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Let R be a commutative ring containing a regular element and let T be the
total quotient ring of R. If F is an invertible ideal of R, then F has a finite
basis; this result was originally proved by Krull in [12] for the case when R
is an integral domain with identity, and Krull’s proof generalizes to the case
of a ring containing a regular element. In the classical case when R is a
Dedekind domain, F has a basis of two elements, one of which can be chosen
arbitrarily from the set of nonzero elements of F [10]. However, S. Chase
has given examples which show that for any positive integer n» > 3, there
exists a Noetherian integral domain J,, with identity containing an invertible
ideal with n, but no fewer, generators.

In Section 1 we show that either of the following conditions is sufficient
in order that an invertible ideal 4 of a commutative ring R with identity have
a basis of two elements: (1) A4 is principal over 42. (2) 4D (U, AM,), where
{M,} is the set of maximal ideals of R containing 4. Also, there is a brief
consideration in Section 1 when one of a set of two generators for 4 can be
chosen arbitrarily from the set of nonzero elements of 4. In Section 2, we
consider invertible ideals of a Priifer domain D. Several known results
concerning Priifer domains indicate plausibility of the conjecture that each
finitely generated ideal of D has a basis of two elements. We do not resolve
this conjecture in Section 2, but we do show that conditions (1) and (2) above
are equivalent, even in the local case, in D, and we give additional sufficient
conditions, in terms of valuation ideals, in order that a fixed finitely generated
ideal of D have a basis of two elements. It is clear, of course, that Chase’s
domains ], are not Priifer. In Section 3 we indicate a general construction of
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Priifer domains, and by means of this construction we give an example which
(2) shows that none of the sufficient conditions given in Sections 1 and 2 in
order that an invertible ideal have a basis of two elements are necessary, and
(b) answers in the negative a question raised by Matlis in [15, p. 151].

All rings considered in this paper are assumed to be commutative.

1. INVERTIBLE IDEALS OF A CoMMUTATIVE RING
We begin with a general result concerning generating sets of an ideal.

Lemma 1. Suppose that A and B are finitely generated ideals of a ring R
such that A = A% 4- B. If B has a basis of n elements, then A has a basis of
n -+ 1 elements.

Proof. In R/B, A|B is a finitely generated ideal such that (4/B)? =
(42 + B/B) = (A/B). Hence, A[B is principal and is generated by an
idempotent element e - B [16, pp. 174-5]. It follows that if {4,}} is a basis
of B, then {b, ,..., b, , €} is a basis of 4.

TraEOREM 1. Let A be an invertible proper ideal of a ring R with identity
and let {M},cs be the set of maximal ideals of R which contain A. If
A2 UsendAM, , then A is generated over A% by a single element. Therefore, A
has a basis of two elements.

Proof. We choose x € 4, x ¢ (| AM,). Then xA1 L M, for any A in 4.
Therefore A + xA4-1 is an ideal of R contained in no maximal ideal of R.
Hence 4 + x4-! = Rand 4% 4 (x) = A.

Remark 1. If A and R are as in Theorem 1 and if {P,} .5 is the set of all
maximal ideals of R, it is straightforward to show that 4 O (|J,es 4P,) if and
only if 4 is principal. This result will not carry over to the case when 4 is
assumed only to be finitely generated. For example, the maximal ideal M of a
one-dimensional local domain need not be principal, but it is true that
MO M.

Turorem 2. If A is an invertible ideal of a ring R with identity and if
{B}} is a finite collection of proper ideals of R, then A D (J;-, AB;).

Proof. Each Bj; is contained in a maximal ideal M; of R. Hence, it suffices
to prove the theorem in the case when the B,’s are distinct maximal ideals of R,

Then for any j, M; D ((i; M;). Since 4 is invertible, AM; D A((;.; M;).

1 This result was stated without proof by the first author in [4, p. 337].
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For each j between 1 and n, we choose a;€ A((;.; M), a;¢ AM;. If
a =Y ,4a;,then ae A and for any j between 1 and #, a = a; 5= 0(AM,).
Therefore, 42 (Ui, 4B,).

CoroLLARY 1.2 If A is an invertible ideal of a ring R with identity such that
A is contained in only finitely many maximal ideals of R, then A has a basis of
two elements.

Proof. Apply Theorems 1 and 2.

CoroLrary 2. (Helms [9]) If A4 is an invertible ideal of a semiquasilocal
ring R, then A is principal.

Proof. Use Remark 1 and Theorem 2.

In [15, p. 151], Matlis raises this question: If 4 is an invertible ideal of an
integral domain R with identity such that 4 is contained in only finitely many
maximal ideals of R, is any nonzero element of 4 one of a set of two generators
of A7 In Section 3 we give an example which shows that the answer to this
question is “no.”” However, the answer to a form of Matlis’ question is true,
namely

THEOREM 3. Suppose a € A, an invertible ideal of the ring R with identity,
and suppose that a belongs to only finitely many maximal ideals of R. Then there
exists an element b in A for which A = (a, b).

Proof. If a =0, then R is semiquasilocal and the result follows from
Corollary 2.If (@) = 4, the conclusion is obvious. In the remaining case, there
is a proper ideal B of R such that (a) = AB. Since (a) C B, there are only
finitely many maximal ideals M, M, ..., M, of R which contain B. By
Theorem 2 there is an element b of A such that b ¢ (U;_, AM;). We have
(b) = AC for some ideal C not contained in any M; . Thus (a, b)) = (@) 4 (b) =
A(B — C) = A, for B + C is contained in no maximal ideal of R and hence
is equal to R.

In Section 3 we shall show that neither of the following conditions is
necessary in order that an invertible ideal 4 of a ring R with identity have a
basis of two elements: (1) There is an element x in 4 such that 4 = 4% 4 (x);
(2) 4D (Upea AM,), where {M,},c, is the set of maximal ideals of R which
contain 4. Results of this section show that either (1) or (2) is sufficient to
imply that 4 has a basis of two elements.

Before proceeding farther, we outline a construction, for n >> 3, of a domain
J,, with identity such that [, contains an invertible ideal with a basis of 7, but

2 This result is stated as Corollary 2.5 of [15]. We may have been aware of its validity
before Matlis was (cf. footnote 1).
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no fewer, generators. Our construction is due to Chase, although Chase never
published the result; the example has been cited at least twice in the literature
{1, p. 541], [25, p. 270].

Let K be the field of real numbers, let D, = K[X;,..., X,], and let
R, = D, /A, where A is the principal ideal of D,, generated by f(X, ,..., X,)) =
X2 + -+ + X2 — 1. fis prime in D, so that R, is an integral domain with
identity. (In fact, R, is a UFD for any field K in which —1 is not a square,
see [23, p. 165], [25, p. 273]) If E, = K{X; X;}1<i,i<n) and if J, =
(E, + A)JA ~ E,[fE,, ], is a Noetherian domain with identity and is the
desired example. If B is the ideal of [, generated by {X;X;}icicn, B is
invertible since B2 = (X,2). In [25, pp. 270-271], Swan shows that the J,-
submodule of R, generated by {X ,..., X,,} has no basis of fewer than »
elements, and it then follows immediately that B has no J,-module basis (i.e.,
no ideal basis) of fewer than z elements.

2. INVERTIBLE IDEALS OF A PRUFER DomaIin

A Priifer domain is defined to be an integral domain with identity in which
each nonzero finitely generated ideal is invertible. Among integral domains J
with identity, Priifer domains are characterized by the property that Jp is a
valuation ring for each prime P of J [14]. There are several results which
might indicate that a finitely generated ideal of a Priifer domain has a basis of
two elements. We cite the following, where ] denotes an integral domain with
identity:

If each nonzero ideal of | with a basis of two elements is invertible, then [ is a
Priifer domain [21, p. 6].

If ] is Priifer and if the prime ideal P of | is the radical of a finitely generated
ideal, then P is the radical of an ideal with a basts of two elements.

The global case of the second statement is a consequence of Theorem 4
in [7, p. 288]; a proof of the local case is the following:

Suppose that P is the radical of the finitely generated ideal 4 and let {M,}
be the set of maximal ideals of J which don’t contain P.If J' = Jo N[N, ], MA)’
we observe that PJ’ is a maximal ideal of J’. To prove this statement it
suffices to show, since each prime ideal of ]’ is the extension of a prime ideal
of J[4, p. 333], that Q ]’ = [’ for any prime ideal Q of ] properly containing
P. Thus if x€Q — P and if B = 4 + (x), the B-transform is contained in
J' [7, p. 283] so that BJ' = J' and Q] = ]’ also. It follows that PJ’ is
maximal in [’ and is the radical of the finitely generated ideal 4. By
Corollary 1, AJ has a basis {a, b} of two elements. But PJ' = P by [7;
p- 285] so that @, b€ P and P = +/{a, b}].
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The following generalization of the result just proved can be established
in similar manner:

If A is a finitely generated ideal of a Priifer domain J, having only finitely
many minimal prime ideals, then the radical of 4 is the radical of an ideal
with a basis of two elements. Throughout the remainder of this section we use
the letter D to denote a Priifer domain.

Remark 2. 1tisshown in [7, p. 223] that if 4 and B are finitely generated
nonzero ideals of D with bases of n and m elements, respectively, then
AN Band A : B are finitely generated and have bases of # + m and m(n -+ m)
elements, respectively.? The proof of this result in {7] rests on a theorem due
to Jensen [10, p. 93], which shows that among integral domains [ with iden-
tity, Priifer domains are characterized by the fact that (X +- Y} X N Y) = XY
for any two ideals X, Y of J. From this equality, it follows easily that if
{F;}%, is a finite collection of nonzero finitely generated fractional ideals
of D, then F, + F, + -+ + F, = (Vi=1 F7Y)L. In particular, if y, ,..., ¥, are
nonzero elements of K, then (¥y ,..., ¥,) = [(Viez (#:)]7%, where x; = 37 for
each 7. Thus, to show that each invertible fractional ideal of D has a basis
of two elements, one must show, equivalently, that for any nonzero elements
Xy yeory %, of K, (i1 (¥,) is an intersection of two principal fractional ideals
of D.

If £ is a nonzero element of K, the quotient field of D, then we denote by
A, the ideal of D consisting of all elements x of D such that x¢ € D.If { = a/b
where a, b € D, then A, = (a) : () = (§*) N D. Thus by Lemma 2, 4, has
a basis of two elements. One wonders if each nonzero ideal of D with a basis
of two elements is of the form 4, . We show later that this is not the case, but
first we consider conditions under which a finitely generated ideal is of the
form A4,.

LemMa 3. If A is a proper ideal of a ring R with identity and if {M,} is the
set of maximal ideals of R which contain A, then any ideal of R contained in
U\ M, is contained in some M, . Therefore the set of maximal ideals of Ry,
where S = R — (Y, M,), is the set of extensions of the M)’s to Rs . If Ris an
integral domain, then Rg = (), Ry, -

Proof. If Bis an ideal of R which is contained inno M, ,then A - B =R
so that a - b =1 for some ac 4, be B. Then be B — (|, M,). The
statement concerning the maximal ideals of Ry is then immediate. The last

3 A better bound on the number of generators of A : B is mn + 1; this follows
from the fact that 4 : B = AB-1 N D. Quentel in [22, p. 659] has recently observed
that if ] is an integral domain with identity and if the intersection of any two finitely
generated ideals of J is finitely generated, then the quotient of any two finitely generated
ideals of [ is also finitely generated.
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assertion of the lemma follows from the facts that Rg = (), (Rs)mrg in
case R is an integral domain, and that (Rs)arg = Ry, -

THrEOREM 4. Let A be a proper finitely generated ideal of D, let {M,} be the
set of maximal ideals of D which contain A, and let S = D — (|, M,). These
conditions are equivalent:

(1) 42Uy 4M)).
(2) Ais of the form A, .
(3) ADg is principal.

Proof. (1) —>(2): If ae 4 — (U, AM,), we can write (a) = AB for
some ideal B of D which is contained in no M, . Hence, 4 4+ B = D and
u v =1 for some u€ 4, ve B. We observe that 4 = (a) : (v) = 4,,, -
That A C (e) : (v) is clear, and if xv e (@), then ¥ = xu + xv € 4 so that
equality holds, 4 = (a) : (v).

2)—>@):If A=4, =(#"YYND, then ADg = (1) Dgn Dg. Also
for any A, f‘lDMA N DM,\ = ADM/\ , and since DM,\ is a valuation ring, it
follows that {71 € Dy, for each A. Therefore, £ e (), Dy, , and Lemma 2
shows that (0, Dy, = Dg . Hence ADg = £'Dg N Dg = £1Dg, and (3)
holds.

(3)— (1): Let ADg = aDg, where a € A. For any A, M,Dg is a proper
ideal of Dgso that a ¢ (aDgs)(M,Dg) = (ADg)(M,Dg) = AM,Dg . Therefore,
aec A — (U, AM,) and our proof is complete.

CoroLLArY 3. If 4 is a proper finitely generated ideal of D which is
contained in only finitely many maximal ideals, then 4 is of the form 4, .

CoroLLARY 4. ([2, p. 12]). If D is a Dedekind domain, then each nonzero
ideal of D is of the form A4, .

If Jis a domain with identity having quotient field L, an ideal 4 of [ is
said to be a valuation ideal provided there is a valuation ring ¥ between [
and L and an ideal B of V such that 4 = B N J; this is equivalent to the
assertion that AV N | = A. We use the fact that if D is Priifer and if {P,}
is the set of prime ideals of D distinct from D, then {Dp } is the collection of
valuation rings between D and K [14, p. 554]. Hence, each valuation v on K
which is nonnegative on D is uniquely determined by its center P, on D.
We say, in this case, that v is associated with the prime ideal P, .

Lemma 3. Suppose that D is a semiquasilocal domain with maximal ideals
M,,M,,.,M,. If dis a nonzero element of M, "\ M, - N\ M, , then
Dy, N D P (Vi_z (dDyy, N D).
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Proof. We consider two cases.

Case 1. M, is aminimal prime ideal of (d). Then dDM NDis M, -primary
Further dDy, N D is a valuation ideal and hence \/(dDM NDy=P;is
prime in D for 2 <i<<n [27, p. 342]. No M, contains M1 , and hence
M, 7 P, for 2 < i < n. Hence, there are no containment relations between
M, and P;. This implies that M; + P; = D for 2 <{i <, so that
M, + (Pyn .- N P,) = D. Because

V(@Dy,ND) =M, and  +4/(dDy,ND) =P

it follows that (dDy, N D)+ [(Vi.s (dDy, N D)] = D. In particular,
dDy N D 2N, (dDy, N D).

Case 2. M, is not a minimal prime ideal of (d). Then M, D P, , a minimal
prime of (d). We choose in this case an element x € M, , x ¢ P, , x ¢ (Ui, M,).
Then o,(d/x) = v,(d) —v{x) =v{d) 20 for 2 <{i<nm And since
dDyy, C P\Dypy C xDpy C MyDy , dfx € Dy also. Hence,

d/xe(n dDM) A Dy, = ﬂ (dDyy, 0 D).

=2

Yet (d/x)/d = 1/x ¢ D since x € M. Therefore, d/x ¢ (d) = (\;_; (dDy;, N D),
implying that d/x ¢ dDp; N D. Hence, dDyy 0\ D DNe, (dDy, N D).

ProPOSITION 1. Suppose that A is an ideal of D which is a finite intersection
of valuation ideals. Then A is a finite intersection of valuation ideals associated
with maximal ideals of D. If A is finitely generated, A is contained in only
finitely many maximal ideals of D.

Proof. By hypothesis, there is a finite collection {P,}} of prime ideals of D
such that 4 = (] (ADp, N D). For each i, let M; be a maximal ideal of D
containing P; . Then Dy, c Dp, for each 7 so that

A =()(4Ds," D)2() (4D, " D)2 A.
1 1

Therefore, A is a finite intersection of valuation ideals associated with
maximal ideals.

We now assume that A is finitely generated. Since ADy N D = D if
AT M, , we may assume that 4 C M, for 1 <7 < n. We show that if M isa
maximal ideal not in the set {M;,.., M,}, then AL M,. Thus let
V = (Yieo Dp, . V is a semiquasilocal Priifer domain with # 4+ 1 maximal
ideals N, , N ,..., N, , where N; = M Dy, NV = M;Vand Vy = Dy, for

481/14/2-2



146 GILMER AND HEINZER

eachi[17, p. 54] {18, p. 38]. 4" = (i (ADy, N V)is an ideal of V lying over
A sothat A" = AV [4, p. 333]. Thus, A" is prmc1pal Furthermore,

A =()(ADy, N V) =) (AVDy, N V)
1 1

—(\ADy, A V) =(YAVy,O V).

1

Lemma 3 then implies that 4’ = AV { Ny = M,V. Therefore, A L Myand
our proof of Proposition 1 is complete.

Remark 3. 1If the finitely generated ideal 4 of D can be represented
as a finite intersection of valuation ideals associated with prime ideals
P,,P,,..., P,, where 4 is contained in each P; and there are no containment
relations between distinct P;’s, then each P, is maximal in D and such a
representation is unique. To prove that each P; is maximal, suppose it is not
and assume that M, is a maximal ideal of D properly containing P, . Then
M, € 2, P; since there are no containment relations among the P,’s so we
can choose me M;, m¢ (Y2, P;. The ideal C = A4 4 (m) is invertible,
proper (since C C M,), and C properly contains 4. Hence, there is an ideal B
of D properly containing 4 such that 4 = BC. We have CDp = Dp_foranyi
since m € C. Hence ADp = BDp foreachiand BC (Y, (ADp, N Dy =4
This contradiction shows that each P; is maximal in D. Uniqueness of the
representation then follows from the fact, established in the proof of
Proposttion 1, that {P, ,..., P,} is precisely the set of maximal ideals of D which
contain A.

THEOREM 5. In D, these statements are equivalent:

(a) Each nonzero element of D belongs to only finitely many maximal ideals
of D.

(b) Each ideal of D is a finite intersection of valuation ideals.

(c) Each finitely generated ideal of D is a finite intersection of valuation ideals.

(d) Each principal ideal of D is a finite intersection of valuation ideals.

Proof. 'The implications (a) — (b) — (c) — (d) are clear, and Proposition 1
shows that (d) — (a).

The ring of all algebraic integers is a one-dimensional Priifer domain [ in
which each nonzero finitely generated ideal is principal and is, therefore, of

the form A, . Yet each nonunit of | belongs to uncountably many maximal
ideals of J.
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3. AN ExaMmPLE

We consider a nontrivial valuation v on a field L with valuation ring V of
the form K 4 M where K is a field and M is the maximal ideal of V. If Jis a
domain with identity which is a subring of K, we give some properties of the
domain J; = J 4 M* We shall not establish the truth of (a)-(e).

(a) Jy has quotient field L.

(b) The integral closure of ], is J' + M, where |’ is the integral closure of
Jin K.

(c) If A is an ideal of ], , then either A C Mor M C A.

(d) The ideals of |, which contain M are of the form B + M where B is an
tdeal of |. If S is a subset of B which generates B as an ideal of |, then S generates
B + M as an ideal of |, .

(€) If B is an ideal of ], /(B - M)~ J|B. Hence B + M is prime,
maximal, or primary in ], if and only if B is, respectively, prime, maximal, or
primary in J.

(f) The prime ideals of ], contained in M coincide with the prime ideals of V
contained in M.

Proof of (f). We must show that if P, is a prime ideal of J; properly
contained in M, then P, is a prime ideal of V. First, P, is an ideal of ¥V, for
if x€ Pyand y € V, then yx and 32 are in M so that 3% - x = (yx)2c P, .
Since P, is prime in J;, this implies that yx € P, . Also, P, is prime, for if
u,velV and uve Py, then uor visin M. If u¢ M, u is a unit of 7; and
therefore, u~'uv = v € P since P, is an ideal of V. But if both u and v are
in M, then % or v is in Py since Pyis prime in [ .

(g) If P is a prime of ], properly contained in M, (J)p = Vp is a valuation
ring. If N is a multiplicative system in |, (J)y = Jy + M.

Proof. Clearly (J))pC Vp . lfé€Vp, & = alnforsomeae V,neV — P.
We choose me M — P. Then afn = am/nm with ame M C J, and
nme M — P. Hence, £ = am/nme (J))pand Ve = (J1)p .

For the second half of (g), we need only show that (J,)y C Jy + M. Thus
ifé¢e(J)n, € = (a+ m)n forsomeae J, me M,ne N. Since n is a unit
of V, n-lm e M. Therefore, § = (a/n) + mn1e Jy + M.

¢ We make the assumption that 7 contains an isomorphic copy of its residue field
in order to simplify the notation; analogous results hold when J is any subring of
VIM and ], is the inverse image of J under the natural mapping from ¥ onto V/M.
Constructions of the type J 4+ M are considered in [24], [8], [19], and [6].
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(b) [, s a valuation ring if and only if | is a valuation ring with quotient
eld K. |, is a Priifer domain if and only if | is Priifer and has quotient field K.
1 Ly q

Proof. 1If ], is a valuation ring (is Priifer) then J;/M is a valuation ring
(is Priifer), and in either case, (J;)s must be a valuation ring. By (f),
(JUu = S + M, where S is the quotient field of J. But a valuation ring is
uniquely determined by its maximal ideal. Hence, S = K, and [ has quotient
field K.

We suppose now that [ is a valuation ring with quotient field K. Then J;
is the inverse image of | under the natural homomorphism of I onto its
residue field, and is therefore a valuation ring [18, p. 35].

Finally, if J is Priifer and has quotient field K, then to show that J is
Priifer, it suffices, in view of (g), to prove that ([;)p, is a valuation ring
for any prime ideal P, of ], containing M. By (d) and (¢), Py = P 4 M for
some prime ideal P of J.If § = ] — P, we have (J))p, 2 (Ju)s = Js + M.
Since [ is Priifer with quotient field K, Jg = Jp is a valuation ring with
quotient field K. Hence, as we have already shown, Jg -+ M is a valuation
ring with quotient field L. Since [ + M C (J1)p, €L, (J1)p, is also a valuation
ring, and [, is Priifer as we wished to show.

(i) Suppose that A is a nonzero finitely generated ideal of ], contained in M.
Then A has a basis of the form {a, kya,..., k,a} where the ks are nonzero
elements of K. The ideal of ], generated by such a set {a, kia,..., k,a} is Wa + C
where W is the J-submodule of K generated by {1, k, ,..., k,} and C is the ideal of
V consisting of all elements x of L such that x = 0 or v(x) > v(a).

Proof. Ifxe Jyandify € Vis such that o(y) > 9(x), then y/x € M so that
y = (y/x) x € Mx C J;x. Thus 4 has a basis of the form {a, a, ,..., a,} where
2(a) = v(q)) = -+ = v(a,). Hence, v(a;/a) = 0 for each i : a;Ja =k, + m,
for some nonzero element k; of K and some m, € M. Thus {q, a, ,..., a,} =
{a, kya + ma,..., k,a + m,a}. But ma € J,a for each i so that A is generated
by {a, ka,..., kya}. Clearly, 4 contains Wa -+ C, and Wa - C contains the
set {a, ky4,..., k,a}. But it is easily verified that Wa 4 C is an ideal of [ .
Hence, 4 = Wa 1+ C, as we wished to show.

() Suppose that K is the quotient field of ]. If each finitely generated ideal of |
has a basis of n elements, then each finitely generated ideal of |, has a basis of n
elements.

Proof. (c) and (d) show that each finitely generated ideal of J; not
contained in M has a basis of # elements. If 4 is a nonzero finitely generated
ideal contained in M, (i) shows that 4 = Wa + C for some element a of A4,
for W= J + Jky + - + Jk,, a finitely generated J-submodule of K, and
where C = {x €L | x = 0 or v(x) > v(a)}. Therefore, W is a fractional ideal
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of J,sothat W = Bfd = {b/d | b € B} for some ideal B of [and some nonzero
element d of J. By assumption, B = (b, ,..., b,), so that

W = J(by/d) + - + J(ba/d).
Finally, this implies that {b,a/d,..., b,a/d} is a basis of the ideal 4 of J, .

(k) Suppose that K is the quotient field of J. In order that each nonzero
finitely generated ideal of | be of the form A, for some & in L, it is necessary and
sufficient that | be a Bezout domain; that is, each finitely generated ideal of [ is
principal.

Proof. (j) shows that if [ is a Bezout domain, then J, is also a Bezout
domain. Hence, if ] is a Bezout domain, then each nonzero finitely generated
ideal of J; is of the form A4, .

If Jis not a Bezout domain, there are elements u, ¢ of J such that (u, ¢) is
not principal in J. We choose a nonzero element m of M and we show that the
ideal (um, tm) of ] is not of the form A, for any £ in L. It is easy to see that the
only candidates for elements £ of L such that (um, tm) = A, are those
elements with v-value equal to —o(m). For any such £, however, we have
&le ], so that 4, = [, ], = J,€ Since (u,t) is not principal in
T, (§) shows that (wm, ¢m) is not a principal ideal of J; . Hence, 4, 5= (um, tm)
for any ¢ in L.

ExampLE 1. Let | be a Dedekind domain which is not a principal ideal
domain. Let K be the quotient field of | and suppose that  and ¢ are elements
of J which generate a nonprincipal ideal. V' = K[[X]] is a valuation ring of
the form K + M, where M = XV is the maximal ideal of 7. We set
Ji = J + M. By (d)<(g), J; is a two-dimensional Priifer domain. By (j),
each finitely generated ideal of J; has a basis of two elements. (Note that ], is
not Noetherian, for since [ is integrally closed and JC K, K is not a finite
J-module. In fact, in the general case J; will be Noetherian if and only if V' is
rank one discrete, [ is a field, and [K : J] < 0.) But by the proof of (k), the
ideal 4 = (uX, tX) is not of the form A, for any £ in K[(X)]. Furthermore,
A is contained in each maximal ideal M, of J,, so that 4 = (}, AM, since
A is not principal. And yet 4 has a basis of two elements. There is no element
¢ of 4 such that 4 = A2 + (c), for any such ¢ would clearly have to be of the
form sX for some unit s of V. But for any such s,

A2 - (sX) = (X2, tuX?, 2X?, sX) = (sX)C 4.

Finally, the ideal (¢, #) of J, provides us with an example showing that the
answer to Matlis’ question mentioned in the paragraph following Corollary 2
is “no”, for if m is any element of M, there is no element a in J; such that
(m, @) = (t, u). Note that for this particular example, the only m’s for which
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such an x does exist are those given to us by Theorem 3—i.e., those m’s in
(¢, u) which belong to only finitely many maximal ideals of J; .

Remark 4.5 It is easy to show, from (a)-(k), that for any Priifer domain J,
Jand J; have the same class group. In fact, if #(J) denotes the set of nonzero
finitely generated fractional ideals of ], if €(J,) denotes the class group of [, ,
and if we denote by F,’ the element of €(J;) determined by a nonzero finitely
generated fractional ideal F; of J,, then the mapping ¢ : F — (F],) is a
homomorphism of #(J) onto €(J,) with kernel #(J), the set of nonzero
principal fractional ideals of J. That ¢ is a homomorphism is clear, and (i)
shows that ¢ is onto. The kernel of ¢ is obviously Z(]).

Added in proof. H. S. Butts has recently communicated to us a result of one of his
students, Philip Quartararo, and we have observed that this result can be obtained
from Theorem 2.

If A is an invertible ideal of a commutative ring R with identity, and if {B;}} is a finite
collection of ideals of R such that A C V}_| B, , then A C B, for some i.

REFERENCES

1. HymaN Bass, Projective modules over algebras, Ann. of Math. (2) 713 (1961),
532-542.

2. N. Boursakl, ‘“Algebre Commutative,” Chap. 7, Diviseurs, Hermann, Paris,
1965.

3. Lutuer CLABORN, Every abelian group is a class group, Pacific J. Math. 18 (1966),
219-225.

4. RoBERT GILMER, Overrings of Priifer domains, J. of Alg. 4 (1966), 331-340.

5. RoBerT GILMER, Eleven nonequivalent conditions on a commutative ring, Nagoya
Math. ]. 26 (1966), 183-194.

6. RoBERT GILMER, On a condition of J. Ohm for integral domains, Can. J. Math.
20 (1968), 970-983.

7. RoBeRT GILMER AND WIiLLIAM HEINZER, Overrings of Priifer domains II,
J. of Alg. T (1967), 281-302.

8. RoBERT GILMER AND JAack OHM, Primary ideals and valuation ideals, Trams.
Amer. Math. Soc. 117 (1965), 237-250.

9. ALrrep HELMs, Algebraische Geometrie, Math. Ann. 111 (1935), 438-458.

10. C. U. JENsEN, On characterizations of Priifer rings, Math. Scand. 13(1963),90-98.

® We had not observed that Remark 4 is true until L. Levy remarked to us that he
could show that any finite abelian group is the class group of a non-Noetherian Priifer
domain. Remark 4 and the following results show that any abelian group is the class
group of a two-dimensional (and hence non-Noetherian) Priifer domain: Any abelian
group G is the class group of a Dedekind domain ] [3]. If K is the quotient field of
Jand if J, = J + XK([X]), then ], is a two-dimensional Priifer domain with class
group G.



ON THE NUMBER OF GENERATORS OF AN INVERTIBLE IDEAL 151

11. W. KrurL, Zur Theorie der kommutativen Integrititsbereiche, J. Reine Angew.
Math. 192 (1954), 230-252.

12. W. KrurL, Ein Hauptsatz iiber umkehrbare Ideale, Math. Z. 31 (1930), 558.

13. W. KruLL, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1931),
160-196.

14. W. KruLL, Beitrige zur Arithmetik kommutativer Integrititsbereiche, Math.
Z. 41 (1936), 545-577.

15. EBeN MarLis, Decomposable modules, Trans. Amer. Math. Soc. 125 (1966),
147-179.

16. Suinziro Mori, Uber Ringe in denen die gréssten Primirkomponenten jeder
Ideals eindeutig bestimmt ist, J. Sci. Hiroshima Univ. 1 (1931), 159-193.

17. M. NacaTa, On the theory of Henselian rings, Nagoya Math. J. 5 (1953), 45-57.

18. M. NacaTa, “Local rings,” Interscience Publishers, Inc., New York, 1962.

19. Jack OHM, Some counterexamples related to integral closure in D[[X]], Trans.
Amer. Math. Soc. 122 (1966), 321-340.

20. RoBerT L. PENDLETON, A characterization of Q-domains, Bull. Amer. Math. Soc.
72 (1966), 499~500.

21. H. Priirer, Untersuchungen iiber die Teilbarkeitseigenschaften in Kérpern,
J. Reine Angew. Math. 168 (1932), 1-36.

22. Y. QUENTEL, Sur une caractérisation des anneaux de valuation de hauteur 1,
C. R. Acad. Sci. Paris 265 (1967), 659—661.

23. P. SAMUEL, Sur les anneaux factoriels, Bull. Soc. Math. France 89 (1961), 155-173.

24. A. SEIDENBERG, On the dimension theory of rings II, Pacific J. Math. 4 (1954),
603-614.

25. Ricuarp G. Swan, Vector bundles and projective modules, Trans. Amer. Math.
Soc. 105 (1962), 264-277.

26. O. Zariskr aAND P. Samuer, ‘“Commutative Algebra,” Vol. I, Van Nostrand,
Princeton, N. J., 1958.

27. O. Zariskr AND P. SamueL, “Commutative Algebra,” Vol. II, Van Nostrand,

Princeton, N.J., 1960.



