
ELSEVIER

Theoretical
Computer Science

Theoretical Computer Science 202 (I 998) 163-192

The quotient of an abstract interpretation

Agostino Cortesi a.*, Gilbert0 Filk b, William Winsborough c

aDip. di Matematica Applic. e. Inform, University of Venezia, Corso di Laurea in Scienze
dell’lnforrnazione, via Torino 155, 30170 Mestre- Veneziu, Italy

bDip. di Maternatica Pura ed Applicata, Universitri di Padova, viu Beboni 7. I-35131, Padovo, Italy
’ Transarc Corporation, USA

Received November 1994; revised December 1996

Communicated by G. Levi

Abstract

Within the abstract interpretation framework, abstract domains are used to represent interesting
properties of the concrete domain. For instance, properties that enhance the optimization of the
analyzed programs. An abstract domain D expresses, in general, several properties of the concrete
domain.

We describe a method for identifying, for any abstract domain D and for each property P

expressed by D, the subset of D that is useful for computing P-information. We call it the
quotient of D with respect to P. We also give a necessary and sufficient condition for having
that the quotient is an abstraction of D. This property seems essential for applications such as
that described below.

As an illustration of the usefulness of the notion of quotient, we show that rather sophisti-
cated comparisons between domains, can be carried out using it. Assume to have two abstract
domains that both compute some property P, but that also express distinct properties and thus
are incomparable as a whole. Such domains can be compared with respect to the precision with
which they compute P-information, by comparing their quotients with respect to P.

Using this method, two well-known abstract domains for Prolog programs, Prop and Sharing,
are compared with respect to the precision with which they compute groundness information.
@ 1998-Elsevier Science B.V. All rights reserved

1. Introduction

Abstract Interpretation is a general method for defining data-flow analyses. “Ad hoc”

analyses, that can be viewed as instances of the abstract interpretation approach, were

already used in the 1960s [22], for the optimization of imperative languages. How-
ever, the formal foundations of the approach have been given only in 1977 by the

Cousots in [5]. In this framework, a data-flow analysis is specified by describing a

domain of data-descriptions and operations on these data-descriptions that mimic the

* Corresponding author. Tel.: (39)(41) 290 8428; fax: (39)(41) 290 8419; e-mail: cortesi@dsi.unive.it.

0304-3975/98/$19.00 @ 1998 - Elsevier Science B.V. All rights reserved
PII SO304-3975(97)00137-O

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82504331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

164 A. Corfesi et al. I Theoretical Computer Science 202 (1998) 163-192

concrete operations of the language. A tuple D = (D, ~1,. . , pk), where D is the set of

data-descriptions (called abstract domain) and the pi are the operations on D (called

abstract operations), is called an abstract interpretation. The correctness of the data-

flow analysis induced by D is guaranteed when some safety condition holds between

D and the concrete interpretation C = (C,ol,. . . , ok). In this paper we will take as

safety condition that:

(i) D and C are complete lattices,

(ii) there is a Galois insertion between D and C (with y and M concretization and

abstraction functions, respectively), and

(iii) for any c E C and for any d E D, c !Ic y(d) + oi(c) CC y&(d)).

When conditions (i) and (ii) are satisfied, we will say that D abstracts C, when

also condition (iii) holds then we say that D abstracts C. Weaker safety conditions

are also sufficient for guaranteeing correctness [18, 121. However, we need (i)-(iii) for

the purposes of the present paper.

In an abstract interpretation that expresses and thus computes several properties, we

want to identify which part is useful for computing each property. Let us be more

precise. Consider an abstract interpretation D that expresses a property P. We want to

identify the subset i&(D) of D that expresses exactly the part of D that is useful for

computing P. We call it the quotient of D with respect to P.
The notion of quotient is a tool for obtaining more insight in the functionalities of

complex abstract interpretations. Such insight can be useful in several ways. In the

present paper we show that quotients are useful for comparing abstract interpretations.

Assume we want to compare the relative precision of two abstract interpretations D

and L in the computation of a given property P. This comparison may be impossible

relying on the classical notion of Galois insertion (or connection). In fact, D and L

may express information that is irrelevant for computing P and makes them incompa-

rable using the classical formal tools. We show that the comparison can be done by

considering the quotients L&(D) and 3$(L). Being able to perform such sophisticated

comparisons is obviously useful for choosing the best available abstract interpretation

for a particular purpose. Such comparisons are also useful when combining different

abstract interpretations in order to obtain a more powerful one, as is suggested in

[12,4]. By appropriate comparisons one may check whether such combinations of D

and L are worthwhile at all and also one can “tune” the combination by allowing it

only for those properties P for which it may turn out to be profitable: those for which

&(D) and Z&(L) are incomparable.

The main achievements of the paper are described below.

(a) For any abstract interpretation D and any property P expressed by D, we define

the quotient i&(D) of D w.r.t. P and give a condition that guarantees that L&(D)
is a complete lattice that abstracts D.

(b) We show that if D and L are optimal for the computation of a property P and

if 2$(D) abstracts J!p(L), then L is at least as precise as D for computing P.
Moreover, if 2?p(D) abstracts 3$(L) strictly (i.e., Z+(L) does not abstract L&(D)),
then L is strictly more precise than D for computing P.

A. Cortesi et al. I Theoretiwl Computer Science 202 (1998) 163-192 165

(c) As an application of this theory, we compare two abstract interpretations that

are well-known for the analysis of Prolog programs: Prop, [19,9], and Sharing,

[161. We stress the fact that we consider here complete descriptions of Prop and

Sharing, i.e., with all the abstract operations needed for their use in static analysis.

Although both these interpretations compute the property of variable groundness,

they are not directly comparable (i.e. neither one abstracts the other) because Prop

computes also possible equivalence through disjunctions and Sharing computes

also variable sharing. We compare the (relative) precision of these two analyses

in the computation of variable groundness (GR) and we show that L!oR(Prop) is

Prop itself, whereas &(Sharing) is the set of formulas which are conjunctions

of formulas of the form: AW -+x, where W is a set of variables and x is a

variable. Such formulas are called dejnite and form a proper subset, called Def

[13,2], of the formulas in Prop. Hence, L&(Sharing) strictly abstracts Prop and

thus, from (b) above, it follows that Prop is strictly more precise than Sharing

for the computation of variable groundness.

The notions and results of points (a) and (b) above are new. The construction of

the quotients of Prop and Sharing with respect to GR of point(c) is also new. That

L?oR(Sharing) coincides with Def is an interesting result on its own right. In fact,

both Sharing and Def are well-known domains that have been defined independently

and that are both useful for the analysis of logic programs.

The present paper is an extended and improved version of [IO]. The main improve-

ment is the introduction of the notion of quotient. In fact in [lo], we observed that,

in order to compare D and L, it was necessary to define a reference domain R and

then compare the workings of D and L projected on R. Clearly, R plays the same

role as Z?p(D) and 2p(L) in the present approach, but in [lo] we did not have any

systematic way to obtain it. Its definition was only based on the insight one had over D

and L.
Another improvement of the present paper concerns the criteria adopted for com-

paring the precision of interpretations. The criteria used now is strictly stronger (and

more natural) than that of [lo]. Thus, the relation between Prop and Sharing shown

in the present paper is actually stronger than that contained in [IO].

The idea of identifying relevant parts of an abstract domain, that has given rise to

the notion of quotient, has also inspired the recent work [S] in which the notion of

complement between domains is defined. The reader may be interested to know that

in that paper, among several examples of application of the complement, the authors

consider Sharing and Def (= d&Sharing), cf. point(c) above) and characterize the

complement of Def w.r.t. Sharing, i.e., the domain that represents what is left of

Sharing when Def is taken away from it.

Finally, it is important to remark that, even though we have applied it to the compar-

ison of two abstract interpretations for the data-flow analysis of Prolog programs, the

notion of quotient, presented in this paper, is in no way bound to logic programming

applications only. On the contrary, it can be useful for studying abstract interpretations

for all programming paradigms.

166 A. Cortesi et al. I Theoretical Computer Science 202 (I 998) 163-192

The paper is organized as follows. Section 2 contains the preliminary definitions.

The definition of quotient is given in Section 3 together with the general result men-

tioned in (b) above. The application of the theory to the comparison of Prop and

Sharing, mentioned in (c) above, is described in Section 4. The appendix contains

some definitions and technical lemmas that are needed for the application part.

2. Preliminaries

This section consists of three parts. The first introduces some classical notions of

abstract interpretation theory and some known results (see [5,6, 11). The second part

contains the definitions of two types of optimality. The final part introduces the criterion

for comparing abstract interpretations that will be used in the rest of the paper.

2.1. Galois insertions and their composition

In what follows a function’s domain and range are indicated by subscripts: sxy is a

function from X to Y. The ordering and the least upper bound operator defined in X

are denoted by LX and UX, respectively.

Definition 2.1 (Galois connection and insertion). Let C and D be posets and con-

sider two functions of the following types: y~c : D + C and aCD : C + D The 4-tuple

Gch = (ync,C,D,aac) is a Galois connection if

Vc E C and Vd E D: act CD d H c & y,,(d).

G,-- is a Galois insertion when y~c is injective or, equivalently, when acD is onto.

When GAD is a Galois insertion then we say that D abstracts C.

In a Galois connection or insertion GCD,YDC and CQD are called the concretization

and the abstraction function, respectively. The following are well-known properties of

these functions, see [6].

Proposition 2.2. Let Gc- be a Galois connection/insertion,

1. ynC 0 acn is extensive, i.e., v’c E C, ; yDC 0 tiCD(c) & c;

2. @b 0 YbC iS reductive, i.e., Vd ED, c(C’ 0 ync(d) En d;

3. Gcn is an insertion tf and only tf Q-D o YDC is the identity.

4. if acb and ynC form a Galois connection, then one of the two functions determines

the other one. More precisely, for d E D, y&d)= UC {c E C 1 &-D(c) LD d}, and

similarly, for c E C, &-n(c) = nn {d ED / c CC ybc(d)}. Each function is called the

adjoint of the other one.

5. C~CD o ybc o C~CD = C(CD and similarly, ync o &-nybc = ybc.

A function CI : C -+ D, where C and D are po-sets, is additive when VX C C such

that LlcX exists, a(Ll&) = MD {a(~) 1 x EX}.

A. Cortesi et n/. i Theoretical Computer Science 202 i 1998) 163-192 167

Proposition 2.3. Let &-D : C + D, where C and D ure complete lattices. The func-

tion xcn is additive ifs ffCD, together with its adjoint concretization, forms a Galois

connection between C and D.

Proof. The (3) direction is shown in [6, Proposition 71. For the other direction,

assume that 3~0 and its adjoint ‘JDC form a Galois connection. We must show that

Clearly, a&&$) is an upper bound of {c(cD(x) 1 x EX} because vx EX, Ucx 2, X.

We show now that it is the least upper bound. Let d be an upper bound of {(xCD(x) 1

x EX}, i.e., Vx EX, acD(x)c~ d. Thus, by definition of Galois connection, Vx EX,

x&, y&d). This implies that yDc(d) & LlcX. It suffices now to apply UCD to both

members of the inequality, to obtain: XCD 0 yDc(d) 20 %CD(&x), and thus, by Prop@

sition 2.2(Z), we have that, d 7, @.CD(u,x). 0

It is well-known, see [6], that in place of considering two domains C and D, where

D abstracts C, one can view D as a particular subset of C: the subset of C containing

the fixpoints of an upper closure operator on C.

Definition 2.4 (Upper closure operator). Given a poset C, an upper closure operutor

(uco) on C, is a function p : C ---f C, that is monotonic, idempotent and extensive (i.e.

k/c E C, p(c) & c). The set of fixpoints of p is {c E C 1 y(c) = c}. This set is indicated

by P(C).

The following result shows that Galois insertions and uco’s are two equivalent ways

of representing abstractions. The proof can be found in [6]. In what follows, if Cc0

is a Galois connection/insertion, then YDC(D) = {;joc(d) 1 d ED}.

Proposition 2.5. Let GCD = (~Dc, C, D, CXDC) be u Gulois insertion. Then YDC 0 ZCD is

un uco on C whose set of fixpoints is y~c(D). Vice Versa, lf p is an uco on C, then

p(C) cun be viewed as u new domain thut abstracts C viu a Galois insertion that

bus p as ubstraction und the identity as concretization.

The following result, shown in [6], will be useful in the sequel.

Proposition 2.6. If C is a complete luttice und D is a poset and there exists a Galois

insertion between them, then also D is a complete lattice.

The idea of the previous result is that joins and meets on D “can be computed on

C and then abstracted on D”. More precisely, if G,-D = (~Dc, C,D, CXDC) is a Galois

insertion, then VX 2 D, UDX = aoc(Uc{y&d) I d EX}). A similar relation holds for

the meet.

In this paper we will always consider domains that are complete lattices and will

assume the existence of Galois insertions between them.

168 A. Cortesi et ul. I Theoretical Computer Science 202 (1998) 163-192

Definition 2.7 (Interpretation). An interpretation is a tuple D = (0, pi) where D is a

complete lattice and ,u~ is a continuous function of type D + D.

In general, an interpretation contains more than one operation, and the operations

may have arity greater than one and may take some other arguments besides elements

of D. For the sake of clarity, we consider the simplest setting, as the generalization of

definitions and results is immediate.

Definition 2.8 (Abstraction). An interpretation D = (D, ,u~g) abstracts an interpretation

C = (C, PC) if

1. there is a Galois insertion (y~c, C, D, xc~) and

2. V’c E C : t’d~ D : c EC YDC(~ =+ PC(C) Lc ~DC(PD(~)).
We say that D properly abstracts C if D abstracts C but C does not abstract D.

An abstract interpretation is intended to report information about a program’s exe-

cution behavior. When L abstracts D we know that the analysis induced by D is at

least as informative as the analysis induced by L. In the rest of the paper we denote

domains by capital letters C, D, L, R possibly subscripted, and we denote interpretations

by boldface capital letters C, D, L, R.

It is well known that if R abstracts D and D abstracts C, then R abstracts C. The

proofs of the propositions listed below are straightforward.

Proposition 2.9 (Same-order composition). Let G DR and Gco be Gulois insertions.

Their composition, denoted Gco o GDR is the Galois insertion GCR = (YRC, C, R, XCR),

where YRC = YDC o YRD and C~CR = MDR o acD.

The following two propositions are shown in [lo].

Proposition 2.10 (Opposite-order composition). Assume that GCL and GAD are

Galois insertions. Let EDL = clc~ o YDC and ELD = ~DoyLc. The following holds:
(i) EDL and ELD are monotone;

(ii) Vd E D,Vtf’E L ELD(EDL(d)) 2, d and EDL(ELD(/)) 7~ t.

Proposition 2.11. Assume that GIL and GCD are Galois insertions. The following

conditions are equivalent:
(i) GDL = (CCCDO~LC,D,L,C~CLOYDC) is a Galois insertion;

(ii) YLCV) C YDC(D);

(iii) b,c2 l c. xCD(cI >=~CD(c2)~~CL(cI)=~CL(cZ).

Definition 2.12. If GCL Gco and GDL = (XCDOY~C, D, L, X~LOYDC) are Galois insertions,

we say that GDL is coherent with respect to C.

Coherency and same-order composition are strongly related.

A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192 169

Proposition 2.13. Let Gco GEL and GDL be Galois insertions. Then Go, is coherent

with respect to C if and only if GCL = GAD o GEL.

Proof. (+) We want to show that y~c = yocoyLD, which, since GD~ is coherent w.r.t.

C and thus y~o = ‘YCD o “/Lc, can be rewritten in

;‘LC = YDC‘ o k’D o YLC

This equality is verified because, by Proposition 2.1 I(ii), Vl EL, ~LC(Z) E y&D) and

thus, by Proposition 2.2(5), Ql EL, ~DC o aco(r~c(Z)) = y~c(Z).

That @CL = &,L 0 %cD iS shown aS fOllOWS. By coherency, %DL 0 acD = clc~ 0 yDC 0

tlcD. Since ‘dc E C, aCo(c) = aco(YDc 0 xCD(c)), cf. Proposition 2.2(5), using Proposi-

tion 2.1 l(iii), one obtains that vc E C, @L(C) = (xCL(yDC 0 ‘%cD(c)).

(+) By hypothesis, y~c o YLD = y~c. It suffices to apply acD to both members of

this equation and use Proposition 2.2(3), to obtain the desired relation

That also ‘%DL = %cD 0 ‘JDC can be shown similarly. 0

2.2. Optimalities

As usual, an abstract interpretation is optimal if it mimics the concrete one in the

best possible way. We also introduce a weaker notion in which we project the result

of the operation on a more abstract domain.

Definition 2.14 (Optimalities). Consider the interpretations D = (D, /AD) and C =(C,

,&). Assume that D abstracts C. D is optimal if Vd ED : p&d) = cccD(pc(rDc(d>)).

Let now R be a domain which abstracts D, and let QQ = XDR 0 ZCD. We say that D is

R-optimal if Vd ED : CYo&@(d)) = crc&c(yDc(d)>>.

Lemma 2.15. Let C, D, and R us in the previous dejinition. If D is optimal then D

is also R-optimal.

Proof. Let d ED:

pD(d) = QD@cb'Dc(d>)) as D is optimal

* %&D(d)) = ccoR(k&c(rDc(d)))) applying ~DR to both Sides

*'%&D(d)) = W&kb'Dc(d))) by definition of UCR. q

Observe that the notion of R-optimality is a generalization of the notion of optimal&y.

In fact, D is optimal iff D is D-optimal.

2.3. General comparison criterion

Let P be an abstract domain that represents a property we are interested in. Assume

that the two interpretations L and D also represent this property. This fact is modeled

170 A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192

by the assumption that P abstracts both L and D. We want to compare the precision of

L and D with respect to the way they compute P, according to the following intuitive

idea. L is at least as precise as D with respect to P if every sequence of concrete

operations is better or equally approximated by L than by D when considering only

the information representable in P.

Definition 2.16 (Comparison criterion). Let D = (D, pi) and L = (L, pi) be interpreta-

tions abstracting C = (C, ,~c). Let P be a domain abstracting both D and L. Let also

& denote the ith fold composition of pc and & and & the corresponding sequences

of operators of D and L.
l L is at least as precise as D with respect to P if

l L is strictly more precise than D with respect to P if L is at least as precise as D
but the converse does not hold.

3. The quotient of an interpretation

This section consists of two parts. In the first one, two domains D and P are consid-

ered, where P represents a particular property expressed by D. An equivalence relation

rp on D is defined that identifies the classes of elements of D that are equivalent w.r.t.

the computation of P-information. It is shown that, when rp is additive, it is possible

to define an abstraction of D, called the quotient of D W.Y. t. P, that represents exactly

the information of D that is used to compute P-information. In the second part of the

section we show the relevance of quotients for comparing the precision with which

different interpretations compute a given property.

Throughout this section, we always assume that G cp, GCD, GDP are Galois insertions

with GDP coherent with respect to C (i.e., G cp = GCD o GDP), and that the interpretation

D = (0, pD) abstracts the interpretation C = (C, PC) with PD optimal.

3.1. Dejnition and properties of the quotient

First, we characterize elements of D that are equivalent, with respect to P, in any

computation sequence.

Definition 3.1 (Associated relation). The equivalence relation rp on D associated to P

is defined by

Observe in particular that (dl,dz)~r~ implies tlgp(dl) = c&d*). In the sequel, [dip
denotes the set {d’ ED / (d, d’) E rp}.

A. Cortesi et ul. I Theoretical Computer Science 202 (1998) 163-192 171

Clearly, the intuition suggests that the quotient of D w.r.t. P should be a set Q that

has one element corresponding to each equivalence class of D w.r.t. yp. Unfortunately,

this is not always the case. In fact, it is easy to find equivalence relations on D for

which such a Q is not an abstraction of D (whereas we want the quotient of D to

abstract it). Below we will show that if rp is additive, then such a Q is an abstraction

of D and it will, in fact, be the quotient we are looking for. After having proven

this fact, we will show in Theorem 3.7 that the additivity of rp is equivalent to the

additivity of the abstraction function that connects D to Q. This relationship should

not be surprising in view of Proposition 2.3 that, in the present context, shows that

the additivity of the abstraction function implies the existence of a Galois insertion

between D and Q.

Definition 3.2 (Additivity). The relation rp is additive when V’s C rp, if Si = {u 1

(a.b)~S} and &={b((a,b)~S}, it is true that (LIDSI, UDS2)Erp.

In what follows some important consequences of the additivity of rp are shown.

Lemma 3.3. If the relation rp on D associated to P is additive, then

VdED:(UD[dlp,d)Erp, i.e. LIP [dlpE[dlp

Proof. It is sufficient to observe that, by additivity of rp, if [dip = {di : iel} then

(LID{d,:iEZ}, !JD{~})=(UD{~~:~EZ},~)E~,. 0

Lemma 3.4. If the relation rp on D associated to P is additive, then

Proof. Let 2, =UD[dl], and 22 =UD [d21p. By Lemma 3.3, (dl,J,)Er, and (dz,az)E
rp. Thus, by additivity of rp, (dl LID d2,21 LID 2,) EYE. By hypothesis, dk ED d2, so we get

(d2,JI UDa2) E rp2 i.e. 21 LIDJz E [d21p. Therefore, by the definition of 22, d, Ll~22 5,~ J2,
1

and thus dl !IDdl. 0

Let us give now the definition of quotient. After that we will show that the additivity

of rp implies that the quotient enjoys all the properties we wanted and in particular

that it abstracts D.

Definition 3.5 (Quotient). The quotient of D with respect to P is the set L&(D) de-

fined by

ZIP(D) is a subset of D and thus it is partially ordered.

172 A. Corlesi et al. I Theoretical Computer Science 202 (1998) I63-192

Theorem 3.4. If the associated relation rp is additive, the following facts hold.

(i) 22p(D) is a complete lattice that abstracts D;

(ii) P abstracts k&(D) coherently w.r. t. C;

Proof. (i) We will show that L&J(D) is the set of fixpoints of the following uco p9

on D:

Vd ED. pT(d) = UD [dip.

Thus we must show that pd is extensive, idempotent and monotone:
- it is extensive: by definition;

- it is idempotent: using Lemma 3.3 it is simple to see that Vd E D, U&D[dlp] =

k [dIpi
- it is monotone: immediate from Lemma 3.4.

Obviously &(D) = ps(D) and thus, from Proposition 2.5, it follows that there is a

Galois insertion between D and L&(D) with abstraction pi and the identity as con-

cretization. Moreover, from Proposition 2.6, we have that L!&(D) is a complete lattice.

(ii) In order to show that P abstracts L&(D), by Proposition 2.1 l(ii), it suffices to

show that yp~(P) c ps(D). Precisely, we want to show that

‘dbfp. yPD(b) = UD bdb)lp

Let a = UDIYpD(b)lp. Obviously, the following point (1) holds: a &yp~ (b).

Observe now that, by Lemma 3.3, @Dp(a) = MDp o YpD(b) = b (a 0 y is the identity)

from which, applying ypD on both sides, one obtains:

a CD ypD 0 @Dp(a) = YpD(b) (y 0 @ k eXtensiVe).

This together with (1) shows what we wanted. Thus, by Proposition 2.1 l(i), there is a

Galois insertion GQ~ = (QQ 0 yp~, 2?,(D), P, MDP 0 YQD) that is coherent w.r.t. D. Thus,

by Proposition 2.13, GDP = GDQ o GQ~. Since, by hypothesis, GDP is coherent w.r.t.

C, it is the case that, Gcp = GCD 0 GDP, and thus, Gcp = GCD 0 GDQ 0 GQP = GCQ 0 Gpp

which, by Proposition 2.13, proves that GQP is coherent w.r.t. C. 0

It is easy to see that the join on L?&(D), denoted Up, is as follows : ul UQ u2 = UD

[UI UDu21p. The meet is defined similarly. As already announced, the additivity of rQ is

equivalent to that of the abstraction function pd (defined in the proof of Theorem 3.6).

Recall that pd : D --f L&(D) is additive if VX &D, pd(LJ~x) = UQ {p&t) 1 x EX}.

Theorem 3.7. rp is additive ifs pd is additive.

Proof. By the additivity of rp, it is true that

vxC:D, UX rpU{~D[alpla~~}.
D D

Using the definition of rp, this is equivalent to

uD[uDxlp = UD [UD{UD[alp 1 aEX}I,.

A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192 173

It suffices now to observe that

&wD~l,
and that

= f2duYX) by definition of ~2,

u~[LI~{U~[U], 1 UEX}], = Ll~{p&a) 1 UEX} by definition of pi and of uQ

given before this theorem. 0

3.2. Comparison of quotients

The results of this subsection show the important role that the notion of quotient

plays in the comparison of two abstract interpretations. For the sake of clarity, in ASS

below we summarize the notation and the hypotheses that we will use in the following

theorems.

ASS (a) D and L are abstract interpretations, C is the concrete interpretation and P

is the abstract domain that represents the property that is being studied.

(b) Gco, Gcr, GCP, GDP and GLP are Galois insertions. The last two are coherent

with respect to C.

(c) RI = 2$(D) and R2 = &(L). By Theorem 3.6, there are Galois insertions GR,P

and GRIP that are coherent with respect to C.

(d) D and L are, respectively, RI- and Rz-optimal.

(e) RI abstracts R2 coherently with respect to C.

The following fact is a simple consequence of the assumptions ASS above.

Lemma 3.8. GRIP = GR?R, o GR,p and thus, in purticdur, 51~~~ = ~R,P 0 XR?R,’

Fig. 1 summarizes the relations existing among all domains considered. The arrows

correspond to y-functions.

P

/ \
R1= Q,(D) - Rz = Q,(L)

Fig. I. Domain abstractions in Theorems 3.10 and 3.11.

174 A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192

Theorem 3.9. Assume ASS above. Then L is at least as precise as D for comput-
ing P.

Proof. Consider any sequence zD of operations of D. From the fact that D is

Ri-optimal and from the construction of the quotient RI, it is true that for any d E D,
the computation xD(d) can be “read” over RI, as far as the P-information is concerned.

More precisely, assume that di is the result after the first i>O steps of the computation

nD(d), and let ti = !xDR,(di), then, for each i, UDp(di)= aR,p(ti). A similar fact holds

for any computation rc~ on L. For such a rc~, let lo, 11,. . . , li be the intermediate results

and ko,..., ki be the corresponding values in R2.

We will use the above fact and the notation introduced in the sequel of the proof.

Let for any concrete value cE C, do = xcD(c) and lo = CQ(C). Let also zD and 71~ be

sequences of corresponding operations of D and L. In what follows, the di, t,, li, and

ki are in the relation explained above. In order to prove the result, it suffices to show

the following fact:

(*) vi>% YR,C(ti) 7~ YRzc(kiI

In fact, from (k) it follows that ~,~,(ki) CR, ti. By Lemma 3.8 above and the mono-

tonicity of CXR,~, cIR>p(ki) = OIR,~(CIR~R, (ki)) Cp cIR,p(ti). We proceed by induction on i.

Basis. Let us first consider i = 0. We want to show that

(1) YR,C(tO) & YR,c@o).

By Proposition 2.9, to = NCR,(C) and ko = xc&(c). Since RI abstracts R2 coherently

w.r.t. C, the following two points hold:

(a) &JR, = ~R>R, 0 kR2. Hence, to = aR>R,(ko).

@I YR,C=YR~COYR,R~.

From point (a) and (b), using the extensivity of YR,,Q OQR, (cf. Section 2.1), we

get immediately that

YR,~(~~)=YR~cOYR,R~ OuR,R,(ko) >cYR&o).

Thus (1) holds.

Step. Let us now prove (k) for i > 0. We want to show that

(2) YR,C(ti-I > 7~ YRlc(ki-1) * (3) YRIC(ti)7C YR,C(k).

By the assumption of RI- and Rz-optimality of D and L, we know that

ti = ECR, @C(?R,C(ti-I)))

where PC is the concrete operation corresponding to the ith operation of ?rD and 71~.

A similar relation holds for ki.

By assumption (2) and the monotonicity of ,UC it follows that

k(YRIC(ti-I >> 7C Pc(YR2c(ki-1))

and thus, by the same reasoning used for the case i=O, we have that (3) holds. 0

A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192 175

Theorem 3.10. Assume, in addition to ASS, that RI properly ubstracts R2. Then L

is strictly more precise than D for computing P.

Proof. By assumption it is true that

(1) YR,~RI)~YR~c(&) and YR~c(&) $ YR,c(RI).

Hence, there is ro ERZ such that Y,Q(rO) @YR, ~(RI). Let CO = Y&C(?$), and 10 = l/RzL(ro).

Note that, since y~>c = y~c 0 Y&L, ~LC(/O) = CO.

Let now c^ = YR, c 0 xCR, (CO). Clearly, by their definitions, c^ 7~ CO and, MC,?, (CO) =

cock,, from which the following fact (2) holds:

Fact (2). ache and crc~(c^) are elements of D that are equivalent w.r.t. the compu-

tation of P, i.e., they are in the same equivalence class of the relation on D associated

to P.

Note also that, by (l), ~^EYR~c(R~). Let us now abstract c^ into L and Rz. We call

1= zc~(c^) and r2 = q&(l).

By assumption, we know that for all corresponding sequences SD and SL of operations

of D and L, respectively, it is true that

QP(SD(QD(2))) JP ~LP(SL(WL(3)).

From this, using Fact (2), we obtain

(3) ~DP(SD(~CD(cO))) = QP(SD(~CD(~))) 7P ~LP@L(WL(4)),

Observe now that, since c^ 7~ CO, and both are in j’&~(R2), it is true that, i-2 7~: ro.

Thus, there exists a computation sequence XL. of operations of L such that

QP(~L(l)) # ~DP(~L(~O)).

Since XL is composed of continuous (and thus monotone) operations, we have

(4) aDP(nL(Q) 7P RlP(~L(lO)).

It suffices now to put together (3) and (4) to show the thesis:

~Dp(~D(k~D(c0))) 7P @DP(~L(kL(~))) = ~DP(~L(~)) =b aDP(nL(lO))

= aDP(nL(&-L(cO))). 0

4. Applications

We apply the theory developed in the previous section for comparing two well-

known abstract interpretations for logic programming: Prop [2,9, 11, 191 and Shar-

ing [16]. This section is organized as follows. After some preliminary definitions

concerning substitutions, in Section 4.2, we recall from [l l] the concrete interpre-

tation Rsub and the two abstract interpretations we wish to compare. The domain

176 A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192

GR representing groundness and the characterizations of the quotients %&Sharing)

and &~(Prop) are described in Section 4.3. The main result of the application part

is in Section 4, where we apply Theorems 3.9 and 3.10 for proving that Prop is

strictly more precise than Sharing with respect to the precision in computing

groundness.

We point out that the interpretations Prop and Sharing that we compare are complete

interpretations, in the sense that they include all the operations needed for the static

analysis, viz. forward/backward unification, least upper bound, and projection. In order

to describe in a simple way all the operations (and, in particular, projection), we adopt

the approach introduced in [Ill. In this approach, the (non trivial) values of a domain

are pairs in which the first component is “the usual value”, and the second component

explicitly specifies the variables about which the first component provides information.

These variables are often called the variables of interest.

4. I. Preliminaries

Let V be a countable set of variables. FP(V) denotes the set of finite subsets of

variables of V. A substitution (T is a function in that maps variables in V to terms

over V and an alphabet of function symbols, and such that ux # x only for a finite

number of variables x. The set of support of r~ is given by supp(o) = {x 1 CJX #x}.

The variable range of o is given by var-range(a) = U { Var(ax) 1 x E supp(o)}, where

Var(t) denotes the set of variables occurring in t. The set of variables occurring in 0

is given by Var(a) = supp(a) U var-range(g). A substitution is typically specified by

listing its non-trivial bindings. So o = {x/cx 1 x E supp(cr)}.
Consider two substitutions 01 and cr2. If there exists 19 such that cr2 = 6 o CJI, then

CJI is more general than ~2, which we write 02 a 01. In this case, we say that 1s2 an

instance of cri.

We write Subst for the set of idempotent substitutions. Although Subst is not closed

under composition, in a step of the execution of a logic program in which 29 o 0 is

constructed, it is always the case that, var-range(ti)nsupp(a) = 8, which, provided that

r9 and CJ are idempotent, ensures that t9 o o is also idempotent.

As we will consider sequences of concrete/abstract operations of “real” domains,

i.e. containing not only unary operations, as it was assumed in Definition 2.7 for the

sake of simplicity, it is necessary to make precise this notion for any set of operations.

Assume to have an interpretation D = (D,pl,. ,pk). A derived operator over D is

a term t constructed using the symbols in ~1,. , pk, the values in D, values of any other

domain that may be required by the operations (for instance, substitutions are needed in

the unification operations), and exactly one variable. The following example illustrates

this notion for 2 = (Z, +, *), where Z represents the set of all integers completed with

top and bottom elements.

Example 4.1. A derived operator for Z is t = +(*(x, 3), +(2, I)).

A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192 117

Clearly, a derived operator t is a function t : D 4 D. Intuitively, the result of the

function t for a given value d E D is obtained by evaluating t(d) interpreting the

function symbols in t according to D. In the above example, t(0) = 3 and t(2) = 9.

4.2. The interpretations Rsub, Prop, and Sharing

The interpretations Rsub, Prop, and Sharing consist each of a domain and three

operations: unification, projection, and least upper bound. Since some of the operations

are quite technical, we have chosen to recall them in the appendix, and to describe

here only the domains, their partial orders, and the concretization/abstraction functions

relating them.

4.2.1. The “concrete” domain Rsub

The “concrete” domain Rsub [l l] is the complete lattice

Rsub = [fJ(Subst) x FP(V)] U { TRs, IRs}.

Rsub stands for restricted substitutions. The partial order of Rsub is defined, on non-

trivial elements, by [Cl, Ul] &R$ [&, I&] iff Ui = U2 and Ci C &. The operations od

Rsub are described in the appendix.

4.2.2. The domain Prop

For any set of variables U EFP(V), by AU we denote the formula consisting of the

conjunction of the variables in U. For any U E FP(V), a positive formula [2,20] on U

is any propositional formula containing only variables in U and that is satisfied by the

truth-assignment that assigns true to all variables in U. The set of positive formulas on

U is denoted Posu. From now on, in order to avoid burdensome notation, we simply

write J’ for the class of formulas equivalent to f and assume that Posu consists of

classes of equivalent formulas. We also adopt the usual convention of representing

a truth-assignment a on U as the set {x E U 1 a(x) = true}.

Notice that for any U E FP(V), Posu U {F} IS a complete lattice with least upper

bound and greatest lower bound, respectively, V (logical disjunction) and A (logical

conjunction), appropriately extended to classes of equivalent formulas.

The domain Prop is as follows:

Prop = { [f, Ul : U E FP(VI, .f E Pow U {F} } U { TP,, b}.

Prop is partially ordered: Tpr is the largest element and A-p,. is the smallest; for the

other elements, [fi, UI] <~,.[fz, UZ] if and only if UI = Uz and fi b f2.

Fig. 2 depicts the domain Prop for V = {x, y}. The lines represent the ordering

relation among the (equivalence classes of) formulas.

That positive formulas are useful for computing variable groundness in logic pro-

grams is well-known, see [2,9, 11, 19, 121. The intuition behind the relation between

positive formulas and substitutions, is as follows. Each substitution defines a truth-

assignment, and, since groundness is a property closed under instantiation, we say

178 A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192

[Y3 {Yll

Fig. 2. The domain Prop for V = {x, y}.

that a formula approximates a substitution when it is true w.r.t. the truth-assignments

defined by all instances of that substitution.

The truth-assignment of substitution cr is assign cr : assign c x = true ifs o grounds X.

The concretization expressing the relation between Prop and Rsub, is

YprRS : Prop -+ Rsub,

(

TRS if d = Tpr;

md4 = IRS if d=l_p,;

[{g E Subst 1 V’a’ g B . assign 0’ + f}, U] if d = [f, U].

The function q#+ : Rsub--,Prop is the usual adjoint [6] of yp,.~~, i.e., Q+(C)= flpr

{d E Prop 1 yprRs(d) JQ c}. The tuple (YP~R~, Rsub, Prop, c(aSpr) is a Galois Insertion

[l I]. In [l l] it is also shown that the operations of Prop (see the appendix) are

optimal.

A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192 179

Lemma 4.2 (Cortesi et al. [l 11). Prop is optimal.

The definite formulas in CJ, denoted Defu [2, 131, consist of the formulas f E Pas”

that satisfy the following model intersection property: consider any two models Ml

and M2 of f, if M = Mi n M2, then M /= ,f. The name “definite” for such formulas

comes from the following well-known syntactical characterization: for each ,f E Def”

there is a formula on U equivalent to f and consisting of a conjunction of definite

implications of the form AW +x.

Observe that the set Def” is properly included in Posu. For instance, the formula

XV y of Pos{,~~ does not belong to Dej”{,,l. In fact, let Ml = {x}, and M2 = {y}, it is

immediate to see that both MI and MZ are models of x V y, whereas M = MI n M2 = 0

is not a model of this formula.

In the same way as positive formulas were used for defining Prop, it is possible to

define a domain using the definite formulas:

Obviously, Def abstracts Prop with the identity as concretization and its adjoint as

abstraction. From this it also follows that Def also abstracts Rsub with the same

concretization as Prop.

4.2.3. The domain Sharing

The abstract domain Sharing proposed by Jacobs and Langen in [16] in order to

represent variable aliasing, covering, and groundness is defined by

Sharing is partially ordered: Ts~ is the largest element and -LslZ is the smallest one; for

the other elements, [Al, UT], f& [AZ, UZ] iff UI = Uz and Ai C AI. The domain Sharing

for V = {x, y} is depicted in Fig. 3. Even though the lattice structure is similar to that

of Prop, the two domains represent different informations of the concrete domain Rsub.

Jacobs and Langen [16] proved that Sharing enjoys a Galois insertion into @(Subst).

This can be immediately extended to our concrete domain Rsub. We recall briefly the

construction of the abstraction of this insertion. For x E V, U G V, and c E Subst, let

share(o,x, U) be the set of variables in U whose images under o contain the variable

X, i.e. share(o,x, U) = {y E U)x E Var(ay)}. For [C, U] E Rsub,

CQ&[C, U]) = [{share(a,x, U) 1 o E Z, x E V}, U].

The concretization ys,& is the usual adjoint of the abstraction. Let [A, U] =

u&sh([{~}, U]). Each S E A is a set of variables that under rr share a variable. Ev-

ery variable x E U such that Var(ox) = 8 will not appear in A. In [7] it is shown that

the operations of Sharing are optimal.

Lemma 4.3 (Cortesi and File [7]). Sharing is optimal.

180 A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192

Fig. 3. The domain Sharing for Y = {x, y}.

4.3. Quotients with respect to groundness

The interpretations Sharing and Prop are incomparable with respect to the notion

of abstraction [lo]. The intuition behind this result is the following. On the one hand,

by means of disjunctions, Prop represents also possible equivalence (and thus also

groundness), whereas Sharing does not. On the other hand, Sharing represents vari-

able independence that is not expressible in Prop. However, as both interpretations

compute groundness information, we are interested in comparing their precision in the

computation of groundness.

4.3.1. The domain GR
The simplest domain that represents variable groundness is GR as follows. Given

an element [C, U] E Rsub, its groundness information can be represented by the set of

A. Cortesi et al. I Theorelical Computer Science 202 (1998) 163-192 181

Fig. 4. The domain GR for V’= {x, y}.

variables grounded by every substitution in 1:

The set GR is partially ordered as follows. To, is the top element, and 1~~ the bottom

one. [Bt, Ut] &. [Bz, UZ] if Ut = UZ and Bt 2 B2. Obviously, GR is a complete lattice.

The least upper bound of two elements [BI, Ul] and [B2, U,] is defined as

[BI> Ull Ucr [B2> U21=
[BI n Bz, Ut] if UI = r/,,

Tcr otherwise.

It is easy to see that there are Galois insertion between GR on the one side and

Rsub,Prop, Def and Sharing on the other. We only specify the concretization and

abstraction functions, as proving that each pair of functions forms a Galois insertion,

is an easy exercise:

yo&[B, U]) = [C, U], where C = (0 E Subst 1 Kx E B, Vur(ox) = s},

CIRsGrw, ul) = [n,& {X E u 1 v&JX) = k% ul,

182 A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192

&hGr([A, ul) = [U\(UA), u].
These Galois insertions together with those that connect Prop,Def, and Sharing to

Rsub, defined above, are coherent with respect to Rsub.

4.3.2. The quotient of Prop with respect to CR

In Section 3 we have proved that the quotient of an interpretation with respect to

a given domain is a domain abstracting the starting domain, provided the associated

relation is additive.

The quotient of Prop with respect to GR is Prop itself. This is due to the fact that

none of the formulas of Prop is irrelevant for the computation of groundness [111.

Lemma 4.4. Let [fi, U], [f~, U] E Prop. rf fi # f2, th ere exists a derived operator t

using the operations of Prop, such that @&t([fi, U])) # &+.Gr(t([f2, U])).

Corollary 4.5. rp, is the identity on Prop, and thus it is obviously additive.

Theorem 4.6. _!&,#rop) = Prop.

Proof. Follows immediately from Corollary 4.5 and Theorem 3.6. 0

4.3.3. The quotient of Sharing with respect to CR

Let rsh be the relation on Sharing associated to GR. It will be shown that, differently

from what we just saw for Prop, the equivalence classes of rsh are not singletons.

However, rsh is additive and thus _!&(Sharing) exists. Moreover, we will show that

&&Sharing) is isomorphic to Def. Because of this fact, the comparison between

Z&(Sharing) and _!&R(Prop) will be extremely simple. Some results of this section

need rather technical proofs. For the readability sake these proofs are given in the

appendix.

That Sharing expresses information about groundness is well-known, cf. [161.

A formalization of this intuition was first attempted in [lo] where it is shown that

between Def and Sharing there is a Galois connection. The following even stronger

result has been shown recently in [8].

Theorem 4.7. The domain Def abstracts Sharing with the following abstraction and

concretization functions:
For [A, U] E Sharing, let

WA>ul)=A{AW +x/F?‘ICU, XEU, andV~EA:xEN~(W,nN)#0},

A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192 183

W&A> c’l> =
IF, ul $A=@,

[V([A, U]), U] otherwise,

YD~.s/W-. ul) = [{U\M I M i= .r’>, ul.

This Galois insertion is coherent w.r.t. ~sub.

According to Definition 3.1, the relation on Sharing associated to GR is defined as

follows. Let Si, S, E Sharing, and let t be any derived operator on the operations of

Sharing:

6%) s2> E rSh @ %ShGr(t@l >) = %ShGr(t(S2)).

The following theorem characterizes r-s,, using the abstractions of the elements of

Sharing into Def . Its proof is in the appendix.

Theorem 4.8. Let SI, S2 E Sharing, where SI , Sz E Sharing:

6% , S2) E rSh @ ~h~f(s~ > = ~h~f(S2 1.

The existence of the quotient 9&Sharing) is guaranteed by the following result.

Theorem 4.9. rsh is additive.

Proof. Consider X Crsh. Let for i E [1,2], Xj = {S, 1 (Si,&) EX}. We want to show

that

(uSh-%, uShx2) E rSh.

By Theorem 4.8,

(UShxl, uShx2) E r.Sh @ &%~f(uSh&) = &%~f(uShxZ).

Since, by Theorem 4.7, c&Of together with its adjoint, forms a Galois insertion, by

Proposition 2.3, it is additive and therefore, the following holds:

(%hDf(USh& > = t-k&%&) /x E-% > by the additivity

= uq&shqf(x) lx 6x2) by definition of Xi and X2

= %Df(UShX2) again by the additivity. 0

The following theorem characterizes the quotient of Sharing w.r.t. GR.

Theorem 4.10. Z?&Sharing) = Def.

Proof. It is easy to show that the sets Def and {U.sh[S],, 1 S E Sharing} are isomor-

phic: the abstraction @&Df is a bijection that preserves the orders of the two sets. In fact,

184 A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192

[true, {z, Yll

Fig. 5. The quotient &R(Sharing) for V = {x, y}.

on the one hand, if [Ai, U] ILsh [AZ, U] then Al gA2 and thus %([A,, U]) b ‘+?([A*, U])

(see Theorem 4.7 for the definition of %). On the other hand, if fi + f2, with [fi, U]

and [fz, U] in Def, then fi has less models than fz, and thus,

{U\M I hf I= _I-1)\{U\M I M I= f2).

Hence, ?qfSk([fl, Ul> &Sk YDfdf2, VI). 0

Fig. 5 depicts, for the case that V = {x, y}, the quotient of Sharing with respect to

GR, which is the domain Def. Observe that the elements [{{x}, {y}, {x, y}}, {x, y}] and

[{{x}, {y}}, {x, y}] belong to the same equivalence class [true, {x, y}] via Q. The only

difference between these two elements is that the first one represents also substitutions

o such that rrx and ay share a common variable. However, this distinction is irrelevant

when considering only groundness computation. In fact, both elements simply say that

x and y are completely unrelated with respect to groundness.

A. Cortesi et al. I Theorebcal Computer Science 202 (1998) 163-192 185

/GR\
Q,,(Sharing) - Q,,(Prop) = Prop

I I
Sharing Prop

\/

Rsub

Fig. 6. Domain abstractions.

4.4. Comparison of Prop and Sharing w. r. t. GR

We can finally compare the two interpretations Prop and Sharing using the new

theory developed in Section 3.

Theorem 4.11. Prop is strictly more precise than Sharing with respect to the domain

GR representing groundness.

Proof. It suffices to show that Theorems 3.9 and 3.10 are applicable, that is, we have

to show that all the assumptions ASS (a)-(e) of Section 3.2 are satisfied:
_ Point (a) and (b): have been stated in Sections 4.2.2, 4.2.3 and 4.3.1.

- Point (c): is shown in Theorems 4.6 and 4.10.
- Point (d): is stated in Lemmas 4.2 and 4.3.

- Point (e): is stated in Section 4.2.2. 0

5. Conclusions

In this paper we addressed the problem of exactly characterizing the part of an

abstract domain which is useful for the computation of a given property. To this end,

we introduced the notion of quotient of an abstract interpretation. We showed that the

comparison of abstract interpretations w.r.t. a common property can be performed by

comparing their quotients w.r.t. that property. As an example, we applied this technique

to the comparison of two well-known abstract interpretations for logic programs: Prop
and Sharing.

Other algebraic operators on abstract domains and abstract interpretations have been

proposed in the literature, namely the reduced product [6], the open product [12], the

powerset [151, and the complement [7]. An interesting subject for future work is the

study of the interaction between the quotient and these operators. For instance, one

may wonder whether the quotient of a reduced product is the reduced product of the

186 A. Coriesi et al. I Theoretical Computer Science 202 (1998) 163-192

quotients and also whether the quotient of the powerset of a domain D is the powerset

of the quotient of D.

Another question that deserves further study is what one can do for comparing

two domains when the present framework cannot be applied, for instance, when one

of the associated relations is not additive. In this case it may still be possible to

perform a comparison by lifting the domains to their powersets and comparing their

quotients. In fact, quotients always exist for domains obtained through the powerset

operation.

Appendix

The appendix consists of four parts. In the first three, we formally define the oper-

ations in Rsub, Prop, and Sharing. Then, we show some technical lemmas that lead

to the proof of Theorem 4.8.

A.1. Operations in Rsub

Let E be a set of term equations. If a substitution rs makes o(tl) syntactically

identical to a(t2) for each (tl = t2) E E, a is called a unifier of E. A most general

unzjier of E is a unifier a of E that is more general than any other unifier of E. We

denote by mgu(E) any idempotent most general unifier of E. It is not necessary to

specify which most general unifier is considered, because, from the relationship existing

among the idempotent most general unifiers of a given set of equations [171, it is

immediate to see that each of them carries the same information about the properties

we are interested in, namely, variable groundness and sharing.

A set of equations E is in solved form if it has the form {xr = tl, . . ,x, = t,,},

where each xi is a distinct variable occurring in none of the terms tj. Given a set of

equations E = {x1 = tl, . . . , x, = tn} in solved form, the substitution a = {xl/t,, ,x,/t,}

is an idempotent most general unifier of E; we denote E by Eq(a).

Least upper bound The operation u,& which produces the least upper bound of

two elements of Rsub, is as follows: for any k E Rsub, T,Q LJR$ k = Tops, 1,~ U,Q k = k,

for the other elements,

[cl, ul] URs [z2, u21 =
[Cl UZ2, VI] if Ur = U2,
TRs

otherwise.

Projection: The concrete projection zRS : Rsub x FP(v) --+ Rsub maps ([c, Ut], U2)

t0 [z, ul n u2].
Thus, projection only changes the second component leaving the first one unchanged.

One may think that the fact that the projection does not eliminate from the sustitutions

the variables that are projected out, may cause problems of variable capture. As usual,

variable captures can be avoided using appropriate renamings.

A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192 187

Uni$cation: In order to define the concrete unification lJRs, it is convenient to in-

troduce first the following function LlRs:

uRs : Subst x Subst x Subst + Subst

((Tl,~2,~)Hmgu(Eq(ol)UEq(o2)UEq(6)).

UR.~ is strict: if either of the first two arguments is &, the result is 1~~. Otherwise,

if one of these is TR,~, the result is TR.~. The other cases are as follows:

URS : Rsub x Rsub x Subst --+ Rsub

([Cl > Ull, [X2, U21,@ k-3 [{h?S(Ql? 02, WI E It & 02 E C2},
UI U U2 U Var(6)].

A.2. Operations in Prop

Least upper bound: For all d E Prop, Tp,. Up, d = Tpr and Ip,. UP, d = d; for the

other elements,

[fI?C’ll UP? u-2, u21=
VI V f2, WI if UI = U2,
T
Pr otherwise.

Projection: The abstract projection np, amounts to existentially quantifying a formula

[8,20]. The existential quantification of a propositional formula obeys 3x.f E f(x/T)

v .fW).

XPAf, f-4, v> = NU\V.f, u n VI.

Unijication: The abstract unification is obtained by means

For 6= {Xl/‘ti 11 <i<n} E Subst, let (~6 = A{x, -(//Ifar(1

Up, : Prop x Prop x Subst --f Prop

of logical conjunctions.

1 <idn}.

WI 3 VII, [f2, U21,@ - VI A f 2 A q6, UI U U2 U Var(6)].

A.3. Operations in sharing

Least upper bound: The least upper bound of any two nontrivial elements [AI, Ul]

and [AZ, U2] is defined by

[AI,~JII Us L42>U21=
C

[AI UA2, Ul] if l_J, = U2,
Tsh

otherwise.

Projection: The projection on Share is the identity on the bottom and top elements.

In the other cases it is defined by means of set intersection:

xsh : Sharing X FP(v) -+ Sharing

USI> Ull, U2) H [{A f- u2 / ‘4 E SI 1, UI f- u21.

188 A. Cortesi et al. I Theoretied Computer Science 202 (1998) 163-192

Unification: In order to define the abstract unification function USJ, for the Sharing

domain, we need the following auxiliary functions [16]:

l The closure under union of A E a(@(V)), denoted A*, is the smallest superset of

A satisfyingXEA*AYEA*+(XUY)EA*.

l The part of A E p(@(V)) that is relevant to a term t, denoted reZ(A, t), is the set

{S E A 1 Var(t) n S # 0).
l IfA,A’E@(@(V)) then A@A’={(SUS’))SEA andS’EA’}.

l The basic unification step is performed by

%'h : @k'(V)> x s~bSt-+~MV),

‘vAo E @(@(V)), VS E Subst, 6 = {q/t, ,...>&lltm)

ush(Ao,6)=amgu.args([xl,. . . ~~1, ill,. . .,b,l,A~),

awwvf([I, [13) = B

umgu.urgs([q IX], [t, It], B) = urngu.urgs(F, t, umgu(x,, t1, B))

umgu(x, t, B) = (B\(rel(x, B) U reZ(t, B))) U (rel(x, B) @ reZ(t, B))*.

l The backward/forward unification ush : Sharing x Sharing x Subst -+ Sharing is

defined as follows. Let [A, U], [A’, U’] E Sharing, with U f’ U’ = 0, and let 6 E Subst

such that Vur(6) C U u U’.

~sdbk Ul, [A’, U’l, 6) = i&s& u&4, U u U’l.

A.4. Technic& results

The goal of this section is to show Theorem 4.8. Some preliminary results are

necessary.

Lemma A.l. Let Sl,S2 E Sharing:

aShO/ = &ShDf(s2) * &ShGr(sl) = ‘%ShGr(S2).

PrOOf. It Suffices t0 observe that @&or = “D,f Gr 0 u#,Df, cf. Section 4.3.1 for the defi-

nition of the abstraction functions. q

In what follows we will use the notion of %? introduced in Section 4.3.3. For the

sake of clarity, we recall its definition below: for [A, U] E Sharing,

WA>~I)=A~A~I +x(WI CU,XEU, and VNEA:XEN+(WI nN)#0}.

Recall also that c&D,-([A, U]) = [%?([A, U]), U].

The following lemma plays a central role in this section: it expresses the 9 meaning

of the result of the Ush operation in terms of the conjunction of the % meaning of its

arguments.

A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192 189

Lemma A.2. Let SI = [Al, Ul], & = [AZ, Uz] E Sharing, with U1 f7 U2 = 0, and let 6 =

{x$1,..., x,/t,,} be any substitution in Subst with Var(G) C U, u U2. Let cpb =

A{xi-(/jVar(ti))j ldidn}.

Proof. We show that the relation holds for the case that 6 = {x/t}. The general result

easily follows by applying the basis case n times.

Let in what follows, U,h(Si,&, 6) = S’ = [A’, U], where U = UI U U2. Let also

A=A, UAZ and S=[A,U].

(=+-) First, we show that +Z(S’) +%?(Si)r\ V(&) r\(x H r\ Var(t)). The fact that

%(S’)kx H A Var(t) follows easily from the definition of USh. Consider rel(A,x) and

rel(A, t). If one of them is empty, then A’ contains no variable in {x} U Var(t). Thus,

%?(S’) bx A (r\ Var(t)) and, therefore, %?(S’) +x H A Var(t).

On the other hand, if both rel(A,x) and reZ(A,r) are nonempty, then, by definition

of Us,,, A’ satisfies the following condition: VN E A’, x EN H Var(t) n N # 8. Thus,

9(Y) +x H A Var(t).

Let us now prove that %(S’) t== %?(St). The proof for %(&) is analogous. Consider

any definite formula f = A W ---f y such that

(1) ‘vNEA,. YEN+ WnN#@

It is easy to see that this condition is satisfied also if we replace Al with A’: each

element N E A’ is either an element of Al (that satisfies (1) by assumption), or it is

an element of A2 (that satisfies (1) trivially because Ui n U2 = 0 and {y} U W g U1),

or it is the union of some elements of Al and of A2 ((1) is satisfied by the above

arguments).

(+) We will show that Q?(S) A (~6 + %(S’). This proves the thesis. In fact, G??(S) =

%(Si) A %?(&), because in A the elements of Al and A2 do not interact since they are

pair-wise disjoint.

We proceed by contradiction. Assume that there is f = A W --f y such that %(S’) + f,
but V(S) A ~6 p f. Then it must be the case that ‘Z(S) F f and thus, there must be

B E A such that y E B, but W n B = 8. Surely, B n Var(x = t) # 0, otherwise B E A’, that

contradicts the hypothesis. Thus, B E reZ(A,x) U rrl(A, t). From this, it follows that

(2) g(S)b((A@‘)AxA(A Var(t)))+y

because for each B E A, if y E B, but W n B = 0, then ({x} U Var(t)) n B # 0.

Assume that B E rel(A, t), the case that BE rel(A,x) is analogous. By definition of

ush, A’ contains B @ rel(A,x). By the initial assumption, YR E rel(A,x) it must be that

R n W # 0. From this it follows that

(3) g(s) k A w +x

190 A. Cortesi et ul. I Theoretical Computer Science 202 (1998) 163-192

Thus, from (2) and (3) we have

A [A W +x1 A [<A @‘I Ax A <A VMt)) + ~1,

from which one easily obtains

%9A(x- AcJ'4t)>>kA W+ Y. 0

In the following three lemmas, we will show, for each one of the three operations of

Sharing, that the %? meaning of its result is completely determined by the %? meaning

of its arguments.

Lemma A.3 (Unification). Let S, = [Al, U], & = [AZ, U] and S’ = [A’, U’] be elements

of Sharing such that UC-I U’ = 8. Let also 6 E Subst such that Vur(G) 5 U U U’.

Proof. By Lemma A.2, we know that

@‘(Us/,(S’r S,, 6)) = q(S’) A WC&) A cpa

by assumption =‘%(S’)Ag(&)Aq&j

= w htG7’,~2,~)). 0

Lemma A.4 (Projection). Let S1 = [Al, U], S2 = [AZ, U] E Sharing, and U’ be a jinite

set of variables.

WSI) = +w2) =+ ~~w@l, U’)) = 5f371d~2, U’>).

Proof. Straightforward. q

Lemma A.5 (Lub). Let S1 = [Al, U],S2 = [A2, U] be elements of Sharing with Al,A2

8, and let S’ = [A’, U’] E Sharing:

%(s,) = %(&) =+ %(s, &‘h s’) = g(& us,, s’).

Proof. Recall that, for any S = [A, U] E Sharing, C(shDf(S) = [Q?(S), U]. Thus, we can

use the additivity of CxshDf, obtaining the following:

EShDf@l USh s’) = aShD/(&) uD/- &hDf@‘) = aShDf(s2) UDf %hDf@‘)

= &ShDf(sZ b-h s’>

which shows the thesis. 0

Finally, we show Theorem 4.8.

A. Cortesi et al. I Theoretical Computer Science 202 (1998) 163-192 191

Theorem 4.8. Let S1, & E Sharing, where SI = [A 1, UI], S2 = [AZ, U2] and Al ,A? # 0.

Proof.

(+) From the definition of rsh it follows immediately that UI = U2: it is sufficient

to consider the empty sequence of operations to obtain

([AI,UI],[A~,U~])E~S~ =+ ashcl([Al,u1l>=rShcr([A2,U21) =+ WI = u2.

It remains to show that V(St) = %(S;!). Assume the converse. This means that there

exists a definite formula t/j = /\ W +x such that W(St) b tj and V(S2) F $ (or vice

versa). Notice that this means that there exists N E A2 such that x EN but W n N = 0.
Consider So = [{@}, Uo] with Uo n UI = 8 (and thus Uo f? U2 = 8). Call U = c’c, U Ul.

Consider also the substitution S = {x/a (x E W}. Let

&,(SO,&,@ = [RI, ul and &h(SO,S2,@ = P2, W

By the definition of Ush, RI =Al\{H E Al /H n W # 8). Thus, by the hypothesis,

x $i!U RI and thus, by definition of C(ShCr (cf. Section 4.3.1) x is in the first com-

ponent of QG([RI, Ul).
On the other hand, RZ = A2\{H E AZ 1 H n W # P)} and thus N E RZ from which,

x E U R2. From this it follows that x does not belong to the first component of

qhG,.([R2, U]). Thus we arrived to a contradiction of our initial hypothesis.

(+) Since, by definition, cf. Theorem 4.7,

%D#I > = &ShDf@Z) @ UI = u2 and %SI > = +W2)

it suffices to show that for any derived operator t on {USh, r&h, USA},

g(sl > = q(s2 > A ul = u2 =+ kThGr(t(& >> = %hGr(@2 >>

By structural induction on the derived operator t, using Lemmas A.3-A.5, one can

show that %‘(t(Sl)) = %?(t(&)). From this it follows that

(1) L%hD/(t(Sl >> = aShDf(t(S2))

because (/I = U2 by hypothesis, and the same derived operator t is applied to St and

S2 and thus the two results will have equal second components. By Lemma A. 1, (1)

implies the thesis. 0

References

[I] S. Abramski, C. Hankin, Abstract Interpretation of Declarative Languages, Ellis Horwood, Chichester,

U.K., 1987.

[2] T. Armstrong, K. Marriott, P. Schachte, H. Ssndergaard, Boolean functions for dependency analysis:

Algebraic properties and efficient representations, in: Proc. Static Analysis Symp., Lecture Notes in

Computer Science, vol. 864, Springer, Berlin, 1994, pp. 266-280.

192 A. Cot-ted et al. I Theorefical Computer Science 202 (1998) 163-192

[3] R. Barb&, R. Giacobazzi, Cl. Levi, A general framework for semantics-based bottom-up abstract

interpretation of logic programs, ACM TOPLAS 15 (1) (1993) 133-181.

[4] M. Codish, A. Mulkers, M. Bruynooghe, M. Garcia de la Banda, M. Hermenegildo, Improving abstract

interpretations by combining domains, ACM TOPLAS 17 (1) (1995) pp. 28844.

[5] P. Cousot, R. Cousot, Abstract interpretation: a unified framework for static analysis of programs by

construction of approximation of fixpoints, in: Proc. 4th ACM POPL, 1977.

[6] P. Cousot, R. Cousot, Abstract interpretation and applications to logic programs, J. Logic Programming

13 (1992).

[7] A. Cortesi, G. File, Optimalities in the abstract domain sharing, Manuscript, University of Padova, 1996.

[8] A. Cortesi, Cl. File, R. Giacobazzi, C. Palamidessi, F. Ranzato, Complementation in abstract

interpretation, ACM TOPLAS 19 (l), (1997) 7-47.

[9] A. Cortesi, G. File, W. Winsborough, Prop revisited: propositional formula as abstract domain for

groundness analysis, in: Proc. 6th IEEE LICS, Amsterdam, 1991, pp. 322-327.

[lo] A. Cortesi, G. File, W. Winsborough, Comparison of abstract interpretations, in: Proc. 19th Intemat

Colloquium on Automata, Languages and Programming ICALP’92, Lecture Notes in Computer Science,

vol. 623, Springer, Berlin, 1992, 523-534.

[l l] A. Cortesi, G. File, W. Winsborough, Optimal groundness analysis using propositional logic, J. Logic

Programming 27 (2) (1996) 137-167.

[12] A. Cortesi, P. Van Hentenryck, B. Le Charlier, Combinations of abstract domains for logic programming,

in: Proc. 21th ACM POPL, Portland, 1994; ACM Sigplan Notices 29 (6) (1994) 227-239.

[131 P.W. Dart, On derived dependencies and connected databases, J. Logic Programming 11 (1991)

1633188.

[14] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge,

1990.

[151 G. File, F. Ranzato, Improving abstract interpretations by systematic lifting to the powerset, in: Proc.

ILPS ‘94, MIT Press, New York, 1994, pp.6555669.

[16] D. Jacobs, A. Langen, Accurate and efficient approximation of variable aliasing in logic programs,

J. Logic Programming 13 (1992) 291-314.

[17] J.L. Lassez, M.J. Maher, K.G. Marriott, Unification revisited, in: J. Minker (Ed.) Foundation of

Deductive Databases and Logic Programming, 1986.

[181 K. Marriott, Frameworks for abstract interpretation, Acta Inform. 30 (2) (1993) 1033129.

[19] K. Marriott, H. Sondergaard, Notes for a tutorial on abstract interpretation of logic programs, in: Proc.

NACLP, Cleveland, 1989.

[20] K. Marriott, H. Sondergaard, Precise and efficient groundness analysis for logic programs, ACM

LOPLAS 2 (l-4)(1993) 181-196.

[21] K. Marriott, H. Sondergaard, N. Jones, Denotational abstract interpretation of logic programs, ACM

TOPLAS 16 (1994) 607-648.

[22] P. Naur, Checking of operands types in Algol compilers, BIT 5 (1965) 151-163.

[23] P. Van Hentenryck, A. Cortesi, B. Le Charlier, Evaluation of the domain Prop, J. Logic Programming

23 (3) (1995) 237-278.

