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ABSTRACT 

Following Brualdi and Hwang, given a generalized transitive tournament (GTT) 
matrix T of order n, we consider the *-graph of T, that is, the undirected graph with 
vertices 1,2,. . . , n in which there is an edge {i, j} between vertices i and j if and only 
if 0 < tij < 1. We characterize the *-graphs of the extreme GlT (0, i, 1) matrices of 
order n. Using this characterization, we obtain for n = 6, 7 the complete list of 
extreme GTT (0, f, 1) matrices of order n. 

1. INTRODUCTION 

Let T = [tij] be a (0, 1) matrix (that is, each entry of T is 0 or 1) of order 
n which satisfies tij = 0 for i = 1,. . . , n and tij + tji = 1 for every i #j; 
then T is said to be a tournament matrix. If 2’ also satisfies 1 < tij + tjk + 
tki < 2 for every i, j, k distinct, then T is said to be a transitive tournament 
matrix, abbreviated IT matrix. 

A nonnegative matrix T = [t,] of order n which satisfies tii = 0 for 
i=l >***> n and tij + tji = 1 for every i # j is said to be a generalized 
tournament matrix, abbreviated GT matrix. If T also satisfies 1 < tij + tjk + 
tki < 2 for every i, j, k distinct, then T is said to be a generalized transitive 
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tournament matrix, abbreviated GIT matrix. The convex polytope composed 
of all GT matrices of order n will be denoted by F”‘,, and the convex polytope 
composed of all G’IT matrices of order n by x. 

The tournament matrices of order n are the extreme points of s,,. In the 
same way, the ‘IT matrices of order n are extreme points of x, but when 
n > 6 the polytope q has more extreme points (for n < 5 the ‘IT matrices 
of order n are the only extreme points of q-see Dridi [3]). We say that a 
GIT matrix is extreme provided it is an extreme point of x. 

We will characterize for any n E N the extreme GlT (0, f, 1) matrices of 
order n (that is, the extreme GTT matrices of order n with all entries equal 
to 0, $, or 1). In particular, for n = 6, 7 we will obtain the complete list of 
the extreme GTT (0, i, 1) matrices. The method we have employed follows 
the ideas introduced into the subject by Brualdi and Hwang in [l]. 

NOTE: During the Workshop on Nonnegative Matrices held in Haifa in 
1993, I was informed (private communication) that Z. Nutov and M. Penn 
had found one extreme point of S, with some of its entries different from 0, i, 
and 1. 

2. GRAPHS 

We will work only with graphs having neither loops nor multiple edges. 
Let r, denote the set composed of the undirected graphs with vertices 
1 , . . . ,n. Given y E r,, the edge set of y will be denoted by E(y). Two 
vertices a and b of y are said to be adjacent if E(y) contains the edge 
{a, b}. The complement 7 of y is the graph of r,, in which two vertices a and 
b are adjacent if and only if they are not adjacent in y. 

Any finite sequence of edges of y E r,, 

is said to be a path of y of length s; we will use the notation [a,, . . . , a,, ,] 
for this path. Note that it is possible that some vertex appears more than 
once. If a,,, = aI, then it is said to be a cycle of y of length s; we will use 
the notation (al, . . . , a,) for this cycle. A triangular chord of a path 

:;::::: 1 
a, ] of y with al # a,. is one of the edges (a,, ai+J with i E 

r - 2). A triangular chord of a cycle (a,, . . . , a,) of y is one of the 
edges {a,, ai+& with i E (1, . . . , s - 21, or {a,_ 1, al), or {a,, aJ. 
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EXAMPLE. Let y E F, with edge set 

EC?‘) = {{I~2~,(2~3},{3,4},(4,5},{5,6},{2,6},{3,6}}. 

Consider the cycles c = (4,3,2,6,5) and c’ = (4,3,2,1,2,6,5): {3,6] is a 
triangular chord of c, but c’ has no triangular chord. 

Given 7 E F,, there exists a partition of E(y) 

E(Y) = E,(y) u E,(Y) U 1-e u E,(y) 

such that two edges {a, b) and {c, d] of y are in the same element of the 
partition if and only if there exists a path [q = a, a2 = 6,. . . , a,_ I = c, 
a, = d] of y with {a,, u~+~} E E(y) for j = l,.. .,t - 2. For i = 1, . . . . s, 
yi will denote a spanning subgruph of y (that is, a graph with the same 
vertex set as 7 and some of its edges) with edge set E,(y). We will call each 
Ei(y) a color class of y and each yi a color component of 7. 

Let y E F,, and let {a, b], (c, d} E E(y) be two edges of the same color 
class. We will say that the orientation a --, b of (a, b) forces the orientation 
c -+ d (respectively, d + c> of {c, d} if and only if there exists a path 
[a, =a, u2 =b,...,u,_, = c, a, = d] of y of odd (respectively, even) 
length with {uj, a,+& g E(y) for j = 1,. . . , t - 2. For short we write that 
a + b forces c + d or a + b * c -+ d. Note that it is possible for a + b to 
force both c -+ d and d + c. 

We say that y E F,, is a comparability graph (or that y is trunsitiveEy 
orientable) provided it is possible to orient each edge of y so that the 
resulting digraph satisfies the transitive law 

a + h, b + c implies a + c. 

Such an orientation is called a transitive orientation of y. 
In the next theorem, condition (ii> is the usual characterization of compa- 

rability graphs due to Gilmore and Hoffman [4]. Conditions (iii) and (iv), 
although stated in a different way, are due to Golumbic [5]. 

THEOREM 1. Given y E I’,,, the following statements are equivalent: 

(i) y is a comparability graph; 
(ii) any cycle of y of odd length has a triangular chord; 
(iii) any color component of y is a comparability graph; 
(iv) there does not exist any (a, b) E E(y) such that a --) b forces b + a. 

It follows from Theorem 1 that given a comparability graph 7 E F,,, if we 
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assign an orientation a + b to {a, b) E E(y), then a + b forces a unique 
orientation in each edge of E(y) that belongs to the color class Ei(y) 
containing {a, b}. Orienting each edge of E&y) with the orientation induced 
by a + b, we get a transitive orientation of yi. Moreover, it is possible to 
assign an orientation to one edge of each color class of y in such a way that, 
orienting all edges of y with the induced orientations, we get a transitive 
orientation of y. 

We can construct an algorithm that divides the edge set of a graph into its 
color classes, and another algorithm that decides for each color component of 
a graph whether it is a comparability graph (see [5]). 

In fact, if y E F, with n not too large, then it is possible to check by hand 
whether y is a comparability graph. We give an example: Let y E F, be again 
the graph with edge set 

E(Y) = {(I,2},{2,3),{3,4},{4,5),(5,6),I2,6),(3,6}}. 

Clearly y has only one color class. Assign an arbitrary orientation to one edge 
of y, for example, the orientation 1 4 2 to the edge {1,2}. If y were a 
comparability graph, then 1 -+ 2 would force a unique orientation for each 
edge of y. But 

and therefore we conclude that y is not a comparability graph. 

3. CHARACTERIZATION OF *-GRAPHS OF EXTREME GTT 
(0, +, 1) MATRICES 

Let G, denote the set composed of the undirected graphs with n 
nonnumbered vertices. All definitions given in Section 2 for graphs y E F,, 
are easily adapted for graphs g E G,. Two graphs y E I’,, and g E G, are 
said to be isomorphic if there exists a bijection between the vertices of y and 
g that preserves adjacency. 

Following Brualdi and Hwang 111, given a GIT matrix T = [tij] of order 
n, we consider the *-g ra h p of T, that is, the graph yr E I,, in which 
{i, j} E E( yT) if and only if 0 < tij < 1. In considering *-graphs it suffices to 
consider only GTT (0, $, 1) matrices, since the matrix obtained from a GIT 
matrix by replacing each nonintegral entry with i is also a GTT matrix. 
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A graph g E G, is called GTT-realizable provided that there exists a 
GTT matrix T whose *-graph yr is isomorphic to g. 

THEOREM 2 (Brualdi and Hwang [l]). A graph g E G, is GTT-reahz- 
able if and only if its complement g is a comparability graph. 

Brualdi and Hwang [l] h s ow that if g E G,, is a comparability graph with 
at least one edge, then g is not isomorphic to the *-graph of any extreme 
GTT (0, i, 1) matrix. We present the following stronger result, 

THEOREM 3. Let g E G,, be a GTT-realizable graph with at least one 
edge. Zf some color component of g is a comparability graph, then g is not 
isomorphic to the *-graph of any extreme GTT (0, $, 1) matrix. 

Proof. Let T = [tjj] be a GTI (0, i, 11 matrix whose *-graph y = yr is 
isomorphic to g. By hypothesis, there exists a color component y’ of y 
which is a comparability graph. Consider the graph yr provided with a 
transitive orientation. Then for E E R define the matrix T,’ = [th] as follows: 

if (i, j} isnotanedgeofy’, 

if { i , j} is an edge of y r with orientation i -+ j, 

if {i,j} is an edge of y r with orientationj -+ i . 

For any two distinct i, j E {l,..., 
Given three distinct i, j, k E (1,. . . , 

n) we have tb + t,; = tij + t.i = 1. 
n) xve have the following possibi ities, l! . 

(1) y contains none of the edges (i, j), {j, k), Ii, k). In this case, 

t,; = tij, t,i = t,ik > and tii = tki. 

(2) y contains two of the edges Ii, j}, {j, k}, {i, k). Then both edges are 
in the same color component of y. If this color component is different from 
yr, then tb = tij, t.1 = tjk, 

f! 
and tli = tki. Suppose this color component is 

yr. Without loss o generality we can suppose that yr contains the edges 
{i, j} and {i, k). As y r is provided with a transitive orientation, then if i + j 
it follows that i -+ k, and if j -+ i it follows that k -+ i; in both cases 

t; + t,i + tii = t,i + tjk + tki = 1 or 2. 
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(3) y contains one or three of the edges {i, j], {j, k), {i, k}. Then 

tl’j + ti’k + t& E [tij + tjk + tki - 3E, tij + tjk + tki + 3&] 

= [; - 3&, $ + 34. 

Therefore, for any 8 E [ - i, il, T,’ is a GTT matrix and T = i CT,’ + 
TT,), which implies that T is not extreme ??

THEOREM 4. Let g E G,, be a GTT-realizable graph such that no color 
component of g is a comparability graph, and let T be a GTT (0, f, 1) matrix 
whose * -graph yT is isomorphic to g. Then T is an extreme GTT matrix. 

Proof. Let T = [tij] be equal to i (R + S), where R = [rij] and 
S = [sij] are GTT matrices. We will show that R = S = T, which implies 
that T is extreme. 

(1) If yr does not possess the edge {i, j}, then tij = 0 or 1 and 
rij = sij = ti .; otherwise rij or sij would be less than 0 or greater than 1. 

(2) On the other hand, as no color component of or is a comparability 
graph, Theorem 1 implies that every color component of or has one edge 
(ai, a,} such that a, + a2 forces a2 + a,. It is not difficult to extend the 
same result to every edge of or. 

Let {il, iJ be any edge of or. As i, + i, forces i, + i,, then {il, iz] is 
contained in some cycle of or of odd length without triangular chords. Let 
c = (i,, i, ,..., i2n+l ) be such a cycle. As 

ti, i2 + tiz,i, + tiJ i, = 1 or 2, 

then it follows that 

ri,,iz + riip,i3 + ri3,i, = si,,i2 + ‘iz,i3 + ‘i3+i, = ti,,i, + ti2.i3 + tig,il; 

otherwise 

‘il,i2 + ‘i2,i3 + ‘i,,i, Or si,,i, + ‘ip,i3 + ‘i,.i, 

would be less than 1 or greater than 2. As 

‘i3,i, = sig,il = ti9 i, = 0 or 1, 
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it follows that 

rt2.il = 1 - ri,,iL. 

Repeating this argument, we conclude 

which implies 

r. = + = ti,,i,. ‘,.‘e 

From (1) and (2) we conclude that R = T, and therefore S = T too. w 

We recall that each GTT-realizable graph is GTT-realizable by at least 
one GTT (0, i, 1) matrix. Therefore Theorems 2, 3, and 4 imply the following 
characterization of the *-graphs of extreme GTT (0, i, 1) matrices of order n 
and of the extreme G’IT (0, $, 1) matrices of order n: 

THEOREM 5. A graph g E G,, is isomorphic to the *-graph of some 
extreme GTT (0, i, 1) matrix if and only if 

(i) no color component of g is a comparability graph, and 
(ii) its complement 2 is a comparability graph. 

A GTT (0, $, 1) matrix is extreme if and only if its *-graph satisfies (i) 
and (ii). ??

As we pointed out in the introduction, it is known that for n < 5 a GTT 
matrix T of order n is extreme if and only if T is a TT matrix of order n; 
therefore the *-graph of any extreme GTT matrix of order n < 5 is the graph 
y E r, with edge set E(y) = 0. For n = 6, 7 we will calculate using 
Theorem 5 the complete list of graphs of G,, which are isomorphic to the 
*-graph of some extreme GlT (0, i, 1) matrix. We need the help of a 
computer. The scheme that we have followed is: 

(1) We construct an algorithm for obtaining a subset r,‘, of r,, such that 
for each g E G, there exists one and only one y E I?: such that y is 
isomorphic to g. We identify r: with G,,. 

(2) As we pointed out at the end of Section 2, we can construct an 
algorithm that divides the edge set of a graph into its color classes and 
another algorithm that decides for each color component of a graph whether 
it is a comparability graph. Using them, we can obtain the subset ri of r,!, 
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composed of those graphs y E IA such that: (i) no color component of y is a 
comparability graph, and (“> u each color component of its complement r is a 
comparability graph. 

Now we give the results we have obtained. 

THEOREM 6. 

(i> The graphs of G, which are isomorphic to the *-graph of some extreme 
GTT (0, i, 1) matrix of 3 are given in Figure 1. 

(ii> The graphs of G, which are isowwy?hic to the *-graph of som 
extreme GTT (0, i, 1) matrix of 7, are given in Figure 2. 

NOTE. All graphs in Figure 1 are known to be isomorphic to the *-graph 
of some extreme GTT (0, i, 1) matrix of order 6 (see [l]). 

4. EXTREME G’IT (0, ;, 1) MATRICES OF% AND 5 

Let z denote the subset of q composed of those matrices T = [tij] E x 
such that if tiI = 1 then i <j, and 27; (0, $, 1) the subset of 5” composed of 
those (0, i, 1s ma rices T = [tij] E .Yn such that if tij = 1 then i <j. Extend t ’ 
the definition of *-graph from x to %‘,,. We will identify the sets g: (0, i, 1) 
and I’,. Namely, each matrix T E 9: (0, i, 1) is identified with its *-graph 
yr. Equivalently, each graph y E I, is identified with the unique matrix 
T(y) E .Y,‘, (0, i, 1) whose *-graph is y. 

Two matrices R and S are said to be cogredient if there exists a 
permutation matrix P such that S = PEP’. Given yi, yz E I,, we will write 
yz z yi to mean that T(y,) and T(y,) are cogredient (we will write yz + yi 
otherwise), and yz 3 7; to mean that T(y,) and [T(y,)]’ are cogredient. 
Note that if yi and yz are not isomorphic graphs, then yz + yi and 

Y2 i Yl. 

Given a GTI matrix of order n T = [ tij], define i Lj to mean i # j and 
tij = 1; then L is a partial order on (1,. . . , n}. It is well known that every 
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partial order can be extended to a linear order (Szpilrajn [$I]), that every linear 
order on {l, . . . , n} arises from some TT matrix, and that every IT matrix is 
cogredient to the matrix with l’s above the main diagonal and O’s elsewhere. 
It follows that 

LEMMA 7. Every matrix of s;l is cogredient to Sony matrix of q. 

The scheme we have followed (with the help of a computer) for obtaining 
the complete list of extreme G’lT (0, i, 1) matrices of 4 and S, is: 

(1) For each graph g in Figure 1 for n = 6, and in Figure 2 for n = 7, 
we have obtained the subset l?,(g) of r, composed of those y E r,, such that 
y is isomorphic to g and T(y) is a G’IT matrix. Therefore 

is the set composed of all extreme GTI (0, k, 1) matrices of x included in 
3: (0, f, 1) whose *-graph is isomorphic to g. 

(2) Lemma 7 implies that each extreme GIT (0, i, 1) matrix of order n 
whose * -graph is isomorphic to g is cogredient to some matrix of T(I’,,(g)). 
Therefore, it only remains to check for any two graphs -yl, yz E T,,(g) if 
T(y,) and T(y,) are cogredient (we also will check if T(y,) and [T(-y,)lt are 
cogredient). 

We have obtained the following results, 

THEOREM 8. A GTT (0, i, 1) matrix of order 6 is extreme if and only if 
it is cogredient to some T(Y,,~) E SA(O, i, 1) where yij E r, is one of the 
graphs in Figure 3. Moreover, y1 L E Y;.~, y3, E Y&, yz,2 $ Y~,~, and 
Y2.2 = Y4J 

NOTE. T(y,,,) is cogredient to the extreme G’lT (0, k, 1) matrix 

Y I. 1 

1. 2 
6. .3 

5* ??4 

y1 ,I 2 
1 

3 5 

6 A 4 

Y 2 .z 6 
3 

4 5 

2 A 
I 

Y 3. I 

I 2 
4 

6 

M 

5 

3 

FIG. 3. 
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of order 6 given by Cruse [2], 
(0, i, 1) matrix of order 6 

and T(y, ,> is cogredient to the extreme GTT 
grven by Grijtschel, Jiinger, and Reinelt [6]. 

For the result in the case 12 = 7 we will employ the following notation: 

means the graph of lY7 obtained from the graph gi E G, in Figure 2 by 
numbering the vertices of gi as follows: a = k,, b = k,, c = k,, d = k,, 
e = k,, f = k,, and g = k, (in Figure 2, when the positions of all vertices of 
the graph gi+ 1 coincide with the positions of all vertices of the graph gi, we 
have omitted the lettering of the vertices of gi+ r; in that case we understand 
that the lettering of a vertex of g,, 1 is the same as the lettering of the vertex 
of gj situated in the same position). 

THEOREM 9. A GTT (0, i, 1) matrix of order 7 is extreme fund only if 
it is cogredient to some T(Y,,~> E Fb<O, i, 1) where yij E r, is one of the 

following graphs: 

(~1.1 -+ L2,3,4,5,6,71; 
~2.3 + {7,4,6> 2,3,5,1k 
~3.2 + @, 1,3>6,4,5,7); 

y5,1 + {3,2,6,5,7,4,1~, 
3/&z + {7,4,5,3, 1,6, 21; 
~8.1 + {2,L 3,7>5>6> 41, 
yy.2 + {7,4,6,L 2>5,3); 

yrr,z + {7,3,5,L 2,4,61; 
y13,1 --j 1% L3,6> 4,5,7), 
y14,2 + {7,4,&l, 2,5,3k 

y16,J + {7,4,2,3> 1,6,5J, 
~17.2 + {7,5,3,4,2,6,11; 
y1g.z + {7,5,2,4> L6,3h 
yzr,r+ {2,L 4,7> 5,6,3), 
~22,~ + {7,5,6,L 3,2,4h 
~24.1 + {7,4,6,2,5,3,1), 
Y~,~ - {6,5,3,L 2,4,7); 
~27.1 + U’, 6,3,1,2,5,4), 

yzg,l --+ @,3>7,2,4,1,5h 

y31,1 + l7,4,1,2,6,5,3k 

~2,~ --) {3,2,4,7,5,6,1J, 
~2.4 + {2,1,3,6,4,5,7); 

~4,~ + 11,4,3,7> 5>6,2), 
~5.2 + {5,6,2,3,1,4,7}; 

~7,~ -+ 1% L&5> 7>3,41, 
~8,~ --) {7,4,6,L 2,5,3); 

~10,~ + (5,6,2,3,L 4,7k 
~12,~ --) {L4,3,7> 5>6,21, 
~13.2 + {7,5,6,1,4,3,2); 

y15,1 + {5,7,4,L 3>2,6), 

yr,j2 -+ {2,4,6,5> 793, 11; 
-~rs,~ + {5,7,4,L 3,2,6h 
~20,~ 4 11,3,2,7> 5>6,41, 
~21,~ 4 {7,4,6,L 3>2,5k 
~23.1 4 {1,3,2,7,5,6,4), 

~24.2 + {6,3,5,1,4,2,7}; 

y2,jJ + 0X3,5, k4, 2, 71, 
~27.2 4 (3,5,1,6,4,7,2h 
y2g,2 --, (3,5,2,6> 4>7,1); 
y32,1 -+ (7,4,1,% 5,631, 

~9.2 4 (6,3,5,L 2>4,71, 
-Y~,~ + {7,4,6,L 3,5,21, 
y4,2 + (6,4,5,1,3,2,7); 

Y~,~ + (2, 1,3,7,4,6,5~, 
~7.2 + (7,4,2,3,1,5,6); 

yg,l + C&l, 3,6,4,5,7), 

YI],~ + t&L 3,7,5>6,41, 
y12,2 + (7,5,3,4,1,6,2); 
y14,1 -+ El, 3,7,5,6,41, 
yl5,2 + (3,2,4,7,5,6,1}; 

y17,1 + (2, 1,5,4,7> 3,6), 
yls,l + @,4,3,7,5> 6,1), 
y20,2 -+ (7,4,6,2,3,5,1k 
~22.1 -+ (3>% 4,7,5,6,1), 
y23,2 + (5,7,4,L 32% 6); 
yzs 1 + (L2,5,7,6,4,3~, 
y& + (1,5,% 7,4,6,3k 
Y& + (L5,2,7,4> 631; 
y30,1 + (7,6,4,2,5,3,1h 
~32.2 + f&1,4,7,% 5,6I; 
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y33,1 -+ {1,5,4,7,3,2,61; y34,1 + {4,1,3,7,2,6,51; yns.1 + {7>5,6> 1>2,3> 41; 
yG6,1 + {5,3,4,2,7,6, 11, y36,2 + {1,5,4,6,2,3,7): y37,1 + 16,L 7,5,2,4,3), 
y37,2 + @,4,1,3,7,6,5); yGX,, --, {2,1,6,5,3,4,7), yss,” + {3,5,1,4,7,6,21: 
yJ9,, -+ {1,5,4,6,2,3, 71, yaa,a -+ {5,3,4,1,7,6,2); ~40.1 + (5,3> 7>4> 2,1>6)> 
yq) e + I3,6,2,4,7,5,1); 

yqz:, + {5,4,6,2, 1,3,7h 
yJ, , + {6,5,7,4, 1,3,2), 
y4& + {1,4,3,6,7,5,2k 

~41.2 + @, 3, L4,6, *5> 7): 

Moreover, 

(9 y2,” = Yh.,l Ye,4 z Yi,3> and Yl,j + Y2.k forj f k; 
(ii) $ i E J = {l, 10, 18,28,30,31,33,34,35) then yi,l g +yitl; 
(iii) $i E (1,. . . , 42) \ <J U @I), then Yi.2 + yl,l and ~i.2 g Yill. 

5. HISTORICAL REMARK 

A nonnegative matrix of order n such that all row and column sums are 
equal to 1 is said to be a doubly stochastic matrix. By Birkhoffs theorem, the 
extreme points of the polytope R, of doubly stochastic matrices are the n! 
permutation matrices of order n. Let af be the polytope composed of those 
doubly stochastic matrices that can be obtained as convex combinations of 
permutation matrices other than the identity. Mirsky [7] proposed the prob- 
lem of characterizing Lnf by a set of linear constrains. Cruse [2] proved that 
D = [dij] E 00, if and only if 

(T, 0) := Qijdij > 1 foreach T EX. 
i,j 

Therefore, if the extreme points of 5$ were known, then 0: would be 
characterized by a finite set of linear constraints. 

I would like to thank the referee for his suggestions. 
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