous papers of the first author and collaborators [4,5]. Thus, for brevity we
have decided to omit or only sketch some long and technical proofs, and we refer to [4,5] for complete
proofs which can be easily adapted to our situation.

On the other hand we would like to emphasize that the Galois structure and the use of Kummer
theory are more complex in our case than in the cyclic case [5], so some results require new proofs,
which we give in detail.

Moreover, unlike [5], we give an explicit formula for the error term, since this kind of technique,
although considered “standard”, is not easy to find in detail in the literature.

Finally, in some cases it is possible to give simple explicit formulas by using Scholz’s
Spiegelungssatz, and this is done in Section 7.4.

1.2. Statement of results

The result in the case of a general base field k is a little complicated (see Corollary 6.2), so we
state it here only for k = Q.

Theorem 1.1. As above, let K2 = Q(
√

D ) be an extension of Q with [K2 : Q] � 2, denote by K ′
2 = Q(

√−3D )

the mirror field of K2 , and set g(K ′
2) = 3 if K ′

2 = Q(
√−3 ), and g(K ′

2) = 1 otherwise. Then:

(1) (Pure cubic fields.) We have

M
(
Q(

√−3 ), X
) = C1

(
Q(

√−3 )
)

X
(
log(X) + C2

(
Q(

√−3 )
) − 1

) + O
(

X2/3+ε
)
,

for every ε > 0, where

C1
(
Q(

√−3 )
) = 7

30

∏
p

(
1 − 3

p2
+ 2

p3

)
,

C2
(
Q(

√−3 )
) = 2γ − 16

35
log(3) + 6

∑
p

log(p)

p2 + p − 2
,

and γ is Euler’s constant.
(2) (General case.) For D �= −3, denote by aK ′

2
(p) the number of copies of Qp occurring in K ′

2 ⊗ Qp

(aK ′
2
(p) = 0 or 2 according to whether the number of prime ideals above p in K ′

2 is equal to 1 or 2).

Then M(Q(
√

D ), X) = C(Q(
√

D ))X + O (X2/3+ε), where

C
(
Q(

√
D )

) = g
(

K ′
2

) c3(K ′
2)

33+r2(K ′
2)

∏
p �=3

(
1 + aK ′

2
(p)

p

)(
1 − 1

p

)
,
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and

c3
(

K ′
2

) =

⎧⎪⎨
⎪⎩

11 if 3ZK ′
2
= p2

1,

15 if 3ZK ′
2
= p1,

21 if 3ZK ′
2
= p1p2.

The result of (2) for D = 1 over Q (corresponding to cyclic cubic fields) is due to Cohn (see [6]),
and over a general number field is due to the author and collaborators (see [5]). The result of (1) over
Q is certainly also in the literature (at least its main term), but over a general number field it seems
to be new, as are all the other results, whether over Q or over a general number field.

Note that the formula in (2) is given because of its elegance and for comparison with the quartic
case, which we give below, but it should not be used for practical computation of the constants
C(Q(

√
D )); for this, use instead Corollary 7.6 below. We emphasize that (for D of reasonable size) all

these constants can easily be computed to hundreds of decimals, using the folklore method explained
in detail in Section 10.3.6 of [3].

1.3. Comparison with the quartic case

Because of its striking similarity, we recall the results of [2] in the quartic case. Let K3 be a cubic
number field, and set g(K3) = 3 if K3 is cyclic, g(K3) = 1 otherwise. We let F (K3) be the set of
isomorphism classes of quartic number fields K whose cubic resolvent is isomorphic to K3. If K ∈
F (K3), its discriminant d(K ) is of the form d(K ) = d(K3) f (K )2 for some integer f (K ), and as in our
case we let

M(K3, X) = ∣∣{K ∈ F (K3), f (K ) � X
}∣∣.

The main result of [2] is then as follows:

Theorem 1.2. Denote by aK3 (p) the number of copies of Qp in K3 ⊗ Qp (aK3 (p) = 0, 1 or 3 according to
whether the number of prime ideals above p in K3 is equal to 1, 2, or 3). Then M(K3, X) = C(K3)X + O (Xα)

for some α < 1, with

C(K3) = 1

g(K3)

c2(K3)

24+r2(K3)

∏
p �=2

(
1 + aK3(p)

p

)(
1 − 1

p

)
,

where

c2(K3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

11 if 2ZK3 = p1,

14 if 2ZK3 = p3
1,

15 if 2ZK3 = p1p2,

16 if 2ZK3 = p2
1p2 and v2(d(K3)) = 3,

18 if 2ZK3 = p2
1p2 and v2(d(K3)) = 2,

23 if 2ZK3 = p1p2p3.

The similarities are striking.



464 H. Cohen, A. Morra / Journal of Algebra 325 (2011) 461–478
2. Galois theory

Definition 2.1. We denote by ρ = ζ3 a primitive cube root of unity and we set L = K2(ρ) and
kz = k(ρ). We let τ be a generator of Gal(L/K2), and we let τ2 be a generator of Gal(K2/k). We
denote by G = Gal(L/k). Finally, we let σ be one of the two generators of the cyclic group of order 3
Gal(N/K2) � Gal(Nz/L), where Nz = N(ρ).

Remark 2.2. We have the following relations:

τ 2 = τ 2
2 = 1, τ τ2 = τ2τ , τσ = στ .

We will need to distinguish five cases, according to the triviality or not of τ or τ2, and to their
action on ρ . We will order them as follows, and this numbering will be kept throughout the paper,
so should be referred to.

(1) τ = τ2 = 1: here K/k is a cyclic cubic extension; in other words K2 = k, Gal(Nz/k) � C3, and
ρ ∈ k.

(2) τ2 = 1 and τ (ρ) = ρ−1: here K/k is a cyclic cubic extension, so that K2 = k, Gal(Nz/k) � C6; in
other words τσ = στ , and ρ /∈ k so L = k(ρ).

(3) τ = 1 and τ2(ρ) = ρ but τ2 �= 1: here K/k is noncyclic, ρ ∈ k, and in particular L = K2, and
Gal(Nz/k) � D3; in other words τ2σ = σ−1τ2.

(4) τ = 1 and τ2(ρ) = ρ−1: here again L = K2, so that ρ ∈ K2, but ρ /∈ k, so K2 = k(ρ), and again
Gal(Nz/k) � D3; in other words τ2σ = σ−1τ2.

(5) τ �= 1 and τ2 �= 1: here ρ /∈ K2, so τ (ρ) = ρ−1 but τ2(ρ) = ρ , so that the fixed field of L under
τ2 is equal to kz = k(ρ), and Gal(Nz/k) � D3 × C2; in other words τσ = στ and τ2σ = σ−1τ2.

Definition 2.3.

(1) In cases (1) to (5) above, we set T = ∅, {τ + 1}, {τ2 + 1}, {τ2 − 1}, {τ + 1, τ2 + 1}, respectively,
where T is considered as a subset of the group ring Z[Gal(L/k)] or of F3[Gal(L/k)].

(2) We define ι(τ ± 1) = τ ∓ 1 and ι(τ2 ± 1) = τ2 ∓ 1.
(3) For any group M on which T acts, we denote by M[T ] the subgroup of elements of M annihilated

by all the elements of T .

We will need the following trivial lemma (see [5], Lemma 2.4).

Lemma 2.4. Let M be an F3[G]-module. For any t ∈ T we have M[t] = ι(t)(M), and conversely M[ι(t)] =
t(M).

Proposition 2.5.

(1) There exists a bijection between on the one hand isomorphism classes of extensions K/k having quadratic
resolvent field isomorphic to K2 , and on the other hand classes of elements α ∈ (L∗/L∗3)[T ] such that
α �= 1 modulo the equivalence relation identifying α with its inverse.

(2) If α ∈ L∗ is some representative of α, the extension K/k corresponding to α is the fixed field under
Gal(L/k) of the field Nz = L( 3

√
α ).

Proof. Since ρ ∈ L, by Kummer theory, cyclic cubic extensions of L are of the form Nz = L( 3
√

α ),
where α �= 1 is unique in (L∗/L∗3) modulo the equivalence relation identifying α with its inverse.
If θ3 = α, then we may assume that σ(θ) = ρθ . When τ is nontrivial (cases (2) and (5)) we have
τ (ρ) = ρ−1. Thus,
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σ
(
θτ (θ)

) = ρθτ
(
σ(θ)

) = ρθτ (ρθ) = θτ (θ),

so by Galois theory θτ (θ) ∈ L, so ατ(α) is a cube, in other words α ∈ (L∗/L∗3)[τ + 1].
Similarly when τ2 is nontrivial we have either τ2(ρ) = ρ (cases (3) and (5)) or τ2(ρ) = ρ−1

(case (4)). A similar computation gives respectively α ∈ (L∗/L∗3)[τ2 + 1] or α ∈ (L∗/L∗3)[τ2 − 1].
Conversely, assume that these conditions are satisfied. The group conditions on τ and τ2 are au-

tomatically satisfied, and the group conditions on σ are exactly those corresponding to the set T .
It follows that Nz/k is Galois with suitable Galois group. The uniqueness statement comes from the
corresponding statement of Kummer theory, since α and α−1 give the same extension. �
Definition 2.6. We denote by V 3(L) the group of (3-)virtual units of L, in other words the group
of u ∈ L∗ such that uZL = q3 for some ideal q of L. We define the (3-)Selmer group S3(L) of L by
S3(L) = V 3(L)/L∗3.

It is immediate that the Selmer group is finite.

Proposition 2.7.

(1) There exists a bijection between isomorphism classes of cubic extensions K/k with given quadratic resol-
vent field K2 and equivalence classes of triples (a0,a1, u) modulo the equivalence relation (a0,a1, u) ∼
(a1,a0,1/u), where a0 , a1 , and u are as follows:

(a) The ai are coprime integral squarefree ideals of L such that a0a
2
1 ∈ Cl(L)3 and a0a

2
1 ∈ (I/I3)[T ], where

I is the group of fractionals ideals of L.
(b) u ∈ S3(L)[T ], and u �= 1 when a0 = a1 = ZL .

(2) If (a0,a1) is a pair of ideals satisfying (a) there exist an ideal q0 and an element α0 of L such that a0a
2
1q

3
0 =

α0ZL with α0 ∈ (L∗/L∗3)[T ]. The cubic extensions K/k corresponding to such a pair (a0,a1) are given
as follows: for any u ∈ S3(L)[T ] the extension is the cubic subextension of Nz = L( 3

√
α0u ) (for any lift u

of u).

Proof. Let Nz = L( 3
√

α ) as above. We can write uniquely αZL = a0a
2
1q

3 where the ai are coprime
squarefree ideals of L. Since α ∈ (L∗/L∗3)[T ] and the class of a0a

2
1 is equal to that of q−3, we ob-

tain (a). Now let a0,a1 be given satisfying (a). There exists an ideal q and an element α ∈ L such
that (a0a

2
1)q

3 = αZL . Applying any t ∈ T , we deduce that q3
1 = t(α)ZL for some ideal q1, so that t(α)

is a virtual unit. From t ◦ ι(t) = 0 and Lemma 2.4 we deduce that t(α) ∈ t(S3(L)), in other words
that t(α) = γ 3t(u), for some virtual unit u and some element γ . Thus, if we set α0 = α/u, we have
α0 ∈ (L∗/L∗3)[t], and a0a

2
1q

3
0 = α0ZL , for some ideal q0.

The rest of the proof is immediate: a0a
2
1q

3
0 = α0ZL and a0a

2
1q

3 = αZL , with both α0,α ∈
(L∗/L∗3)[T ] if and only if α/α0 = (q/q0)

3 ∈ V 3(L)[T ], so α = α0u for some lift u of u ∈ S3(L)[T ].
Finally α and β give equivalent extensions if and only if either β = αγ 3, which does not change the
ai and the class u, or if β = α−1γ 3. In this case

βZL = a
−1
0 a

−2
1 q−3γ 3 = a1a

2
0

(
γ a

−1
0 a

−1
1 q−1)3

,

which interchanges a0 and a1, and changes u into 1/u, finishing the proof. Note that the only fixed
point of this involution on triples is obtained for a0 = a1 = ZL , and u = 1. �
Lemma 2.8.

(1) The condition a0a
2
1 ∈ (I/I3)[T ] is equivalent to a1 = τ (a0), a1 = τ2(a0), a0 = τ2(a0) and a1 = τ2(a1),

and a1 = τ (a0) = τ2(a0) in cases (2), (3), (4), and (5), respectively.
(2) The ideal a0a1 of L comes from an ideal aα of K2 (in other words a0a1 = aαZL ), and in cases (1), (2),

and (3) it comes from an ideal of k, while in cases (4) and (5), aα is an ideal of K2 invariant by τ2 .
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Proof. Just apply uniqueness of decomposition to τ (a0a
2
1) and τ2(a0a

2
1). �

In case (5), which is the only case where G = Gal(L/k) � V 4, we define K ′
2 to be the quadratic

subextension of L/k different from K2 and kz .

Definition 2.9. We define D (resp., D3) to be the set of all prime ideals p in k with p � 3Zk (resp.,
with p | 3Zk), such that:

• no other conditions in cases (1) and (4);
• p is split in L/k in case (2) and (3);
• the ideals above p are split in L/K2 and L/kz in case (5).

Proposition 2.10.

(1) Let p be a prime ideal of K2 dividing aα and let p be the prime ideal of k below p. Then p ∈ D ∪ D3 .
(2) In cases (2) and (3), set K ′

2 = L. Then in cases (2), (3), and (5) we have p ∈ D ∪ D3 if and only p is split
in K ′

2/k.

Proof. (1) is immediate, for (2) use decomposition groups. �
3. Conductors

The discriminant (equivalently, the conductor) of a cyclic Kummer extension is given by an impor-
tant theorem of Hecke (see [1], Section 10.2.9). We will mainly need it in the cubic case, but we also
need it in the quadratic case, where it takes an especially nice form:

Theorem 3.1. Let k be a number field, let K2 = k(
√

D ) be a quadratic extension with D ∈ k∗ \ k∗2 , and write
uniquely DZk = aq2 , where a is an integral squarefree ideal. Then

d(K2/k) = f(K2/k) = 4a/c2,

where c is the largest ideal (for divisibility) dividing 2Zk and coprime to a such that the congruence x2/D ≡
1 (mod ∗c2) has a solution.

Corollary 3.2. Let K be a number field such that ρ /∈ k, where ρ = ζ3 is a primitive cube root of unity, and set
Kz = K (ρ). Then

d(Kz/K ) =
∏

p|3ZK
e(p/3) odd

p.

In particular, the ramified primes in Kz/K are those above 3 such that e(p/3) is odd.

Proof. We have Kz = K (
√−3 ), so D = −3. We have DZK = 3ZK = aq2 with a = ∏

p|3ZK
e(p/3) odd

p. On

the other hand a is coprime to 2 and the congruence x2 ≡ −3 (mod 4) has the solution x = 1, so
c = 2ZK and the corollary follows. �

If p is a prime ideal of K2, we will denote by pz any prime ideal of L above p. By the above
corollary, we have e(pz/p) = 2 if and only if L �= K2 and e(p/3) is odd, otherwise e(pz/p) = 1.

In the case of cyclic cubic extensions, the result is more complicated, especially when L �= K2. We
first need some definitions.
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Definition 3.3. In the sequel, when p is a prime ideal of k we will denote by p a prime ideal of K2
above p, and by pz a prime ideal of L above p. In addition, to simplify notation:

• We set p1/2 = p if p is ramified in K2/k (i.e., pZK2 = p2), and similarly p1/2 = pz if p is ramified
in L/K2 (i.e., pZL = p2

z ).
• We say that p ⊂ k divides some ideal b of K2 (resp., of L) when (pZK2 )

1/e(p/p) (resp.,
(pZL)

1/e(pz/p)) does.

Note that e(pz/p) � 2 (indeed, if for instance e(p/p) = 2 then e(p/3) is even so pz/p is unramified
by Corollary 3.2), so we will never need to define “p1/4”.

Definition 3.4. Let α ∈ (L∗/L∗3)[T ] be as above, let p be an ideal of k above 3, let p and pz be as in
Definition 3.3, and consider the congruence x3/α ≡ 1 (mod ∗pn

z ) in L. If this congruence is soluble for
n = 3e(pz/3)/2 we set Aα(p) = 3e(pz/3)/2 + 1, otherwise, if n < 3e(pz/3)/2 is the largest exponent
for which it has a solution, we set Aα(p) = n. In both cases we define

aα(p) = Aα(p) − 1

e(pz/p)
.

It is clear that Aα(p) and aα(p) do not depend on the ideal pz above p, whence the notation. We
have the following properties:

Proposition 3.5. We have 0 � aα(p) < 3e(p/3)/2−1/e(p/p) and aα(p)e(p/p) ∈ Z, or aα(p) = 3e(p/3)/2,
which happens if and only if Aα(p) = 3e(pz/3)/2+1, in which case it is only a half integer when e(pz/p) = 2.

Definition 3.6. To simplify notations, we set

P3 = {
p

∣∣ 3Zk such that e(p/3) odd
}
.

Theorem 3.7. Let N correspond to α as above, write uniquely αZL = a0a
2
1q

3 with a0 and a1 integral coprime
squarefree ideals, and let aα be the ideal of K2 such that a0a1 = aαZL (see Lemma 2.8). Then

f(N/K2) = 3aα
∏

p|3Zk
(pZK2)

e(p/3)/2 ∏
p∈P3

(pZK2)
1/2∏

p|3Zk
p�aα

(pZK2)
�aα(p)e(p/p)�/e(p/p)

.

Remark 3.8. Proposition 3.5 and Theorem 3.7 come from similar results in [5] where we have just
replaced aα(p) by aα(p) = aα(p)/e(p/p). In particular, the fact that aα(p)e(p/p) is an integer when
aα(p) < 3e(p/3)/2 is a rather subtle result, which follows from the use of higher ramification groups.

Definition 3.9. Let p, p and pz be as in Definition 3.4, and let a be such that 0 � a < 3e(p/3)/2 −
1/e(p/p) and ae(p/p) ∈ Z, or a = 3e(p/3)/2. For ε = 0 or 1 we define h(ε,a, p) as follows:

• We set h(0,a, p) = 0 if a = 3e(p/3)/2 or e(pz/p) = 2; in the other cases we set h(0,a, p) =
1/e(p/p).

• We set h(1,a, p) = 2/e(pz/p).

Lemma 3.10. Let b = a + h(ε,a, p).

(1) Assume that b � 3e(p/3)/2. Then h(ε,b, p) = h(ε,a, p), so that a = b − h(ε,b, p).
(2) We have b = 0 if and only if a = 0, ε = 0, and e(pz/p) = 2. In particular, if e(pz/p) = 1 we have b > 0.
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Proof. Follows immediately from Definition 3.9. �
Lemma 3.11. Let p be a prime ideal of k and denote by Dk the congruence x3/α ≡ 1 (mod ∗ pk) in L. If a is
as in the above definition, then aα(p) = a if and only if Dk is soluble for k = a + h(0,a, p) and not soluble for
k = a + h(1,a, p), where this last condition is ignored if a + h(1,a, p) > 3e(p/3)/2.

Proof. Just apply definitions 3.4 and 3.9 and Proposition 3.5. �
4. The Dirichlet series

To avoid having both the norm from K2/Q and from k/Q, and to emphasize the fact that we are
mainly interested in the latter, we set explicitly the following definition:

Definition 4.1. If a is an ideal of k, we set N (a) = Nk/Q(a), while if a is an ideal of K2, we set

N (a) = N K2/Q(a)1/[K2:k].

This practical abuse of notation cannot create any problems since if a is an ideal of k we have
N (a) = N (aZK2 ). For instance, since f(N/K2) = f(K/k)ZK2 , we have N (f(K/k)) = N (f(N/K2)). We
emphasize that unless explicitly written otherwise, from now on we will only use the above notation.

Definition 4.2. The fundamental Dirichlet series is defined by

Φ(s) = 1

2
+

∑
K∈F (K2)

1

N (f(K/k))s
.

Definition 4.3. For α0 ∈ L∗ and b an ideal of L we introduce the function

fα0(b) = ∣∣{u ∈ S3(L)[T ], x3/(α0u) ≡ 1
(
mod ∗b

)
soluble in L

}∣∣,
with the convention that fα0(b) = 0 if b � 3

√−3.

Definition 4.4.

(1) We let B be the set of formal products of the form
∏

pi |3Zk
(piZK2 )

bi , where the bi are such that
0 � bi � 3e(pi/3)/2 and e(pi/pi)bi ∈ Z ∪ {3e(pi/3)/2}.

(2) We will consider any b ∈ B as an ideal of K2, where by abuse of language we accept to have half
powers of prime ideals of K2, and we set bz = bZL .

(3) If b = ∏
pi |3ZK2

p
bi

′
i ∈ B, bi

′ = e(pi/pi)bi , we set �N �(b) = ∏
pi |b N (pi)

�bi
′�.

(4) For b ∈ B we define re(b) = ∏
p|3ZK2 , p�b
e(p/3) even

p.

(5) We set d3 = ∏
p∈D3

p.

Definition 4.5.

(1) Set e = e(p/3), let p an ideal of K2 above p, let pz be an ideal of L above p, and define s′ =
s/e(p/p). We define Q ((pZK2 )

bi , s) as follows:
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• if e(pz/p) = 1, (so that e(p/3) is even) we have

Q
(
(pZK2)

b, s
) =

⎧⎪⎪⎨
⎪⎪⎩

0 if b = 0,

1/N (p)s′ if b = 1/e(p/p),

1/N (p)s′ − 1/N (p)2s′ if 2/e(p/p) � b � 3e/2 − 1/e(p/p),

1 − 1/N (p)2s′ if b = 3e/2,

• if e(pz/p) = 2 (so that e(p/p) = 1) we have

Q
(
(pZK2)

b, s
) =

⎧⎨
⎩

1 if b = 0 or b = 3e/2,

1 − 1/N (p)s′ if 1 � b � 3e/2 − 3/2,

−1/N (p)s′ if b = 3e/2 − 1/2.

(2) We set Pb(s) = ∏
p|b Q ((pZK2 )

v p(b), s).

Proposition 4.6. We have

Φ(s) = 1

2 · 3(3/2)[k:Q]s ∏
P3

N (p)s/2

∑
b∈B

re(b)|d3

�N �(b)s Pb(s)
∑

(a0,a1)∈ J
(aα,3ZK2 )=re(b)

fα0(b)

N (aα)s
.

Proof. This formula is obtained after some computations, applying in particular Proposition 2.7, The-
orem 3.7 and an inclusion–exclusion argument. A complete proof of the analogous result in the
(simpler) case of cyclic extensions can be found in [5]. �
5. Computation of fα0(b)

Recall that bz | 3
√−3 and that the ai are coprime squarefree ideals such that a0a

2
1 ∈ (I/I3)[T ] and

a0a
2
1 ∈ Cl(L)3. We have also set a0a

2
1q

3
0 = α0ZL with α0 ∈ (L∗/L∗3)[T ]. Recall that

fα0(b) = ∣∣{u ∈ S3(L)[T ], x3 ≡ α0u
(
mod ∗bz

)
soluble in L

}∣∣,
where we have replaced the congruence x3/(α0u) ≡ 1 (mod ∗bz) by the above since we may assume
α0 coprime to bz (changing q0 and α0 if necessary).

Definition 5.1. Set

Sb(L)[T ] = {
u ∈ S3(L)[T ], x3 ≡ u

(
mod ∗bz

)
soluble

}
,

where u is any lift of u coprime to bz , and the congruence is in L.

Lemma 5.2. Let a0,a1 as in condition (1) of Proposition 2.7. Then

fα0(b) =
{

|Sb(L)[T ]| if a0a
2
1 ∈ Clb(L)3,

0 otherwise.

Proof. First, assume that there exists an u0 ∈ S3(L)[T ] such that x3
0 ≡ α0u0 (mod ∗bz) for some x0 ∈ L.

The congruence x3 ≡ α0u (mod ∗bz) is thus equivalent to (x/x0)
3 ≡ (u/u0) (mod ∗bz), in other words

to u/u0 ∈ Sb(L)[T ], so the set of possible u is equal to u0 Sb(L)[T ], whose cardinality is |Sb(L)[T ]|. So
if fα0 �= 0 then it is equal to |Sb(L)[T ]|.
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Now let us prove that fα0 �= 0 if and only if a0a
2
1 ∈ Clb(L)3. The condition a0a

2
1 ∈ Clb(L)3 is

equivalent to the existence of q1 and β1 ≡ 1 (mod ∗bz) such that a0a
2
1q

3
1 = β1ZL . Assume first that

u exists, so that x3
0 = α0uβ for some β ≡ 1 (mod ∗bz) and uZL = q3. It follows that a0a

2
1q

3
0q

3 =
α0uZL = (x3

0/β)ZL , so we can take q1 = q0q/x0 and β1 = 1/β ≡ 1 (mod ∗bz). Conversely, assume that
a0a

2
1q

3
1 = β1ZL with β1 ≡ 1 (mod ∗bz). Since a0a

2
1 ∈ (I/I3)[T ], we have t(β1) = γ 3 for some γ ∈ L∗ .

It follows that α0ZL = a0a
2
1q

3
0 = β1(q0/q1)

3. Thus, u = α0/β1 is a virtual unit, and t(u) is a cube of L
since this is true for α0 and for β1. Thus u ∈ S3(L)[T ] and 13 ≡ β1 ≡ α0/u (mod ∗bz), so fα0 (b) �= 0,
proving the lemma. �

Note that when we assume a0a
2
1 ∈ Clb(L)3 we have automatically a0a

2
1 ∈ Cl(L)3, so we only need

to assume that a0a
2
1 ∈ (I/I3)[T ].

To compute |Sb(L)[T ]| we will use the folling lemmas, which are similar to the ones proposed in
[5], §2, so we will omit the proofs.

Lemma 5.3. Set Zb = (ZL/bz)
∗ , Cl = Cl(L), Clb = Clb(L) and U = U (L). Then

∣∣Sb(L)[T ]∣∣ = |(U/U 3)[T ]||(Clb/Cl3
b
)[T ]|

|(Zb/Z 3
b
)[T ]| .

In particular ∣∣S3(L)[T ]∣∣ = ∣∣(U/U 3)[T ]∣∣∣∣(Cl/Cl3
)[T ]∣∣.

The quantity |(Clb/Cl3
b
)[T ]| will in fact disappear in subsequent computations, and in any case

cannot be computed more explicitly.

Lemma 5.4. For any number field K , denote by rk3(K ) the 3-rank of the group of units of K , in other words
rk3(K ) = dimF3 (U (K )/U (K )3), so that |U (K )/U (K )3| = 3rk3(K ) .

(1) With evident notation we have

rk3(K ) =
{

r1(K ) + r2(K ) − 1 if ρ /∈ K ,

r1(K ) + r2(K ) if ρ ∈ K .

(2) We have |(U/U 3)[T ]| = 3r(U ) , where

r(U ) =
⎧⎨
⎩

rk3(k) in cases (1) and (4),

rk3(L) − rk3(k) in cases (2) and (3),

rk3(L) + rk3(k) − rk3(K2) − rk3(kz) in case (5).

Lemma 5.5. Assume that b is an ideal of B, stable by τ2 and such that bz | 3
√−3, and define

cz =
∏
pz⊂L
pz |bz

p
�vpz (bz)/3�
z .

Then

∣∣(Zb/Z 3
b

)[T ]∣∣ =
∣∣∣ cz

bz
[T ]

∣∣∣.
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Lemma 5.6.

∣∣(Zb/Z 3
b

)[T ]∣∣ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|cz/bz| in case (1),
|cz/bz |

|(cz∩k)/(bz∩k)| in cases (2) and (3),

|(cz ∩ k)/(bz ∩ k)| in case (4),
|cz/bz||(cz∩k)/(bz∩k)|

|(cz∩K2)/(bz∩K2)||(bz∩kz)/(cz∩kz)| in case (5).

6. Final form of the Dirichlet series

We can now put together all the work that we have done. Recall that we have computed |U/U 3[T ]|
in Lemma 5.4 and |(Zb/Z 3

b
)[T ]| in Lemma 5.6. Moreover, B, �N � and d3 are defined in Definition 4.4,

and Pb(s) is given by Definition 4.5. Finally, recall that we have

Φ(s) = 1

2
+

∑
K∈F (K2)

1

N (f(K/k))s
.

Theorem 6.1. For any ideal b, set Gb = (Clb/Cl3
b
)[T ]. We have

Φ(s) = |(U/U 3)[T ]|
2 · 3(3/2)[k:Q]s ∏

P3
N (p)s/2

∑
b∈B

re(b)|d3

( �N �(b)

N (re(b))

)s Pb(s)

|(Zb/Z 3
b
)[T ]|

∑
χ∈Ĝb

F (b,χ, s),

where

F (b,χ, s) =
∏

p|re(b)

p∈D′
3(χ)

2
∏

p|re(b)
p∈D3\D3

′(χ)

(−1)
∏

p∈D′(χ)

(
1 + 2

N (p)s

) ∏
p∈D\D′(χ)

(
1 − 1

N (p)s

)
,

and D′(χ) (resp. D′
3(χ)) is the set of p ∈ D (resp. D3) such that χ(pZL) = 1 in cases (1) and (4), χ(c) =

χ(τ ′(c)) in the other cases, where we write pZL = cτ ′(c), τ ′ ∈ {τ , τ2}, and c is not necessarily a prime ideal.

Proof. Let a0 and a1 be as in condition (a) of Proposition 2.7. We have a0a
2
1 ∈ Clb(L)3 if and only

if χ(a0a
2
1) = 1 for all characters χ ∈ Ĝb . The number of such characters being equal to |Gb|, by

orthogonality of characters we have

Φ(s) = |(U/U 3)[T ]|
2 · 3(3/2)[k:Q]s ∏

p|3Zk,
e(p/3) odd

N (p)s/2

∑
b∈B

re(b)|d3

�N �(b)s Pb(s)

|(Zb/Z 3
b
)[T ]|

∑
χ∈Ĝb

H(b,χ, s),

with H(b,χ, s) = ∑
(a0,a1)∈ J ′

(aα,3ZK2 )=re(b)

χ(a0a2
1)

N (aα)s , where J ′ is the set of pairs of coprime squarefree ideals

of L, satisfying condition (1) of Lemma 2.8, with no class group condition. Thus

H(b,χ, s) = χ(re(b))

N (re(b))s

∑
(a,3ZL)=1
a squarefree

τ (a)=τ2(a)=a

χ(a)

N (a)s

∑
a1|are(b), a1∈ J ′′

χ(a1),

where J ′′ is the set of squarefree ideals a1 such that a1 is stable by τ2 in case (4), a1τ
′(a1) = are(b)

for each nontrivial τ ′ ∈ {τ , τ2} in the other cases.
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Let us define G(χ, p) by:

G(χ, p) =
{

1 + χ(pZL) in cases (1) and (4), and otherwise:

χ(c) + χ(τ ′(c)) when pZL = cτ ′(c) (τ ′ and c as above).

Since a is coprime to 3, by multiplicativity we have H(b,χ, s) = S1 S2 with

S1 = χ(re(b))

N (re(b))s

∏
p|re(b)

G(χ, p) and

S2 =
∑

(a,3ZL)=1
a squarefree

τ (a)=τ2(a)=a

χ(a)

N (a)s

∏
p|a

G(χ, p) =
∏
p∈D

(
1 + χ(pZL)G(χ, p)

N (p)s

)
.

Now, looking at the possible values for G(χ, p), we conclude. �
Corollary 6.2. In cases (2) and (3), set K ′

2 = L, and in all cases denote by d(K ′
2/k) the relative discriminant of

K ′
2/k. Let us define

c1 = |(U/U 3)[T ]|
2 · 3(3/2)[k:Q] ∏

p|3Zk
e(p/3) odd

N (p)1/2
,

c2 =
∑
b∈B

re(b)|d3

�N �(b)

N (re(b))

Pb(1)

|(Zb/Z 3
b
)[T ]|2ω(re(b)),

c3 =
∏
p⊂k

(
1 − 3

N (p)2
+ 2

N (p)3

) ∏
p|3Zk

(
1 + 2

N (p)

)−1

,

c4 = 1

ζk(2)

∏
p∈D

(
1 − 2

N (p)(N (p) + 1)

) ∏
p|d(K ′

2/k)

(
1 − 1

N (p) + 1

)
,

where ω(re(b)) = ∑
p|re(b) 1.

• In cases (1) and (4), around s = 1 we have

Φ(s) = C1(K2/k)

(s − 1)2
+ C1(K2/k)C2(K2/k)

s − 1
+ O (1),

with constants

C1(K2/k) = c1c2c3
(
Ress=1 ζk(s)

)2
and

C2(K2/k) = 2γk + lim
s→1

G ′(s)

G(s)
,

where G(s) = Φ(s)

ζ (s)2
and γk = lim

s→1

(
ζk(s)

Res ζ (s)
− 1

s − 1

)
.

k s=1 k
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In addition, using the notation given at the beginning of this paper, as X → ∞ we have

M(K2/k, X) = C1(K2/k)X
(
log(X) + C2(K2/k) − 1

) + O
(

Xα
)

for some α < 1.

• In cases (2), (3), and (5) we have

Φ(s) = C(K2/k)

(s − 1)
+ O (1),

with

C(K2/k) = c1c2c4
(
Ress=1 ζK ′

2
(s)

)
,

and

M(K2/k, X) = C(K2/k)X + O
(

Xα
)

for some α < 1.

Proof. It is easy to see that when χ is not the trivial character, the functions F (b,χ, s) are holomor-
phic for �(s) > 1/2, so do not occur in the polar part at s = 1. On the other hand, since re(b) | d3, for
χ = 1 we have F (b,1, s) = 2ω(re(b)) P (s), where P (s) = ∏

p∈D(1 + 2
N (p)s ), so we just need to develop

P (s) to get the formula for the polar part of Φ(s).
Finally, since our Dirichlet series have nonnegative and polynomially bounded coefficients, the

asymptotic results follow from a general (and in this case easy) Tauberian theorem. For the error
term O (Xα) with an explicit α < 1, we refer to the following proposition and corollary. �
Proposition 6.3. Let F (s) = ∑∞

n=1 ann−s be a Dirichlet series which is absolutely convergent for �(s) > 1,
which can be extended meromorphically to �(s) > 1/2 with a pole of order k � 1 at s = 1 and no other pole
in the strip 1

2 < �(s) < 1. In addition, assume the following:

(1) The coefficients an are nonnegative, and for all ε > 0 we have

an �ε nε.

(2) F (s) is a function of finite order in the vertical strip 1
2 < σ � 1: we have

∣∣F (σ + it)
∣∣ �ε |t|μ(σ )+ε, when |t| � 1, for all ε > 0,

where μ(1) = 0, and μ(σ ) is convex and decreasing in the strip.
(3) The integral

1∫
0

∣∣F (σ + it)
∣∣dt

is bounded independently of 1
2 < σ < 1

2 + δ, for some δ > 0.

Then for all ε > 0, we have

∑
n�x

an = Ress=1

(
F (s)

xs

s

)
+ O

(
xα+ε

)
,
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where

α = 1 − 1

2(1 + μ(1/2))
. (1)

Proof. Apply Perron’s formula, Cauchy’s residue formula and use (1) and (2) to bound the error
term. �
Corollary 6.4. The error term in 6.2 is O (xα), where α is given by (1).

Proof. We only need to prove that Φ(s) satisfies the hypothesis of Proposition 6.3. For (1) we can
simply refer to [7, Lemma 6.1] or look at the form of F (b,χ, s), and for (2) we apply the Phragmén–
Lindelöf principle. �
Remark 6.5. In the case k = Q it is easy to show that μ(1/2) � 1/2, so we obtain an error term
O (X2/3+ε). The previous bound on μ(1/2) is obtained by using only the convexity bound on the
Riemann zeta function, but if we use subconvexity bounds we would get better results.

On the other hand, if we assume the Lindelöf hypothesis (which is for example implied by GRH),
we obtain μ(1/2) = 0, giving an error term O (X1/2+ε).

7. Special cases: k = QQQ, cases (2), (4), and (5)

We consider the case k = Q, and since ρ /∈ k only cases (2), (4), and (5) occur.

7.1. Case (2): cyclic cubic extensions

Proposition 7.1. We have

∑
K/Q cyclic cubic

1

f (K )s
= −1

2
+ 1

2

(
1 + 2

32s

) ∏
p≡1 (mod 3)

(
1 + 2

ps

)
.

Corollary 7.2. If, as above, M(Q, X) denotes the number of cyclic cubic fields K up to isomorphism with
f (K ) � X, we have

M(Q, X) = C(Q)X + O
(

X2/3+ε
)
, where

C(Q) = 11
√

3

36π

∏
p≡1 (mod 3)

(
1 − 2

p(p + 1)

)
= 0.1585282583961420602835078203575 . . . .

7.2. Case (4): pure cubic fields

In case (4), we have K2 = Q(ρ) = Q(
√−3 ), so that L = K2, and K/Q is a pure cubic field, in other

words K = Q( 3
√

m ).

Proposition 7.3. We have

∑
K/Q pure cubic

1

f (K )s
= −1

2
+ 1

6

(
1 + 2

3s
+ 6

32s

) ∏
p �=3

(
1 + 2

ps

)

+ 1

3

∏
p≡±1 (mod 9)

(
1 + 2

ps

) ∏
p �≡±1 (mod 9)

(
1 − 1

ps

)
,
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where p �≡ ±1 (mod 9) includes p = 3.

Corollary 7.4. If, as above, M(Q(
√−3 ), X) denotes the number of pure cubic fields K up to isomorphism with

f (K ) � X, we have

M
(
Q(

√−3 ), X
) = C1

(
Q(

√−3 )
)

X
(
log(X) + C2

(
Q(

√−3 )
) − 1

) + O
(

X2/3+ε
)
,

where

C1
(
Q(

√−3 )
) = 7

30

∏
p

(
1 − 3

p2
+ 2

p3

)

= 0.066907733301378371291841632984295637501344 . . . ,

C2
(
Q(

√−3 )
) = 2γ − 16

35
log(3) + 6

∑
p

log(p)

p2 + p − 2

= 3.45022279783059196279071191967111041826885 . . . ,

where γ is Euler’s constant and the sum is over all primes including p = 3.

To check the validity of these constants, we note that for instance for X = 1018 we have

M
(
Q(

√−3 ), X
) = 2937032340990444425, while

C1
(
Q(

√−3 )
)

X
(
log(X) + C2

(
Q(

√−3 )
) − 1

) = 2937032340990158620 . . . .

As already mentioned, the error is of the order of O (X1/4+ε) (in this case for instance 0.22 ·
X1/4 log(X)), much smaller than O (X2/3+ε) proved above, and even better than the error term
O (X1/2+ε) that we can prove under the Lindelöf conjecture.

7.3. Case (5): K2 = Q(
√

D ) with D �= −3

In case (5), we have K2 = Q(
√

D ) with D �= −3, so L = Q(
√

D,
√−3 ).

Proposition 7.5. Let D be a fundamental discriminant with D �= −3, let K2 = Q(
√

D ), and let r2(D) = 1 for
D < 0 and r2(D) = 0 for D > 0. There exists a function φD(s) holomorphic for �(s) > 1/2 such that

∑
K∈F (K2)

1

f (K )s
= φD(s) + 3r2(D)

6
L3(s)

∏
( −3D

p )=1

(
1 + 2

ps

)
, where

L3(s) =
⎧⎨
⎩

1 + 2/32s if 3 � D,

1 + 2/3s if D ≡ 3 (mod 9),

1 + 2/3s + 6/32s if D ≡ 6 (mod 9).

Proof. If we denote by φD(s) the contribution of the nontrivial characters in Theorem 6.1 it is clear
that φD(s) is a holomorphic function for �(s) > 1/2, so it is sufficient to consider the contribution of
the trivial characters Φ0(s). We consider the three cases separately and, with similar notations and
computations as in the examples above, we get:
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Φ0(s) = 3r2(D)

6

(
1 + 2

32s

) ∏
( −3D

p )=1

(
1 + 2

ps

)
if 3 � D,

Φ0(s) = 3r2(D)

6

(
1 + 2

3s

) ∏
( −3D

p )=1

(
1 + 2

ps

)
if D ≡ 3 (mod 9),

Φ0(s) = 3r2(D)

6

(
1 + 2

3s
+ 6

32s

) ∏
( −3D

p )=1

(
1 + 2

ps

)
if D ≡ 6 (mod 9), D �= −3. �

Corollary 7.6. Set D ′ = −3D if 3 � D and D ′ = −D/3 if 3 | D, and denote as usual by χD ′ the character ( D ′
· ).

Then if D �= −3 is a fundamental discriminant we have

M
(
Q(

√
D ), X

) = C
(
Q(

√
D )

)
X + O

(
X2/3+ε

)
, where

C
(
Q(

√
D )

) = 3r2(D)�3L(χD ′ ,1)

π2

∏
p|D ′

(
1 − 1

p + 1

) ∏
( D′

p )=1

(
1 − 2

p(p + 1)

)
,

where

�3 =
⎧⎨
⎩

11/9 if 3 � D,

5/3 if D ≡ 3 (mod 9),

7/5 if D ≡ 6 (mod 9).

Note that L(χD ′ ,1) is given by Dirichlet’s class number formula, in other words with standard
notation, L(χD ′ ,1) = 2πh(D ′)/(w(D ′)

√|D ′| ) if D ′ < 0 and L(χD ′ ,1) = 2h(D ′)R(D ′)/
√

D ′ if D ′ > 0.

Proof of Theorem 1.1(2). We now show how to modify the above formulas so as to obtain the formula
given in the theorem. By Propositions 7.1 and 7.5 we can write

ΦD(s) = φD(s) + g
(

K ′
2

)3r2(D)

6
L3(s)

∏
p �=3

(
1 + aK ′

2
(p)

ps

)
,

where g(K ′
2) = 1 unless D = 1, in other words K ′

2 = Q(
√−3 ), in which case g(K ′

2) = 3. Thus,

ΦD(s)

(1 − 1/3s)ζ(s)
= ψD(s) + g

(
K ′

2

)3r2(D)

6
L3(s)

∏
p �=3

(
1 + aK ′

2
(p)

ps

)(
1 − 1

ps

)
,

where ψD(s) = φD(s)/((1 − 1/3s)ζ(s)). When s tends to 1, ψD(s) tends to 0, the left-hand side tends
to a limit, and it is easy to see that the right-hand side tends to a semi-convergent Euler product.
Thus, if we set P (K ′

2) = ∏
p �=3((1 + aK ′

2
(p)/p)(1 − 1/p)), we have

C
(
Q(

√
D )

) = Ress=1 ΦD(s) = g
(

K ′
2

) 1

32−r2(D)
L3(1)P

(
K ′

2

) = g
(

K ′
2

) c3(K ′
2)

33+r2(K ′
2)

P
(

K ′
2

)
,

where c3(K ′
2) is given in the theorem, since the different cases for L3(1) correspond to the different

splittings of 3 in K ′
2/Q. �
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7.4. An exact result when D < 0 and 3 � h(D)

It is interesting to note that when D < 0 and 3 � h(D), one can prove that nontrivial characters do
not occur in the above formulas, so that φD(s) = 0, thus giving exact formulas for the Dirichlet series.

Proposition 7.7. Assume that K2 = Q(
√

D ) with D < 0, D �= −3, and 3 � h(D) = |Cl(K2)|. Then for any ideal
b ∈ B occurring in the sum of Theorem 6.1, the group Gb = (Clb(L)/Clb(L)3)[T ] is trivial.

Proof. An important theorem of Scholz [9] says that if D < 0 is a negative fundamental discriminant
different from −3 we have

0 � rk3
(
Cl

(
Q(

√
D )

)) − rk3
(
Cl

(
Q(

√−3D )
))

� 1

and that rk3(Cl(Q(
√

D ))) = rk3(Cl(Q(
√−3D ))) if and only if the fundamental unit ε of Q(

√
3D )

is not 3-primary, in other words if and only if ε is not a cube modulo 3
√−3ZL , where L =

Q(
√

D,
√−3 ). Since in our case we assume that rk3(Cl(Q(

√
D ))) = 0, it follows that we also have

rk3(Cl(Q(
√−3D ))) = 0 and that ε is not a cube modulo 3

√−3ZL .
We now consider the exact sequence of F3[G]-modules already used above in the computation of

fα0(b):

1 → Sb(L)[T ] → S3(L)[T ] → Zb

Z 3
b

[T ] → Clb(L)

Clb(L)3
[T ] → Cl(L)

Cl(L)3
[T ] → 1.

By Hasse’s formula giving the class number of biquadratic number fields [8], we have |Cl(L)| =
2− j |Cl(K2)||Cl(K ′

2)| with j = 0 or 1, so in particular by Scholz’s theorem we deduce that 3 � |Cl(L)|.
We thus have the exact sequence

1 → Sb(L)[T ] → S3(L)[T ] → Zb

Z 3
b

[T ] → Gb → 1.

In addition, also since 3 � |Cl(L)|, S3(L) is an F3-vector space of dimension r1(L)+ r2(L) = 2, generated
by the classes modulo cubes of ρ and a fundamental unit ε of K ′

2 = Q(
√−3D ). The action of τ and τ2

is given by τ (ρ) = ρ−1, τ2(ρ) = ρ , τ (ε) = ±ε−1, τ2(ε) = ±ε−1 (where ± = N K ′
2/Q(ε)), and modulo

cubes the ± signs disappear. Since T = {τ + 1, τ2 + 1}, it follows that S3(L)[T ] is a 1-dimensional
F3-vector space generated by the class of ε.

Since Gb maps surjectively onto Gb′ for b′ | b, it is sufficient to consider b = 3
√−3. In that case,

we have seen that |(Zb/Z 3
b
)[T ]| = 3 in all cases, and since we have just shown that |S3(L)[T ]| = 3,

by the above exact sequence it follows that Gb is trivial if and only if Sb(L)[T ] is trivial, hence by
definition if and only if ε is not congruent to a cube modulo bz = 3

√−3ZL , which is exactly the
second statement of Scholz’s theorem, proving the proposition. �
Remark 7.8. The same proof shows the following result for D > 0: if D > 0 and 3 � h(D ′), where as
usual D ′ = −3D if 3 � D and D ′ = −D/3 if 3 | D , then Gb is canonically isomorphic to (Zb/Z 3

b
)[T ],

hence has order 1 unless b = 3
√−3 or 3 � D and b = 3ZL , in which case it has order 3.

Corollary 7.9. Under the same assumptions, we have the following simple result:

∑
K∈F (K2)

1

f (K )s
= −1

2
+ 1

2
L3(s)

∏
( −3D

p )=1

(
1 + 2

ps

)
,
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where

L3(s) =
⎧⎨
⎩

1 + 2/32s if 3 � D,

1 + 2/3s if D ≡ 3 (mod 9),

1 + 2/3s + 6/32s if D ≡ 6 (mod 9).
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