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Abstract 

Within the abstract interpretation framework, abstract domains are used to represent interesting 
properties of the concrete domain. For instance, properties that enhance the optimization of the 
analyzed programs. An abstract domain D expresses, in general, several properties of the concrete 
domain. 

We describe a method for identifying, for any abstract domain D and for each property P 

expressed by D, the subset of D that is useful for computing P-information. We call it the 
quotient of D with respect to P. We also give a necessary and sufficient condition for having 
that the quotient is an abstraction of D. This property seems essential for applications such as 
that described below. 

As an illustration of the usefulness of the notion of quotient, we show that rather sophisti- 
cated comparisons between domains, can be carried out using it. Assume to have two abstract 
domains that both compute some property P, but that also express distinct properties and thus 
are incomparable as a whole. Such domains can be compared with respect to the precision with 
which they compute P-information, by comparing their quotients with respect to P. 

Using this method, two well-known abstract domains for Prolog programs, Prop and Sharing, 
are compared with respect to the precision with which they compute groundness information. 
@ 1998-Elsevier Science B.V. All rights reserved 

1. Introduction 

Abstract Interpretation is a general method for defining data-flow analyses. “Ad hoc” 

analyses, that can be viewed as instances of the abstract interpretation approach, were 

already used in the 1960s [22], for the optimization of imperative languages. How- 
ever, the formal foundations of the approach have been given only in 1977 by the 

Cousots in [5]. In this framework, a data-flow analysis is specified by describing a 

domain of data-descriptions and operations on these data-descriptions that mimic the 
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concrete operations of the language. A tuple D = (D, ~1,. . , pk), where D is the set of 

data-descriptions (called abstract domain) and the pi are the operations on D (called 

abstract operations), is called an abstract interpretation. The correctness of the data- 

flow analysis induced by D is guaranteed when some safety condition holds between 

D and the concrete interpretation C = (C,ol,. . . , ok). In this paper we will take as 

safety condition that: 

(i) D and C are complete lattices, 

(ii) there is a Galois insertion between D and C (with y and M concretization and 

abstraction functions, respectively), and 

(iii) for any c E C and for any d E D, c !Ic y(d) + oi(c) CC y&(d)). 

When conditions (i) and (ii) are satisfied, we will say that D abstracts C, when 

also condition (iii) holds then we say that D abstracts C. Weaker safety conditions 

are also sufficient for guaranteeing correctness [ 18, 121. However, we need (i)-(iii) for 

the purposes of the present paper. 

In an abstract interpretation that expresses and thus computes several properties, we 

want to identify which part is useful for computing each property. Let us be more 

precise. Consider an abstract interpretation D that expresses a property P. We want to 

identify the subset i&(D) of D that expresses exactly the part of D that is useful for 

computing P. We call it the quotient of D with respect to P. 
The notion of quotient is a tool for obtaining more insight in the functionalities of 

complex abstract interpretations. Such insight can be useful in several ways. In the 

present paper we show that quotients are useful for comparing abstract interpretations. 

Assume we want to compare the relative precision of two abstract interpretations D 

and L in the computation of a given property P. This comparison may be impossible 

relying on the classical notion of Galois insertion (or connection). In fact, D and L 

may express information that is irrelevant for computing P and makes them incompa- 

rable using the classical formal tools. We show that the comparison can be done by 

considering the quotients L&(D) and 3$(L). Being able to perform such sophisticated 

comparisons is obviously useful for choosing the best available abstract interpretation 

for a particular purpose. Such comparisons are also useful when combining different 

abstract interpretations in order to obtain a more powerful one, as is suggested in 

[ 12,4]. By appropriate comparisons one may check whether such combinations of D 

and L are worthwhile at all and also one can “tune” the combination by allowing it 

only for those properties P for which it may turn out to be profitable: those for which 

&(D) and Z&(L) are incomparable. 

The main achievements of the paper are described below. 

(a) For any abstract interpretation D and any property P expressed by D, we define 

the quotient i&(D) of D w.r.t. P and give a condition that guarantees that L&(D) 
is a complete lattice that abstracts D. 

(b) We show that if D and L are optimal for the computation of a property P and 

if 2$(D) abstracts J!p(L), then L is at least as precise as D for computing P. 
Moreover, if 2?p(D) abstracts 3$(L) strictly (i.e., Z+(L) does not abstract L&(D)), 
then L is strictly more precise than D for computing P. 
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(c) As an application of this theory, we compare two abstract interpretations that 

are well-known for the analysis of Prolog programs: Prop, [19,9], and Sharing, 

[ 161. We stress the fact that we consider here complete descriptions of Prop and 

Sharing, i.e., with all the abstract operations needed for their use in static analysis. 

Although both these interpretations compute the property of variable groundness, 

they are not directly comparable (i.e. neither one abstracts the other) because Prop 

computes also possible equivalence through disjunctions and Sharing computes 

also variable sharing. We compare the (relative) precision of these two analyses 

in the computation of variable groundness (GR) and we show that L!oR(Prop) is 

Prop itself, whereas &(Sharing) is the set of formulas which are conjunctions 

of formulas of the form: AW -+x, where W is a set of variables and x is a 

variable. Such formulas are called dejnite and form a proper subset, called Def 

[ 13,2], of the formulas in Prop. Hence, L&(Sharing) strictly abstracts Prop and 

thus, from (b) above, it follows that Prop is strictly more precise than Sharing 

for the computation of variable groundness. 

The notions and results of points (a) and (b) above are new. The construction of 

the quotients of Prop and Sharing with respect to GR of point(c) is also new. That 

L?oR(Sharing) coincides with Def is an interesting result on its own right. In fact, 

both Sharing and Def are well-known domains that have been defined independently 

and that are both useful for the analysis of logic programs. 

The present paper is an extended and improved version of [IO]. The main improve- 

ment is the introduction of the notion of quotient. In fact in [lo], we observed that, 

in order to compare D and L, it was necessary to define a reference domain R and 

then compare the workings of D and L projected on R. Clearly, R plays the same 

role as Z?p(D) and 2p(L) in the present approach, but in [lo] we did not have any 

systematic way to obtain it. Its definition was only based on the insight one had over D 

and L. 
Another improvement of the present paper concerns the criteria adopted for com- 

paring the precision of interpretations. The criteria used now is strictly stronger (and 

more natural) than that of [lo]. Thus, the relation between Prop and Sharing shown 

in the present paper is actually stronger than that contained in [IO]. 

The idea of identifying relevant parts of an abstract domain, that has given rise to 

the notion of quotient, has also inspired the recent work [S] in which the notion of 

complement between domains is defined. The reader may be interested to know that 

in that paper, among several examples of application of the complement, the authors 

consider Sharing and Def (= d&Sharing), cf. point(c) above) and characterize the 

complement of Def w.r.t. Sharing, i.e., the domain that represents what is left of 

Sharing when Def is taken away from it. 

Finally, it is important to remark that, even though we have applied it to the compar- 

ison of two abstract interpretations for the data-flow analysis of Prolog programs, the 

notion of quotient, presented in this paper, is in no way bound to logic programming 

applications only. On the contrary, it can be useful for studying abstract interpretations 

for all programming paradigms. 
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The paper is organized as follows. Section 2 contains the preliminary definitions. 

The definition of quotient is given in Section 3 together with the general result men- 

tioned in (b) above. The application of the theory to the comparison of Prop and 

Sharing, mentioned in (c) above, is described in Section 4. The appendix contains 

some definitions and technical lemmas that are needed for the application part. 

2. Preliminaries 

This section consists of three parts. The first introduces some classical notions of 

abstract interpretation theory and some known results (see [5,6, 11). The second part 

contains the definitions of two types of optimality. The final part introduces the criterion 

for comparing abstract interpretations that will be used in the rest of the paper. 

2.1. Galois insertions and their composition 

In what follows a function’s domain and range are indicated by subscripts: sxy is a 

function from X to Y. The ordering and the least upper bound operator defined in X 

are denoted by LX and UX, respectively. 

Definition 2.1 (Galois connection and insertion). Let C and D be posets and con- 

sider two functions of the following types: y~c : D + C and aCD : C + D The 4-tuple 

Gch = (ync,C,D,aac) is a Galois connection if 

Vc E C and Vd E D: act CD d H c & y,,(d). 

G,-- is a Galois insertion when y~c is injective or, equivalently, when acD is onto. 

When GAD is a Galois insertion then we say that D abstracts C. 

In a Galois connection or insertion GCD,YDC and CQD are called the concretization 

and the abstraction function, respectively. The following are well-known properties of 

these functions, see [6]. 

Proposition 2.2. Let Gc- be a Galois connection/insertion, 

1. ynC 0 acn is extensive, i.e., v’c E C, ; yDC 0 tiCD(c) & c; 

2. @b 0 YbC iS reductive, i.e., Vd ED, c(C’ 0 ync(d) En d; 

3. Gcn is an insertion tf and only tf Q-D o YDC is the identity. 

4. if acb and ynC form a Galois connection, then one of the two functions determines 

the other one. More precisely, for d E D, y&d)= UC {c E C 1 &-D(c) LD d}, and 

similarly, for c E C, &-n(c) = nn {d ED / c CC ybc(d)}. Each function is called the 

adjoint of the other one. 

5. C~CD o ybc o C~CD = C(CD and similarly, ync o &-nybc = ybc. 

A function CI : C -+ D, where C and D are po-sets, is additive when VX C C such 

that LlcX exists, a(Ll&) = MD {a(~) 1 x EX}. 
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Proposition 2.3. Let &-D : C + D, where C and D ure complete lattices. The func- 

tion xcn is additive ifs ffCD, together with its adjoint concretization, forms a Galois 

connection between C and D. 

Proof. The (3) direction is shown in [6, Proposition 71. For the other direction, 

assume that 3~0 and its adjoint ‘JDC form a Galois connection. We must show that 

Clearly, a&&$) is an upper bound of {c(cD(x) 1 x EX} because vx EX, Ucx 2, X. 

We show now that it is the least upper bound. Let d be an upper bound of {(xCD(x) 1 

x EX}, i.e., Vx EX, acD(x)c~ d. Thus, by definition of Galois connection, Vx EX, 

x&, y&d). This implies that yDc(d) & LlcX. It suffices now to apply UCD to both 

members of the inequality, to obtain: XCD 0 yDc(d) 20 %CD(&x), and thus, by Prop@ 

sition 2.2(Z), we have that, d 7, @.CD(u,x). 0 

It is well-known, see [6], that in place of considering two domains C and D, where 

D abstracts C, one can view D as a particular subset of C: the subset of C containing 

the fixpoints of an upper closure operator on C. 

Definition 2.4 (Upper closure operator). Given a poset C, an upper closure operutor 

(uco) on C, is a function p : C ---f C, that is monotonic, idempotent and extensive (i.e. 

k/c E C, p(c) & c). The set of fixpoints of p is {c E C 1 y(c) = c}. This set is indicated 

by P(C). 

The following result shows that Galois insertions and uco’s are two equivalent ways 

of representing abstractions. The proof can be found in [6]. In what follows, if Cc0 

is a Galois connection/insertion, then YDC(D) = {;joc(d) 1 d ED}. 

Proposition 2.5. Let GCD = (~Dc, C, D, CXDC) be u Gulois insertion. Then YDC 0 ZCD is 

un uco on C whose set of fixpoints is y~c(D). Vice Versa, lf p is an uco on C, then 

p(C) cun be viewed as u new domain thut abstracts C viu a Galois insertion that 

bus p as ubstraction und the identity as concretization. 

The following result, shown in [6], will be useful in the sequel. 

Proposition 2.6. If C is a complete luttice und D is a poset and there exists a Galois 

insertion between them, then also D is a complete lattice. 

The idea of the previous result is that joins and meets on D “can be computed on 

C and then abstracted on D”. More precisely, if G,-D = (~Dc, C,D, CXDC) is a Galois 

insertion, then VX 2 D, UDX = aoc(Uc{y&d) I d EX}). A similar relation holds for 

the meet. 

In this paper we will always consider domains that are complete lattices and will 

assume the existence of Galois insertions between them. 
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Definition 2.7 (Interpretation). An interpretation is a tuple D = (0, pi) where D is a 

complete lattice and ,u~ is a continuous function of type D + D. 

In general, an interpretation contains more than one operation, and the operations 

may have arity greater than one and may take some other arguments besides elements 

of D. For the sake of clarity, we consider the simplest setting, as the generalization of 

definitions and results is immediate. 

Definition 2.8 (Abstraction). An interpretation D = (D, ,u~g) abstracts an interpretation 

C = (C, PC) if 

1. there is a Galois insertion (y~c, C, D, xc~) and 

2. V’c E C : t’d~ D : c EC YDC(~ =+ PC(C) Lc ~DC(PD(~)). 
We say that D properly abstracts C if D abstracts C but C does not abstract D. 

An abstract interpretation is intended to report information about a program’s exe- 

cution behavior. When L abstracts D we know that the analysis induced by D is at 

least as informative as the analysis induced by L. In the rest of the paper we denote 

domains by capital letters C, D, L, R possibly subscripted, and we denote interpretations 

by boldface capital letters C, D, L, R. 

It is well known that if R abstracts D and D abstracts C, then R abstracts C. The 

proofs of the propositions listed below are straightforward. 

Proposition 2.9 (Same-order composition). Let G DR and Gco be Gulois insertions. 

Their composition, denoted Gco o GDR is the Galois insertion GCR = (YRC, C, R, XCR), 

where YRC = YDC o YRD and C~CR = MDR o acD. 

The following two propositions are shown in [lo]. 

Proposition 2.10 (Opposite-order composition). Assume that GCL and GAD are 

Galois insertions. Let EDL = clc~ o YDC and ELD = ~DoyLc. The following holds: 
(i) EDL and ELD are monotone; 

(ii) Vd E D,Vtf’E L ELD(EDL(d)) 2, d and EDL(ELD(/)) 7~ t. 

Proposition 2.11. Assume that GIL and GCD are Galois insertions. The following 

conditions are equivalent: 
(i) GDL = (CCCDO~LC,D,L,C~CLOYDC) is a Galois insertion; 

(ii) YLCV) C YDC(D); 

(iii) b,c2 l c. xCD(cI >=~CD(c2)~~CL(cI)=~CL(cZ). 

Definition 2.12. If GCL Gco and GDL = (XCDOY~C, D, L, X~LOYDC) are Galois insertions, 

we say that GDL is coherent with respect to C. 

Coherency and same-order composition are strongly related. 
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Proposition 2.13. Let Gco GEL and GDL be Galois insertions. Then Go, is coherent 

with respect to C if and only if GCL = GAD o GEL. 

Proof. (+) We want to show that y~c = yocoyLD, which, since GD~ is coherent w.r.t. 

C and thus y~o = ‘YCD o “/Lc, can be rewritten in 

;‘LC = YDC‘ o k’D o YLC 

This equality is verified because, by Proposition 2.1 I(ii), Vl EL, ~LC(Z) E y&D) and 

thus, by Proposition 2.2(5), Ql EL, ~DC o aco(r~c(Z)) = y~c(Z). 

That @CL = &,L 0 %cD iS shown aS fOllOWS. By coherency, %DL 0 acD = clc~ 0 yDC 0 

tlcD. Since ‘dc E C, aCo(c) = aco(YDc 0 xCD(c)), cf. Proposition 2.2(5), using Proposi- 

tion 2.1 l(iii), one obtains that vc E C, @L(C) = (xCL(yDC 0 ‘%cD(c)). 

(+) By hypothesis, y~c o YLD = y~c. It suffices to apply acD to both members of 

this equation and use Proposition 2.2(3), to obtain the desired relation 

That also ‘%DL = %cD 0 ‘JDC can be shown similarly. 0 

2.2. Optimalities 

As usual, an abstract interpretation is optimal if it mimics the concrete one in the 

best possible way. We also introduce a weaker notion in which we project the result 

of the operation on a more abstract domain. 

Definition 2.14 (Optimalities). Consider the interpretations D = (D, /AD) and C =(C, 

,&). Assume that D abstracts C. D is optimal if Vd ED : p&d) = cccD(pc(rDc(d>)). 

Let now R be a domain which abstracts D, and let QQ = XDR 0 ZCD. We say that D is 

R-optimal if Vd ED : CYo&@(d)) = crc&c(yDc(d)>>. 

Lemma 2.15. Let C, D, and R us in the previous dejinition. If D is optimal then D 

is also R-optimal. 

Proof. Let d ED: 

pD(d) = QD@cb'Dc(d>)) as D is optimal 

* %&D(d)) = ccoR(k&c(rDc(d)))) applying ~DR to both Sides 

*'%&D(d)) = W&kb'Dc(d))) by definition of UCR. q 

Observe that the notion of R-optimality is a generalization of the notion of optimal&y. 

In fact, D is optimal iff D is D-optimal. 

2.3. General comparison criterion 

Let P be an abstract domain that represents a property we are interested in. Assume 

that the two interpretations L and D also represent this property. This fact is modeled 
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by the assumption that P abstracts both L and D. We want to compare the precision of 

L and D with respect to the way they compute P, according to the following intuitive 

idea. L is at least as precise as D with respect to P if every sequence of concrete 

operations is better or equally approximated by L than by D when considering only 

the information representable in P. 

Definition 2.16 (Comparison criterion). Let D = (D, pi) and L = (L, pi) be interpreta- 

tions abstracting C = (C, ,~c). Let P be a domain abstracting both D and L. Let also 

& denote the ith fold composition of pc and & and & the corresponding sequences 

of operators of D and L. 
l L is at least as precise as D with respect to P if 

l L is strictly more precise than D with respect to P if L is at least as precise as D 
but the converse does not hold. 

3. The quotient of an interpretation 

This section consists of two parts. In the first one, two domains D and P are consid- 

ered, where P represents a particular property expressed by D. An equivalence relation 

rp on D is defined that identifies the classes of elements of D that are equivalent w.r.t. 

the computation of P-information. It is shown that, when rp is additive, it is possible 

to define an abstraction of D, called the quotient of D W.Y. t. P, that represents exactly 

the information of D that is used to compute P-information. In the second part of the 

section we show the relevance of quotients for comparing the precision with which 

different interpretations compute a given property. 

Throughout this section, we always assume that G cp, GCD, GDP are Galois insertions 

with GDP coherent with respect to C (i.e., G cp = GCD o GDP), and that the interpretation 

D = (0, pD) abstracts the interpretation C = (C, PC) with PD optimal. 

3.1. Dejnition and properties of the quotient 

First, we characterize elements of D that are equivalent, with respect to P, in any 

computation sequence. 

Definition 3.1 (Associated relation). The equivalence relation rp on D associated to P 

is defined by 

Observe in particular that (dl,dz)~r~ implies tlgp(dl) = c&d*). In the sequel, [dip 
denotes the set {d’ ED / (d, d’) E rp}. 
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Clearly, the intuition suggests that the quotient of D w.r.t. P should be a set Q that 

has one element corresponding to each equivalence class of D w.r.t. yp. Unfortunately, 

this is not always the case. In fact, it is easy to find equivalence relations on D for 

which such a Q is not an abstraction of D (whereas we want the quotient of D to 

abstract it). Below we will show that if rp is additive, then such a Q is an abstraction 

of D and it will, in fact, be the quotient we are looking for. After having proven 

this fact, we will show in Theorem 3.7 that the additivity of rp is equivalent to the 

additivity of the abstraction function that connects D to Q. This relationship should 

not be surprising in view of Proposition 2.3 that, in the present context, shows that 

the additivity of the abstraction function implies the existence of a Galois insertion 

between D and Q. 

Definition 3.2 (Additivity). The relation rp is additive when V’s C rp, if Si = {u 1 

(a.b)~S} and &={b((a,b)~S}, it is true that (LIDSI, UDS2)Erp. 

In what follows some important consequences of the additivity of rp are shown. 

Lemma 3.3. If the relation rp on D associated to P is additive, then 

VdED:(UD[dlp,d)Erp, i.e. LIP [dlpE[dlp 

Proof. It is sufficient to observe that, by additivity of rp, if [dip = {di : iel} then 

(LID{d,:iEZ}, !JD{~})=(UD{~~:~EZ},~)E~,. 0 

Lemma 3.4. If the relation rp on D associated to P is additive, then 

Proof. Let 2, =UD[dl], and 22 =UD [d21p. By Lemma 3.3, (dl,J,)Er, and (dz,az)E 
rp. Thus, by additivity of rp, (dl LID d2,21 LID 2,) EYE. By hypothesis, dk ED d2, so we get 

(d2,JI UDa2) E rp2 i.e. 21 LIDJz E [d21p. Therefore, by the definition of 22, d, Ll~22 5,~ J2, 
1 

and thus dl !IDdl. 0 

Let us give now the definition of quotient. After that we will show that the additivity 

of rp implies that the quotient enjoys all the properties we wanted and in particular 

that it abstracts D. 

Definition 3.5 (Quotient). The quotient of D with respect to P is the set L&(D) de- 

fined by 

ZIP(D) is a subset of D and thus it is partially ordered. 
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Theorem 3.4. If the associated relation rp is additive, the following facts hold. 

(i) 22p(D) is a complete lattice that abstracts D; 

(ii) P abstracts k&(D) coherently w.r. t. C; 

Proof. (i) We will show that L&J(D) is the set of fixpoints of the following uco p9 

on D: 

Vd ED. pT(d) = UD [dip. 

Thus we must show that pd is extensive, idempotent and monotone: 
- it is extensive: by definition; 

- it is idempotent: using Lemma 3.3 it is simple to see that Vd E D, U&D[dlp] = 

k [dIpi 
- it is monotone: immediate from Lemma 3.4. 

Obviously &(D) = ps(D) and thus, from Proposition 2.5, it follows that there is a 

Galois insertion between D and L&(D) with abstraction pi and the identity as con- 

cretization. Moreover, from Proposition 2.6, we have that L!&(D) is a complete lattice. 

(ii) In order to show that P abstracts L&(D), by Proposition 2.1 l(ii), it suffices to 

show that yp~(P) c ps(D). Precisely, we want to show that 

‘dbfp. yPD(b) = UD bdb)lp 

Let a = UDIYpD(b)lp. Obviously, the following point (1) holds: a &yp~ (b). 

Observe now that, by Lemma 3.3, @Dp(a) = MDp o YpD(b) = b (a 0 y is the identity) 

from which, applying ypD on both sides, one obtains: 

a CD ypD 0 @Dp(a) = YpD(b) (y 0 @ k eXtensiVe). 

This together with ( 1) shows what we wanted. Thus, by Proposition 2.1 l(i), there is a 

Galois insertion GQ~ = (QQ 0 yp~, 2?,(D), P, MDP 0 YQD) that is coherent w.r.t. D. Thus, 

by Proposition 2.13, GDP = GDQ o GQ~. Since, by hypothesis, GDP is coherent w.r.t. 

C, it is the case that, Gcp = GCD 0 GDP, and thus, Gcp = GCD 0 GDQ 0 GQP = GCQ 0 Gpp 

which, by Proposition 2.13, proves that GQP is coherent w.r.t. C. 0 

It is easy to see that the join on L?&(D), denoted Up, is as follows : ul UQ u2 = UD 

[UI UDu21p. The meet is defined similarly. As already announced, the additivity of rQ is 

equivalent to that of the abstraction function pd (defined in the proof of Theorem 3.6). 

Recall that pd : D --f L&(D) is additive if VX &D, pd(LJ~x) = UQ {p&t) 1 x EX}. 

Theorem 3.7. rp is additive ifs pd is additive. 

Proof. By the additivity of rp, it is true that 

vxC:D, UX rpU{~D[alpla~~}. 
D D 

Using the definition of rp, this is equivalent to 

uD[uDxlp = UD [UD{UD[alp 1 aEX}I,. 
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It suffices now to observe that 

&wD~l, 
and that 

= f2duYX) by definition of ~2, 

u~[LI~{U~[U], 1 UEX}], = Ll~{p&a) 1 UEX} by definition of pi and of uQ 

given before this theorem. 0 

3.2. Comparison of quotients 

The results of this subsection show the important role that the notion of quotient 

plays in the comparison of two abstract interpretations. For the sake of clarity, in ASS 

below we summarize the notation and the hypotheses that we will use in the following 

theorems. 

ASS (a) D and L are abstract interpretations, C is the concrete interpretation and P 

is the abstract domain that represents the property that is being studied. 

(b) Gco, Gcr, GCP, GDP and GLP are Galois insertions. The last two are coherent 

with respect to C. 

(c) RI = 2$(D) and R2 = &(L). By Theorem 3.6, there are Galois insertions GR,P 

and GRIP that are coherent with respect to C. 

(d) D and L are, respectively, RI- and Rz-optimal. 

(e) RI abstracts R2 coherently with respect to C. 

The following fact is a simple consequence of the assumptions ASS above. 

Lemma 3.8. GRIP = GR?R, o GR,p and thus, in purticdur, 51~~~ = ~R,P 0 XR?R,’ 

Fig. 1 summarizes the relations existing among all domains considered. The arrows 

correspond to y-functions. 

P 

/ \ 
R1= Q,(D) - Rz = Q,(L) 

Fig. I. Domain abstractions in Theorems 3.10 and 3.11. 
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Theorem 3.9. Assume ASS above. Then L is at least as precise as D for comput- 
ing P. 

Proof. Consider any sequence zD of operations of D. From the fact that D is 

Ri-optimal and from the construction of the quotient RI, it is true that for any d E D, 
the computation xD(d) can be “read” over RI, as far as the P-information is concerned. 

More precisely, assume that di is the result after the first i>O steps of the computation 

nD(d), and let ti = !xDR,(di), then, for each i, UDp(di)= aR,p(ti). A similar fact holds 

for any computation rc~ on L. For such a rc~, let lo, 11,. . . , li be the intermediate results 

and ko,..., ki be the corresponding values in R2. 

We will use the above fact and the notation introduced in the sequel of the proof. 

Let for any concrete value cE C, do = xcD(c) and lo = CQ(C). Let also zD and 71~ be 

sequences of corresponding operations of D and L. In what follows, the di, t,, li, and 

ki are in the relation explained above. In order to prove the result, it suffices to show 

the following fact: 

(*) vi>% YR,C(ti) 7~ YRzc(kiI 

In fact, from (k) it follows that ~,~,(ki) CR, ti. By Lemma 3.8 above and the mono- 

tonicity of CXR,~, cIR>p(ki) = OIR,~(CIR~R, (ki)) Cp cIR,p(ti). We proceed by induction on i. 

Basis. Let us first consider i = 0. We want to show that 

(1) YR,C(tO) & YR,c@o). 

By Proposition 2.9, to = NCR,(C) and ko = xc&(c). Since RI abstracts R2 coherently 

w.r.t. C, the following two points hold: 

(a) &JR, = ~R>R, 0 kR2. Hence, to = aR>R,(ko). 

@I YR,C=YR~COYR,R~. 

From point (a) and (b), using the extensivity of YR,,Q OQR, (cf. Section 2.1), we 

get immediately that 

YR,~(~~)=YR~cOYR,R~ OuR,R,(ko) >cYR&o). 

Thus (1) holds. 

Step. Let us now prove (k) for i > 0. We want to show that 

(2) YR,C(ti-I > 7~ YRlc(ki-1) * (3) YRIC(ti)7C YR,C(k). 

By the assumption of RI- and Rz-optimality of D and L, we know that 

ti = ECR, @C(?R,C(ti-I ))) 

where PC is the concrete operation corresponding to the ith operation of ?rD and 71~. 

A similar relation holds for ki. 

By assumption (2) and the monotonicity of ,UC it follows that 

k(YRIC(ti-I >> 7C Pc(YR2c(ki-1)) 

and thus, by the same reasoning used for the case i=O, we have that (3) holds. 0 
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Theorem 3.10. Assume, in addition to ASS, that RI properly ubstracts R2. Then L 

is strictly more precise than D for computing P. 

Proof. By assumption it is true that 

(1) YR,~RI)~YR~c(&) and YR~c(&) $ YR,c(RI). 

Hence, there is ro ERZ such that Y,Q(rO) @YR, ~(RI ). Let CO = Y&C(?$), and 10 = l/RzL(ro). 

Note that, since y~>c = y~c 0 Y&L, ~LC(/O) = CO. 

Let now c^ = YR, c 0 xCR, (CO). Clearly, by their definitions, c^ 7~ CO and, MC,?, (CO) = 

cock,, from which the following fact (2) holds: 

Fact (2). ache and crc~(c^) are elements of D that are equivalent w.r.t. the compu- 

tation of P, i.e., they are in the same equivalence class of the relation on D associated 

to P. 

Note also that, by (l), ~^EYR~c(R~). Let us now abstract c^ into L and Rz. We call 

1= zc~(c^) and r2 = q&(l). 

By assumption, we know that for all corresponding sequences SD and SL of operations 

of D and L, respectively, it is true that 

QP(SD(QD(2))) JP ~LP(SL(WL(3)). 

From this, using Fact (2), we obtain 

(3) ~DP(SD(~CD(cO))) = QP(SD(~CD(~))) 7P ~LP@L(WL(4)), 

Observe now that, since c^ 7~ CO, and both are in j’&~(R2), it is true that, i-2 7~: ro. 

Thus, there exists a computation sequence XL. of operations of L such that 

QP(~L(l)) # ~DP(~L(~O)). 

Since XL is composed of continuous (and thus monotone) operations, we have 

(4) aDP(nL(Q) 7P RlP(~L(lO)). 

It suffices now to put together (3) and (4) to show the thesis: 

~Dp(~D(k~D(c0))) 7P @DP(~L(kL(~))) = ~DP(~L(~)) =b aDP(nL(lO)) 

= aDP(nL(&-L(cO))). 0 

4. Applications 

We apply the theory developed in the previous section for comparing two well- 

known abstract interpretations for logic programming: Prop [2,9, 11, 191 and Shar- 

ing [16]. This section is organized as follows. After some preliminary definitions 

concerning substitutions, in Section 4.2, we recall from [l l] the concrete interpre- 

tation Rsub and the two abstract interpretations we wish to compare. The domain 
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GR representing groundness and the characterizations of the quotients %&Sharing) 

and &~(Prop) are described in Section 4.3. The main result of the application part 

is in Section 4, where we apply Theorems 3.9 and 3.10 for proving that Prop is 

strictly more precise than Sharing with respect to the precision in computing 

groundness. 

We point out that the interpretations Prop and Sharing that we compare are complete 

interpretations, in the sense that they include all the operations needed for the static 

analysis, viz. forward/backward unification, least upper bound, and projection. In order 

to describe in a simple way all the operations (and, in particular, projection), we adopt 

the approach introduced in [Ill. In this approach, the (non trivial) values of a domain 

are pairs in which the first component is “the usual value”, and the second component 

explicitly specifies the variables about which the first component provides information. 

These variables are often called the variables of interest. 

4. I. Preliminaries 

Let V be a countable set of variables. FP( V) denotes the set of finite subsets of 

variables of V. A substitution (T is a function in that maps variables in V to terms 

over V and an alphabet of function symbols, and such that ux # x only for a finite 

number of variables x. The set of support of r~ is given by supp(o) = {x 1 CJX #x}. 

The variable range of o is given by var-range(a) = U { Var(ax) 1 x E supp(o)}, where 

Var(t) denotes the set of variables occurring in t. The set of variables occurring in 0 

is given by Var(a) = supp(a) U var-range(g). A substitution is typically specified by 

listing its non-trivial bindings. So o = {x/cx 1 x E supp(cr)}. 
Consider two substitutions 01 and cr2. If there exists 19 such that cr2 = 6 o CJI, then 

CJI is more general than ~2, which we write 02 a 01. In this case, we say that 1s2 an 

instance of cri. 

We write Subst for the set of idempotent substitutions. Although Subst is not closed 

under composition, in a step of the execution of a logic program in which 29 o 0 is 

constructed, it is always the case that, var-range(ti)nsupp(a) = 8, which, provided that 

r9 and CJ are idempotent, ensures that t9 o o is also idempotent. 

As we will consider sequences of concrete/abstract operations of “real” domains, 

i.e. containing not only unary operations, as it was assumed in Definition 2.7 for the 

sake of simplicity, it is necessary to make precise this notion for any set of operations. 

Assume to have an interpretation D = (D,pl,. ,pk). A derived operator over D is 

a term t constructed using the symbols in ~1,. , pk, the values in D, values of any other 

domain that may be required by the operations (for instance, substitutions are needed in 

the unification operations), and exactly one variable. The following example illustrates 

this notion for 2 = (Z, +, *), where Z represents the set of all integers completed with 

top and bottom elements. 

Example 4.1. A derived operator for Z is t = +(*(x, 3), +(2, I)). 
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Clearly, a derived operator t is a function t : D 4 D. Intuitively, the result of the 

function t for a given value d E D is obtained by evaluating t(d) interpreting the 

function symbols in t according to D. In the above example, t(0) = 3 and t(2) = 9. 

4.2. The interpretations Rsub, Prop, and Sharing 

The interpretations Rsub, Prop, and Sharing consist each of a domain and three 

operations: unification, projection, and least upper bound. Since some of the operations 

are quite technical, we have chosen to recall them in the appendix, and to describe 

here only the domains, their partial orders, and the concretization/abstraction functions 

relating them. 

4.2.1. The “concrete” domain Rsub 

The “concrete” domain Rsub [l l] is the complete lattice 

Rsub = [ fJ(Subst) x FP( V)] U { TRs, IRs}. 

Rsub stands for restricted substitutions. The partial order of Rsub is defined, on non- 

trivial elements, by [Cl, Ul] &R$ [&, I&] iff Ui = U2 and Ci C &. The operations od 

Rsub are described in the appendix. 

4.2.2. The domain Prop 

For any set of variables U EFP( V), by AU we denote the formula consisting of the 

conjunction of the variables in U. For any U E FP( V), a positive formula [2,20] on U 

is any propositional formula containing only variables in U and that is satisfied by the 

truth-assignment that assigns true to all variables in U. The set of positive formulas on 

U is denoted Posu. From now on, in order to avoid burdensome notation, we simply 

write J’ for the class of formulas equivalent to f and assume that Posu consists of 

classes of equivalent formulas. We also adopt the usual convention of representing 

a truth-assignment a on U as the set {x E U 1 a(x) = true}. 

Notice that for any U E FP( V), Posu U {F} IS a complete lattice with least upper 

bound and greatest lower bound, respectively, V (logical disjunction) and A (logical 

conjunction), appropriately extended to classes of equivalent formulas. 

The domain Prop is as follows: 

Prop = { [ f, Ul : U E FP( VI, .f E Pow U {F} } U { TP,, b}. 

Prop is partially ordered: Tpr is the largest element and A-p,. is the smallest; for the 

other elements, [fi, UI] <~,.[fz, UZ] if and only if UI = Uz and fi b f2. 

Fig. 2 depicts the domain Prop for V = {x, y}. The lines represent the ordering 

relation among the (equivalence classes of) formulas. 

That positive formulas are useful for computing variable groundness in logic pro- 

grams is well-known, see [2,9, 11, 19, 121. The intuition behind the relation between 

positive formulas and substitutions, is as follows. Each substitution defines a truth- 

assignment, and, since groundness is a property closed under instantiation, we say 
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[Y3 {Yll 

Fig. 2. The domain Prop for V = {x, y}. 

that a formula approximates a substitution when it is true w.r.t. the truth-assignments 

defined by all instances of that substitution. 

The truth-assignment of substitution cr is assign cr : assign c x = true ifs o grounds X. 

The concretization expressing the relation between Prop and Rsub, is 

YprRS : Prop -+ Rsub, 

( 

TRS if d = Tpr; 

md4 = IRS if d=l_p,; 

[{g E Subst 1 V’a’ g B . assign 0’ + f}, U] if d = [f, U]. 

The function q#+ : Rsub--,Prop is the usual adjoint [6] of yp,.~~, i.e., Q+(C)= flpr 

{d E Prop 1 yprRs(d) JQ c}. The tuple (YP~R~, Rsub, Prop, c(aSpr) is a Galois Insertion 

[l I]. In [l l] it is also shown that the operations of Prop (see the appendix) are 

optimal. 
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Lemma 4.2 (Cortesi et al. [l 11). Prop is optimal. 

The definite formulas in CJ, denoted Defu [2, 131, consist of the formulas f E Pas” 

that satisfy the following model intersection property: consider any two models Ml 

and M2 of f, if M = Mi n M2, then M /= ,f. The name “definite” for such formulas 

comes from the following well-known syntactical characterization: for each ,f E Def” 

there is a formula on U equivalent to f and consisting of a conjunction of definite 

implications of the form AW +x. 

Observe that the set Def” is properly included in Posu. For instance, the formula 

XV y of Pos{,~~ does not belong to Dej”{,,l. In fact, let Ml = {x}, and M2 = {y}, it is 

immediate to see that both MI and MZ are models of x V y, whereas M = MI n M2 = 0 

is not a model of this formula. 

In the same way as positive formulas were used for defining Prop, it is possible to 

define a domain using the definite formulas: 

Obviously, Def abstracts Prop with the identity as concretization and its adjoint as 

abstraction. From this it also follows that Def also abstracts Rsub with the same 

concretization as Prop. 

4.2.3. The domain Sharing 

The abstract domain Sharing proposed by Jacobs and Langen in [16] in order to 

represent variable aliasing, covering, and groundness is defined by 

Sharing is partially ordered: Ts~ is the largest element and -LslZ is the smallest one; for 

the other elements, [Al, UT], f& [AZ, UZ] iff UI = Uz and Ai C AI. The domain Sharing 

for V = {x, y} is depicted in Fig. 3. Even though the lattice structure is similar to that 

of Prop, the two domains represent different informations of the concrete domain Rsub. 

Jacobs and Langen [16] proved that Sharing enjoys a Galois insertion into @(Subst). 

This can be immediately extended to our concrete domain Rsub. We recall briefly the 

construction of the abstraction of this insertion. For x E V, U G V, and c E Subst, let 

share(o,x, U ) be the set of variables in U whose images under o contain the variable 

X, i.e. share(o,x, U) = {y E U )x E Var(ay)}. For [C, U] E Rsub, 

CQ&[C, U]) = [{share(a,x, U) 1 o E Z, x E V}, U]. 

The concretization ys,& is the usual adjoint of the abstraction. Let [A, U] = 

u&sh([{~}, U]). Each S E A is a set of variables that under rr share a variable. Ev- 

ery variable x E U such that Var(ox) = 8 will not appear in A. In [7] it is shown that 

the operations of Sharing are optimal. 

Lemma 4.3 (Cortesi and File [7]). Sharing is optimal. 
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Fig. 3. The domain Sharing for Y = {x, y}. 

4.3. Quotients with respect to groundness 

The interpretations Sharing and Prop are incomparable with respect to the notion 

of abstraction [lo]. The intuition behind this result is the following. On the one hand, 

by means of disjunctions, Prop represents also possible equivalence (and thus also 

groundness), whereas Sharing does not. On the other hand, Sharing represents vari- 

able independence that is not expressible in Prop. However, as both interpretations 

compute groundness information, we are interested in comparing their precision in the 

computation of groundness. 

4.3.1. The domain GR 
The simplest domain that represents variable groundness is GR as follows. Given 

an element [C, U] E Rsub, its groundness information can be represented by the set of 
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Fig. 4. The domain GR for V’= {x, y}. 

variables grounded by every substitution in 1: 

The set GR is partially ordered as follows. To, is the top element, and 1~~ the bottom 

one. [Bt, Ut] &. [Bz, UZ] if Ut = UZ and Bt 2 B2. Obviously, GR is a complete lattice. 

The least upper bound of two elements [BI, Ul] and [B2, U,] is defined as 

[BI> Ull Ucr [B2> U21= 
[BI n Bz, Ut] if UI = r/,, 

Tcr otherwise. 

It is easy to see that there are Galois insertion between GR on the one side and 

Rsub,Prop, Def and Sharing on the other. We only specify the concretization and 

abstraction functions, as proving that each pair of functions forms a Galois insertion, 

is an easy exercise: 

yo&[B, U]) = [C, U], where C = (0 E Subst 1 Kx E B, Vur(ox) = s}, 

CIRsGrw, ul) = [n,& {X E u 1 v&JX) = k% ul, 
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&hGr([A, ul) = [U\(UA), u]. 
These Galois insertions together with those that connect Prop,Def, and Sharing to 

Rsub, defined above, are coherent with respect to Rsub. 

4.3.2. The quotient of Prop with respect to CR 

In Section 3 we have proved that the quotient of an interpretation with respect to 

a given domain is a domain abstracting the starting domain, provided the associated 

relation is additive. 

The quotient of Prop with respect to GR is Prop itself. This is due to the fact that 

none of the formulas of Prop is irrelevant for the computation of groundness [ 111. 

Lemma 4.4. Let [fi, U], [f~, U] E Prop. rf fi # f2, th ere exists a derived operator t 

using the operations of Prop, such that @&t([fi, U])) # &+.Gr(t([f2, U])). 

Corollary 4.5. rp, is the identity on Prop, and thus it is obviously additive. 

Theorem 4.6. _!&,#rop) = Prop. 

Proof. Follows immediately from Corollary 4.5 and Theorem 3.6. 0 

4.3.3. The quotient of Sharing with respect to CR 

Let rsh be the relation on Sharing associated to GR. It will be shown that, differently 

from what we just saw for Prop, the equivalence classes of rsh are not singletons. 

However, rsh is additive and thus _!&(Sharing) exists. Moreover, we will show that 

&&Sharing) is isomorphic to Def. Because of this fact, the comparison between 

Z&(Sharing) and _!&R(Prop) will be extremely simple. Some results of this section 

need rather technical proofs. For the readability sake these proofs are given in the 

appendix. 

That Sharing expresses information about groundness is well-known, cf. [ 161. 

A formalization of this intuition was first attempted in [lo] where it is shown that 

between Def and Sharing there is a Galois connection. The following even stronger 

result has been shown recently in [8]. 

Theorem 4.7. The domain Def abstracts Sharing with the following abstraction and 

concretization functions: 
For [A, U] E Sharing, let 

WA>ul)=A{AW +x/F?‘ICU, XEU, andV~EA:xEN~(W,nN)#0}, 
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W&A> c’l> = 
IF, ul $A=@, 

[V( [A, U]), U] otherwise, 

YD~.s/W-. ul) = [{U\M I M i= .r’>, ul. 

This Galois insertion is coherent w.r.t. ~sub. 

According to Definition 3.1, the relation on Sharing associated to GR is defined as 

follows. Let Si, S, E Sharing, and let t be any derived operator on the operations of 

Sharing: 

6%) s2> E rSh @ %ShGr(t@l >) = %ShGr(t(S2)). 

The following theorem characterizes r-s,, using the abstractions of the elements of 

Sharing into Def . Its proof is in the appendix. 

Theorem 4.8. Let SI, S2 E Sharing, where SI , Sz E Sharing: 

6% , S2) E rSh @ ~h~f(s~ > = ~h~f(S2 1. 

The existence of the quotient 9&Sharing) is guaranteed by the following result. 

Theorem 4.9. rsh is additive. 

Proof. Consider X Crsh. Let for i E [1,2], Xj = {S, 1 (Si,&) EX}. We want to show 

that 

(uSh-%, uShx2) E rSh. 

By Theorem 4.8, 

(UShxl, uShx2) E r.Sh @ &%~f(uSh& ) = &%~f(uShxZ ). 

Since, by Theorem 4.7, c&Of together with its adjoint, forms a Galois insertion, by 

Proposition 2.3, it is additive and therefore, the following holds: 

(%hDf(USh& > = t-k&%&) /x E-% > by the additivity 

= uq&shqf(x) lx 6x2) by definition of Xi and X2 

= %Df(UShX2) again by the additivity. 0 

The following theorem characterizes the quotient of Sharing w.r.t. GR. 

Theorem 4.10. Z?&Sharing) = Def. 

Proof. It is easy to show that the sets Def and {U.sh[S],, 1 S E Sharing} are isomor- 

phic: the abstraction @&Df is a bijection that preserves the orders of the two sets. In fact, 
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[true, {z, Yll 

Fig. 5. The quotient &R(Sharing) for V = {x, y}. 

on the one hand, if [Ai, U] ILsh [AZ, U] then Al gA2 and thus %([A,, U]) b ‘+?([A*, U]) 

(see Theorem 4.7 for the definition of %). On the other hand, if fi + f2, with [fi, U] 

and [fz, U] in Def, then fi has less models than fz, and thus, 

{U\M I hf I= _I-1 )\{U\M I M I= f2). 

Hence, ?qfSk([fl, Ul> &Sk YDfdf2, VI). 0 

Fig. 5 depicts, for the case that V = {x, y}, the quotient of Sharing with respect to 

GR, which is the domain Def. Observe that the elements [{{x}, {y}, {x, y}}, {x, y}] and 

[{{x}, {y}}, {x, y}] belong to the same equivalence class [true, {x, y}] via Q. The only 

difference between these two elements is that the first one represents also substitutions 

o such that rrx and ay share a common variable. However, this distinction is irrelevant 

when considering only groundness computation. In fact, both elements simply say that 

x and y are completely unrelated with respect to groundness. 
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/GR\ 
Q,,(Sharing) - Q,,(Prop) = Prop 

I I 
Sharing Prop 

\/ 

Rsub 

Fig. 6. Domain abstractions. 

4.4. Comparison of Prop and Sharing w. r. t. GR 

We can finally compare the two interpretations Prop and Sharing using the new 

theory developed in Section 3. 

Theorem 4.11. Prop is strictly more precise than Sharing with respect to the domain 

GR representing groundness. 

Proof. It suffices to show that Theorems 3.9 and 3.10 are applicable, that is, we have 

to show that all the assumptions ASS (a)-(e) of Section 3.2 are satisfied: 
_ Point (a) and (b): have been stated in Sections 4.2.2, 4.2.3 and 4.3.1. 

- Point (c): is shown in Theorems 4.6 and 4.10. 
- Point (d): is stated in Lemmas 4.2 and 4.3. 

- Point (e): is stated in Section 4.2.2. 0 

5. Conclusions 

In this paper we addressed the problem of exactly characterizing the part of an 

abstract domain which is useful for the computation of a given property. To this end, 

we introduced the notion of quotient of an abstract interpretation. We showed that the 

comparison of abstract interpretations w.r.t. a common property can be performed by 

comparing their quotients w.r.t. that property. As an example, we applied this technique 

to the comparison of two well-known abstract interpretations for logic programs: Prop 
and Sharing. 

Other algebraic operators on abstract domains and abstract interpretations have been 

proposed in the literature, namely the reduced product [6], the open product [12], the 

powerset [ 151, and the complement [7]. An interesting subject for future work is the 

study of the interaction between the quotient and these operators. For instance, one 

may wonder whether the quotient of a reduced product is the reduced product of the 



186 A. Coriesi et al. I Theoretical Computer Science 202 (1998) 163-192 

quotients and also whether the quotient of the powerset of a domain D is the powerset 

of the quotient of D. 

Another question that deserves further study is what one can do for comparing 

two domains when the present framework cannot be applied, for instance, when one 

of the associated relations is not additive. In this case it may still be possible to 

perform a comparison by lifting the domains to their powersets and comparing their 

quotients. In fact, quotients always exist for domains obtained through the powerset 

operation. 

Appendix 

The appendix consists of four parts. In the first three, we formally define the oper- 

ations in Rsub, Prop, and Sharing. Then, we show some technical lemmas that lead 

to the proof of Theorem 4.8. 

A.1. Operations in Rsub 

Let E be a set of term equations. If a substitution rs makes o(tl) syntactically 

identical to a(t2) for each (tl = t2) E E, a is called a unifier of E. A most general 

unzjier of E is a unifier a of E that is more general than any other unifier of E. We 

denote by mgu(E) any idempotent most general unifier of E. It is not necessary to 

specify which most general unifier is considered, because, from the relationship existing 

among the idempotent most general unifiers of a given set of equations [ 171, it is 

immediate to see that each of them carries the same information about the properties 

we are interested in, namely, variable groundness and sharing. 

A set of equations E is in solved form if it has the form {xr = tl, . . ,x, = t,,}, 

where each xi is a distinct variable occurring in none of the terms tj. Given a set of 

equations E = {x1 = tl, . . . , x, = tn} in solved form, the substitution a = {xl/t,, ,x,/t,} 

is an idempotent most general unifier of E; we denote E by Eq(a). 

Least upper bound The operation u,& which produces the least upper bound of 

two elements of Rsub, is as follows: for any k E Rsub, T,Q LJR$ k = Tops, 1,~ U,Q k = k, 

for the other elements, 

[cl, ul] URs [z2, u21 = 
[Cl UZ2, VI] if Ur = U2, 
TRs 

otherwise. 

Projection: The concrete projection zRS : Rsub x FP( v) --+ Rsub maps ([c, Ut], U2) 

t0 [z, ul n u2]. 
Thus, projection only changes the second component leaving the first one unchanged. 

One may think that the fact that the projection does not eliminate from the sustitutions 

the variables that are projected out, may cause problems of variable capture. As usual, 

variable captures can be avoided using appropriate renamings. 
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Uni$cation: In order to define the concrete unification lJRs, it is convenient to in- 

troduce first the following function LlRs: 

uRs : Subst x Subst x Subst + Subst 

((Tl,~2,~)Hmgu(Eq(ol)UEq(o2)UEq(6)). 

UR.~ is strict: if either of the first two arguments is &, the result is 1~~. Otherwise, 

if one of these is TR,~, the result is TR.~. The other cases are as follows: 

URS : Rsub x Rsub x Subst --+ Rsub 

([Cl > Ull, [X2, U21,@ k-3 [{h?S(Ql? 02, WI E It & 02 E C2}, 
UI U U2 U Var(6)]. 

A.2. Operations in Prop 

Least upper bound: For all d E Prop, Tp,. Up, d = Tpr and Ip,. UP, d = d; for the 

other elements, 

[fI?C’ll UP? u-2, u21= 
VI V f2, WI if UI = U2, 
T 
Pr otherwise. 

Projection: The abstract projection np, amounts to existentially quantifying a formula 

[8,20]. The existential quantification of a propositional formula obeys 3x.f E f(x/T) 

v .fW). 

XPAf, f-4, v> = NU\V.f, u n VI. 

Unijication: The abstract unification is obtained by means 

For 6= {Xl/‘ti 11 <i<n} E Subst, let (~6 = A{x, -(//Ifar( 1 

Up, : Prop x Prop x Subst --f Prop 

of logical conjunctions. 

1 <idn}. 

WI 3 VII, [f2, U21,@ - VI A f 2 A q6, UI U U2 U Var(6)]. 

A.3. Operations in sharing 

Least upper bound: The least upper bound of any two nontrivial elements [AI, Ul] 

and [AZ, U2] is defined by 

[AI,~JII Us L42>U21= 
C 

[AI UA2, Ul] if l_J, = U2, 
Tsh 

otherwise. 

Projection: The projection on Share is the identity on the bottom and top elements. 

In the other cases it is defined by means of set intersection: 

xsh : Sharing X FP( v) -+ Sharing 

USI> Ull, U2) H [{A f- u2 / ‘4 E SI 1, UI f- u21. 
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Unification: In order to define the abstract unification function USJ, for the Sharing 

domain, we need the following auxiliary functions [16]: 

l The closure under union of A E a(@( V)), denoted A*, is the smallest superset of 

A satisfyingXEA*AYEA*+(XUY)EA*. 

l The part of A E p( @( V)) that is relevant to a term t, denoted reZ(A, t), is the set 

{S E A 1 Var(t) n S # 0). 
l IfA,A’E@(@(V)) then A@A’={(SUS’))SEA andS’EA’}. 

l The basic unification step is performed by 

%'h : @k'(V)> x s~bSt-+~MV), 

‘vAo E @( @( V)), VS E Subst, 6 = {q/t, ,...>&lltm) 

ush(Ao,6)=amgu.args([xl,. . . ~~1, ill,. . .,b,l,A~), 

awwvf([ I, [ 13) = B 

umgu.urgs([q IX], [t, It], B) = urngu.urgs(F, t, umgu(x,, t1, B)) 

umgu(x, t, B) = (B\(rel(x, B) U reZ( t, B))) U (rel(x, B) @ reZ( t, B))*. 

l The backward/forward unification ush : Sharing x Sharing x Subst -+ Sharing is 

defined as follows. Let [A, U], [A’, U’] E Sharing, with U f’ U’ = 0, and let 6 E Subst 

such that Vur(6) C U u U’. 

~sdbk Ul, [A’, U’l, 6) = i&s& u&4, U u U’l. 

A.4. Technic& results 

The goal of this section is to show Theorem 4.8. Some preliminary results are 

necessary. 

Lemma A.l. Let Sl,S2 E Sharing: 

aShO/ = &ShDf(s2 ) * &ShGr(sl ) = ‘%ShGr(S2 ). 

PrOOf. It Suffices t0 observe that @&or = “D,f Gr 0 u#,Df, cf. Section 4.3.1 for the defi- 

nition of the abstraction functions. q 

In what follows we will use the notion of %? introduced in Section 4.3.3. For the 

sake of clarity, we recall its definition below: for [A, U] E Sharing, 

WA>~I)=A~A~I +x( WI CU,XEU, and VNEA:XEN+(WI nN)#0}. 

Recall also that c&D,-([A, U]) = [%?([A, U]), U]. 

The following lemma plays a central role in this section: it expresses the 9 meaning 

of the result of the Ush operation in terms of the conjunction of the % meaning of its 

arguments. 
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Lemma A.2. Let SI = [Al, Ul], & = [AZ, Uz] E Sharing, with U1 f7 U2 = 0, and let 6 = 

{x$1,..., x,/t,,} be any substitution in Subst with Var(G) C U, u U2. Let cpb = 

A{xi-(/jVar(ti))j ldidn}. 

Proof. We show that the relation holds for the case that 6 = {x/t}. The general result 

easily follows by applying the basis case n times. 

Let in what follows, U,h(Si,&, 6) = S’ = [A’, U], where U = UI U U2. Let also 

A=A, UAZ and S=[A,U]. 

(=+-) First, we show that +Z(S’) +%?(Si)r\ V(&) r\(x H r\ Var(t)). The fact that 

%(S’)kx H A Var(t) follows easily from the definition of USh. Consider rel(A,x) and 

rel(A, t). If one of them is empty, then A’ contains no variable in {x} U Var(t). Thus, 

%?(S’) bx A (r\ Var(t)) and, therefore, %?(S’) +x H A Var(t). 

On the other hand, if both rel(A,x) and reZ(A,r) are nonempty, then, by definition 

of Us,,, A’ satisfies the following condition: VN E A’, x EN H Var(t) n N # 8. Thus, 

9(Y) +x H A Var( t). 

Let us now prove that %(S’) t== %?(St ). The proof for %(&) is analogous. Consider 

any definite formula f = A W ---f y such that 

(1) ‘vNEA,. YEN+ WnN#@ 

It is easy to see that this condition is satisfied also if we replace Al with A’: each 

element N E A’ is either an element of Al (that satisfies (1) by assumption), or it is 

an element of A2 (that satisfies (1) trivially because Ui n U2 = 0 and {y} U W g U1 ), 

or it is the union of some elements of Al and of A2 (( 1) is satisfied by the above 

arguments). 

(+) We will show that Q?(S) A (~6 + %(S’). This proves the thesis. In fact, G??(S) = 

%(Si ) A %?(&), because in A the elements of Al and A2 do not interact since they are 

pair-wise disjoint. 

We proceed by contradiction. Assume that there is f = A W --f y such that %(S’) + f, 
but V(S) A ~6 p f. Then it must be the case that ‘Z(S) F f and thus, there must be 

B E A such that y E B, but W n B = 8. Surely, B n Var(x = t) # 0, otherwise B E A’, that 

contradicts the hypothesis. Thus, B E reZ(A,x) U rrl(A, t). From this, it follows that 

(2) g(S)b((A@‘)AxA(A Var(t)))+y 

because for each B E A, if y E B, but W n B = 0, then ({x} U Var(t)) n B # 0. 

Assume that B E rel(A, t), the case that BE rel(A,x) is analogous. By definition of 

ush, A’ contains B @ rel(A,x). By the initial assumption, YR E rel(A,x) it must be that 

R n W # 0. From this it follows that 

(3) g(s) k A w +x 
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Thus, from (2) and (3) we have 

A [A W +x1 A [<A @‘I Ax A <A VMt)) + ~1, 

from which one easily obtains 

%9A(x- AcJ'4t)>>kA W+ Y. 0 

In the following three lemmas, we will show, for each one of the three operations of 

Sharing, that the %? meaning of its result is completely determined by the %? meaning 

of its arguments. 

Lemma A.3 (Unification). Let S, = [Al, U], & = [AZ, U] and S’ = [A’, U’] be elements 

of Sharing such that UC-I U’ = 8. Let also 6 E Subst such that Vur(G) 5 U U U’. 

Proof. By Lemma A.2, we know that 

@‘( Us/,(S’r S,, 6)) = q(S’) A WC& ) A cpa 

by assumption =‘%(S’)Ag(&)Aq&j 

= w htG7’,~2,~)). 0 

Lemma A.4 (Projection). Let S1 = [Al, U], S2 = [AZ, U] E Sharing, and U’ be a jinite 

set of variables. 

WSI ) = +w2) =+ ~~w@l, U’)) = 5f371d~2, U’>). 

Proof. Straightforward. q 

Lemma A.5 (Lub). Let S1 = [Al, U],S2 = [A2, U] be elements of Sharing with Al,A2 

# 8, and let S’ = [A’, U’] E Sharing: 

%(s, ) = %(&) =+ %(s, &‘h s’) = g(& us,, s’). 

Proof. Recall that, for any S = [A, U] E Sharing, C(shDf(S) = [Q?(S), U]. Thus, we can 

use the additivity of CxshDf, obtaining the following: 

EShDf@l USh s’) = aShD/(&) uD/- &hDf@‘) = aShDf(s2) UDf %hDf@‘) 

= &ShDf(sZ b-h s’> 

which shows the thesis. 0 

Finally, we show Theorem 4.8. 
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Theorem 4.8. Let S1, & E Sharing, where SI = [A 1, UI], S2 = [AZ, U2] and Al ,A? # 0. 

Proof. 

(+) From the definition of rsh it follows immediately that UI = U2: it is sufficient 

to consider the empty sequence of operations to obtain 

([AI,UI],[A~,U~])E~S~ =+ ashcl([Al,u1l>=rShcr([A2,U21) =+ WI = u2. 

It remains to show that V(St ) = %(S;!). Assume the converse. This means that there 

exists a definite formula t/j = /\ W +x such that W(St ) b tj and V(S2) F $ (or vice 

versa). Notice that this means that there exists N E A2 such that x EN but W n N = 0. 
Consider So = [{@}, Uo] with Uo n UI = 8 (and thus Uo f? U2 = 8). Call U = c’c, U Ul. 

Consider also the substitution S = {x/a (x E W}. Let 

&,(SO,&,@ = [RI, ul and &h(SO,S2,@ = P2, W 

By the definition of Ush, RI =Al\{H E Al /H n W # 8). Thus, by the hypothesis, 

x $i!U RI and thus, by definition of C(ShCr (cf. Section 4.3.1) x is in the first com- 

ponent of QG([RI, Ul). 
On the other hand, RZ = A2\{H E AZ 1 H n W # P)} and thus N E RZ from which, 

x E U R2. From this it follows that x does not belong to the first component of 

qhG,.([R2, U]). Thus we arrived to a contradiction of our initial hypothesis. 

(+) Since, by definition, cf. Theorem 4.7, 

%D#I > = &ShDf@Z) @ UI = u2 and %SI > = +W2) 

it suffices to show that for any derived operator t on {USh, r&h, USA}, 

g(sl > = q(s2 > A ul = u2 =+ kThGr(t(& >> = %hGr(@2 >> 

By structural induction on the derived operator t, using Lemmas A.3-A.5, one can 

show that %‘(t(Sl )) = %?(t(&)). From this it follows that 

(1) L%hD/(t(Sl >> = aShDf(t(S2 )) 

because (/I = U2 by hypothesis, and the same derived operator t is applied to St and 

S2 and thus the two results will have equal second components. By Lemma A. 1, (1) 

implies the thesis. 0 
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