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Abstract

We consider the family of Rankin–Selberg convolution L-functions of a fixed SL(3,Z) Maass form with
the family of Hecke–Maass cusp forms on SL(2,Z). We estimate the second moment of this family of L-
functions with a “long” integration in t-aspect. These L-functions are distinguished by their high degree
(12) and large conductors (of size T 12).
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1. Introduction

In this paper we study the second moment of the Rankin–Selberg L-functions L(φ × uj ,
1
2 + it) of a fixed Hecke–Maass form φ on SL(3,Z) convolved with the family uj of Hecke–
Maass cusp forms on SL(2,Z) as well as with the twists by nit . This family is “large” as measured
in a variety of ways: there are T 3 elements in the family, each having degree 12 and conductor
of size T 12. For comparison, the classical large sieve can estimate the eighth moment of the
family of classical Dirichlet L-functions of modulus q � Q (having Q2 elements of degree 8
and conductors of size Q8). The various GL(2) large sieve type inequalities also generally allow
for degree 8 L-functions with similarly-sized conductors, so that one can make a case that this
family is significantly larger than others appearing in the literature. For use in applications, it
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is highly desirable to have control over large families of harmonics, as they produce stronger
detectors of arithmetical functions; see the introduction of [3].

Another way to motivate interest in this particular family is that the first moment (at the
central point s = 1/2) was recently used by X. Li [17,18] to show subconvexity for a self-dual
GL(3) L-function in t-aspect (amongst other things). The self-duality is crucially used to impose
nonnegativity of the central values. In order to use moments to study non-self-dual forms, as
well as Rankin–Selberg convolutions at points other than s = 1/2, it seems necessary to study
the second moment. However, this approach has substantial new difficulties. In particular, the
second moment of this family at the central point has prohibitively large conductors (of size T 12

compared to T 2 elements in the family, a sixth power). However, one can enlarge the size of the
family without substantially growing the size of the conductors by twisting by nit with t almost
as large as the spectral parameter. This procedure then brings the problem into the presumably
more feasible range where the conductor is the fourth power of the size of the family. Even so, the
conductors of the family are still very large so that estimating this moment requires a substantial
amount of cancellation. In fact, the main difficulty is showing simultaneous cancellation in the
twists by the Hecke–Maass forms as well as by nit . Many of the methods in the literature used
to show cancellation in the Maass form aspect are incompatible with the t-aspect integration.

Theorem 1.1. We have

T 1−ε∫
−T 1−ε

∑
T <tj �2T
uj even

∣∣∣∣L
(

uj × φ,
1

2
+ it

)∣∣∣∣2

dt � T 3+ε. (1.1)

Remarks.

• The conductor of |L(uj × φ, 1
2 + it)|2 is � T 12, so that the convexity bound is recovered

above using the method of Heath-Brown (Lemma 3 of [8]).
• An easy consequence of Theorem 1.1 is that for “almost all” tj in the family,

T 1−ε∫
−T 1−ε

∣∣∣∣L
(

uj × φ,
1

2
+ it

)∣∣∣∣2

dt � T 1+ε,

in the sense that for any fixed ε > 0, the number of tj for which this bound is not satisfied is
o(T 2).

• The reason t is slightly smaller than T is to avoid the intricate dependence of the conductor
on tj , though for t = tj see the companion paper [25]. With some extra work it is likely that
one could extend the left-hand side of (1.1) to |t | � T , tj � T , but we have not carried out
the details.

• The method of proof can also handle the analogous twists in the weight aspect by classical
holomorphic modular forms on the full modular group; see Section 8 of [15].

• The combined t-integral and spectral sum is reminiscent of Sarnak’s work on the fourth
moment of Grössencharacter L-functions [22].

• Diaconu, Garrett, and Goldfeld [5] have generalized the method of Good [7] to capture quan-
tities of the form (1.1), but with certain weight functions (depending on tj ) in the integral.
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It is difficult to asymptotically evaluate these weight functions, so it is unknown what this
implies about (1.1).

• A. Venkatesh posed this problem during a problem session at the October 2006 AIM work-
shop on the subconvexity problem.

Theorem 1.1 potentially represents progress towards subconvexity for these L-functions. If
one could shrink the family by any significant amount and still obtain a Lindelöf-consistent
upper bound then one would obtain a subconvex bound. This would require another source of
cancellation. (Perhaps from solving the shifted convolution problem for a fixed GL(3) Maass
form?) An additional problem is that one has to abandon the use of the large sieve inequality
(a crucial ingredient in our proof) yet reclaim its substantial savings effect.

A natural way to attack this problem is with a hybrid large sieve inequality of the form

U∫
−U

∑
tj �T

∣∣∣∣∑
n�N

anλj (n)nit

∣∣∣∣2

dt � �(N,T ,U)(NT U)ε
∑
n�N

|an|2. (1.2)

A simple application of Iwaniec’s spectral large sieve [11] shows �(N,T ,U) � U(N +T 2), and
one would like to replace this by N + UT 2. However, this appears to be an extremely difficult
problem, and in fact in this generality it essentially implies the Ramanujan–Petersson conjecture
for Maass forms! (To see this, take U to be a large fixed power of N to pick out the diagonal only
on the left-hand side and choose an to select n = N only, showing |λj (N)|2 � T 2(T N)ε �j

Nε .) One might even consider a simpler problem where U has restricted size (say U � T ) and
N is large with respect to T . Even this seems to be a difficult and highly interesting problem
(in my opinion). The state of affairs here for GL(2) harmonics is quite different than for GL(1)

(multiplicative characters), where we do have the essentially optimal result of Gallagher [4]

U∫
−U

∑
q�Q

q

φ(q)

∑∗

χ (mod q)

∣∣∣∣∑
n�N

anχ(n)nit

∣∣∣∣2

dt � (
N + UQ2) ∑

n�N

|an|2. (1.3)

The difficulty of estimating (1.2) for general coefficients an is a barrier in our problem, which
requires good estimates when the an’s are specialized to be coefficients of a GL(3) L-function.
However, we have more available tools for these specific choices of coefficients, and in particular
the GL(3) Voronoi summation formula plays a key role. X. Li [17,18] showed how this summa-
tion formula can be very powerful in the study of this family, but an attempt to directly generalize
her approach on the first moment meets extreme difficulties with the second moment (see the first
few sentences of Section 6 below).

In our companion paper [25], we considered this family of L-functions at the special point
1
2 + itj . There are some similarities between the two problems but each requires substantially
different ideas. In particular, the analog of one of the key ideas in [25] (namely, Poisson summa-
tion in the variable a modulo b in (6.2) below) is not used here as it ultimately seemed not to not
be substantially helpful, despite some promising hints. Another major difference between these
works is that in [25] we were able to appeal to some large sieve inequalities due to [19] (after
[2]), which we improved further, while here we could not use anything of the form (1.2). Further-
more, the conductors of the family of T 2 elements in [25] have size T 6 (the cube of the number
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of elements in the family as opposed to the fourth power appearing here), which has the effect
that the GL(3) Voronoi summation formula is relatively less powerful in this article than in the
companion. Indeed, the dual sum after Voronoi summation had essentially no length! (Though it
should be stressed that this feature only occurred due to our improvement on the relevant large
sieve inequality.) This paper is independent of [25] (at the cost of some repetition).

2. Notation

See [6] for the material and notation on GL(3) Maass forms. Suppose φ is a Maass form
for SL(3,Z) of type (ν1, ν2) ∈ C

2 which is an eigenfunction of all the Hecke operators. The
Godement–Jacquet L-function associated to φ is

L(φ, s) =
∞∑

n=1

A(1, n)

ns
=

∏
p

(
1 − A(1,p)p−s + A(p,1)p−2s − p−3s

)−1
.

Here A(m,n) are the Fourier coefficients normalized as in [6]. In particular, A(1,1) = 1 and
|A(m,n)|2 are constant on average (see Remark 12.1.8 of [6]). The dual Maass form φ̃ is of
type (ν2, ν1) and has A(n,m) = A(m,n) as its (m,n)-th Fourier coefficient, whence L(φ̃, s) =∑∞

n=1 A(n,1)n−s . Letting

Γν1,ν2(s) = π−3s/2Γ

(
s + 1 − 2ν1 − ν2

2

)
Γ

(
s + ν1 − ν2

2

)
Γ

(
s − 1 + ν1 + 2ν2

2

)
,

the functional equation for L(φ, s) reads

Γν1,ν2(s)L(φ, s) = Γν2,ν1(1 − s)L(φ̃,1 − s). (2.1)

Let (uj ) be an orthonormal basis of Hecke–Maass cusp forms on SL(2,Z) with corresponding
Laplace eigenvalues 1

4 + t2
j . Let λj (n) be the Hecke eigenvalue of the n-th Hecke operator for

the form uj . Since the Hecke operators on GL(2) are self-adjoint, the λj (n)’s are real. Then
L(uj , s) = ∑∞

n=1 λj (n)n−s satisfies a functional equation relating to L(uj ,1 − s). To be clear,
the Hecke operators are normalized so that the Ramanujan–Petersson bound is |λj (p)| � 2. Say
that the n-th Fourier coefficient of uj is ρj (n), so that ρj (n) = ρj (1)λj (n). With the definition

αj = |ρj (1)|2
cosh(πtj )

, (2.2)

then t−ε
j � αj � tεj due to [9] and [12].

As explained in Chapter 12.2 of [6], the Rankin–Selberg convolution of φ and uj is

L(uj × φ, s) =
∞∑

m,n=1

λj (n)A(m,n)

(m2n)s
. (2.3)

The completed L-function associated to L(uj × φ, s), for uj even, takes the form
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Λ(uj × φ, s) = π−3sΓ

(
s − itj − α

2

)
Γ

(
s − itj − β

2

)
Γ

(
s − itj − γ

2

)

× Γ

(
s + itj − α

2

)
Γ

(
s + itj − β

2

)
Γ

(
s + itj − γ

2

)
L(uj × φ, s), (2.4)

where α = −ν1 −2ν2 +1, β = −ν1 +ν2, and γ = 2ν1 +ν2 −1 (see Theorem 12.3.6 of [6] for the
explicit gamma factors). Then this Rankin–Selberg convolution has a holomorphic continuation
to s ∈ C and satisfies the functional equation

Λ(uj × φ, s) = Λ(uj × φ̃,1 − s). (2.5)

3. Basic tools

3.1. Approximate functional equation

We shall use an approximate functional equation to represent the values of L-functions. Write
λuj ×φ(n) for the coefficient of n−s in the Dirichlet series (2.3) for L(uj × φ, s). Then Theo-
rem 5.3 of [13] says for any X > 0,

L

(
uj × φ,

1

2
+ it

)
=

∑
n

λuj ×φ(n)

n
1
2 +it

V 1
2 +it

(n/X) + εt,tj

∑
n

λuj ×φ̃(n)

n
1
2 −it

V ∗
1
2 −it

(nX), (3.1)

where Vs(y) and V ∗
s (y) are certain explicit smooth functions, and εt,tj is a certain complex

number of absolute value 1. More precisely,

V 1
2 +it

(y) = 1

2πi

∫
(3)

y−s
γ ( 1

2 + it + s)

γ ( 1
2 + it)

G(s)

s
ds, (3.2)

where Λ(uj × φ, s) = γ (s)L(uj × φ, s) and G(s) is an entire function with rapid decay in the
imaginary direction. Here V ∗

1
2 −it

has a similar form to V 1
2 +it

but with γ (s) replaced by γ ∗(s),

where Λ(uj × φ̃, s) = γ ∗(s)L(uj × φ̃, s).

3.2. The large sieve

The classical large sieve inequality for Farey fractions states

∑
b�B

∑
x (mod b)
(x,b)=1

∣∣∣∣ ∑
N�m<N+M

ame

(
xm

b

)∣∣∣∣2

�
(
B2 + M

) ∑
N�m<N+M

|am|2. (3.3)

For our purposes we require an additional oscillatory integral in the spirit of [4], but we could
not find the following result in the literature.
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Lemma 3.1. Let f (y) be a continuously differentiable function on [N,N +M] such that f ′ does
not vanish. Let X = supy∈[N,N+M] 1

|f ′(y)| . Then for any complex numbers bm,

T∫
−T

∑
b�B

∑
x (mod b)
(x,b)=1

∣∣∣∣ ∑
N�m<N+M

bme

(
xm

b

)
e
(
tf (m)

)∣∣∣∣2

dt � (
B2T + X

) ∑
N�m<N+M

|bm|2. (3.4)

We reproduce the proof appearing in [25].

Proof of Lemma 3.1. By the change of variables t → tT , it suffices to consider the case T = 1.
Let g be a nonnegative Schwartz function such that g(x) � 1 for |x| � 1, such that ĝ has compact
support. See [24] for a nice survey on such functions as well as some ideas relevant in this proof.
Then for any sequence of complex numbers cm, we have

1∫
−1

∣∣∣∣∑
m

cme
(
tf (m)

)∣∣∣∣2

dt �
∑
m,n

cmcnĝ
(
f (m) − f (n)

)
. (3.5)

Since ĝ is compactly supported, we must have |f (m) − f (n)| � 1. By the mean-value theorem,
|f (m) − f (n)| � |m − n| infy |f ′(y)|, so |m − n| � X. Dissect the sum over m and n into boxes
I × J of sidelength � min(M,X) so that the only relevant boxes I × J have I and J either
equal or adjacent (“nearby”, say). Thus the right-hand side of (3.5) equals

∑
I,J nearby

∑
(m,n)∈I×J

cmcnĝ
(
f (m) − f (n)

)
. (3.6)

Having enforced the condition that I and J are nearby, we then reverse the Fourier transform to
express it in terms of g, getting that (3.6) equals to

∞∫
−∞

g(t)
∑

I,J nearby

∑
(m,n)∈I×J

cme
(
tf (m)

)
cne

(
tf (n)

)
dt. (3.7)

By Cauchy’s inequality, (3.7) is

�
∞∫

−∞
g(t)

∑
I

∣∣∣∣∑
m∈I

cme
(
tf (m)

)∣∣∣∣2

dt.

Specializing this to cm = bme(xm
b

) and summing over x and b appropriately gives that the left-
hand side of (3.4) (with T = 1) is

�
∞∫

−∞
g(t)

∑
I

∑
b�B

∑
x (mod b)

∣∣∣∣∑
m∈I

bme

(
xm

b

)
e
(
tf (m)

)∣∣∣∣2

dt. (3.8)
(x,b)=1
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By (3.3) with am = bme(tf (m)), we complete the proof noting that (3.8) is

�
∞∫

−∞
g(t)

∑
I

(
B2 + min(M,X)

) ∑
m∈I

|bm|2 � (
B2 + X

) ∑
N�m<N+M

|bm|2. �

3.3. Kuznetsov formula

Our tool for summing over the spectrum is the following.

Lemma 3.2 (Kuznetsov). Suppose that h is holmorphic in the region |Im(r)| � 1
2 +δ and satisfies

h(r) = h(−r) and |h(r)| � (1 + |r|)−2−δ for some δ > 0. Then

∑
j

αjλj (m)λj (n)h(tj ) + 1

π

∞∫
−∞

σ2ir (m)σ2ir (n)

(mn)ir |ζ(1 + 2ir)|2 h(r) dr

= π−2δm=n

∞∫
−∞

r tanh(πr)h(r) dr +
∞∑

c=1

S(m,n; c)
c

ȟ

(
4π

√
mn

c

)
,

where αj is defined by (2.2) and

ȟ(x) = 2i

π

∞∫
−∞

rh(r)

cosh(πr)
J2ir (x) dr.

4. Initial cleaning

Throughout this article it is very convenient to refer to functions f satisfying the following
bounds

xkf (k)(x) �k,C

(
1 + |x|

Y

)−C

, (4.1)

for each k,C � 0, and some parameter Y .
The following technical lemma gives a pointwise upper bound on an L-function with a weight

function that only loosely depends on its parameters.

Lemma 4.1. Let ε > 0, suppose that T ε � U � � � T 1−ε , and |t | � U , T < tj � T + �. Then
there exist finitely many functions Wk independent of t and tj (but depending on U and T )
satisfying (4.1) with Y = 1, such that for some fixed interval [X0,X1] ⊂ (0,∞), we have

∣∣∣∣L
(

uj × φ,
1

2
+ it

)∣∣∣∣2

�
∑

k

X1∫
X0

∣∣∣∣∑
n

λuj ×φ(n)

n
1
2 +it

Wk

(
n/

(
XT 3))∣∣∣∣2

dX + O
(
T −200). (4.2)
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Corollary 4.2. Let ε > 0, suppose that T ε � U � � � T 1−ε , and |t | � U , T < tj � T + �. Let

M(T ,U,�) =
U∫

−U

∑
T <tj �T +�

uj even

∣∣∣∣L
(

uj × φ,
1

2
+ it

)∣∣∣∣2

dt. (4.3)

Then there exists W independent of t and tj (but depending on U and T ) satisfying (4.1) with
Y = 1 such that

M(T ,U,�) �
U∫

−U

∑
T <tj �T +�

uj even

∣∣∣∣∑
n

λuj ×φ(n)

n
1
2 +it

W
(
n/T 3)∣∣∣∣2

dt + O
(
T −100). (4.4)

To prove this corollary, take the k-sum and X-integral outside the tj -sum and t-integral, bound
it by the supremum (if we do not do this the choices of X and k depend on t, tj ), and redefine W .

Proof of Lemma 4.1. We use a method similar to that of Section 5 of [25], which we modified
from [2].

Begin by writing the approximate functional equation (3.1) in the shorthand form L(uj × φ,
1
2 + it) = ∑

n anV (n/X) + ε
∑

n bnV
∗(nX). This is valid for all X > 0, so we freely integrate

against X−1 dX from X = e− 1
2 to X = e

1
2 . Then by Cauchy’s inequality we deduce

∣∣∣∣L
(

uj × φ,
1

2
+ it

)∣∣∣∣2

� 2

e
1
2∫

e
− 1

2

∣∣∣∣∑
n

anV (n/X)

∣∣∣∣2
dX

X
+ 2

e
1
2∫

e
− 1

2

∣∣∣∣∑
n

bnV
∗(nX)

∣∣∣∣2
dX

X
. (4.5)

Notice that changing variables X → X−1 in the latter term makes the two terms more symmetric.
Indeed, the latter term then becomes the same as the former term with φ replaced by its dual and
t replaced by −t . We focus on the former term.

We find a simpler expression for V (x). By Stirling’s approximation, we have for λ ∈ C fixed,
Re(s) > 0, s small compared to T , and with the shorthand Z = 1

2 + it ± itj − λ, that for certain
polynomials Pn, we have

log
Γ (Z+s

2 )

Γ (Z
2 )

= s

2
log

(
Z

2

)
+ P1(s)

Z
+ P2(s)

Z2
+ · · · + O

(
Pk(s)

Zk

)
.

With Z′ = 1
2 + it ∓ tj − λ, we have

1

2
log

(
Z

2

)
+ 1

2
log

(
Z′

2

)
= log |Z/2| + 1

2
log

(
1 + Z′ − Z

Z

)
.

A computation shows that
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1

2
log

(
1 + Z′ − Z

Z

)
= Q1(t)

tj
+ Q2(t)

t2
j

+ · · · + O

(
Qk(t)

tkj

)
,

where each Ql is a polynomial of degree l. Combining these estimates for the gamma factors,
we obtain the asymptotic expansion

V (x) = 1

2πi

∫
(σ )

(
π3x

)−s G(s)

s

∣∣q(t, tj )
∣∣s/2

(
1 + R1(s, t)

tj
+ · · · + O

(
Rk(s, t)

tkj

))
ds, (4.6)

where each Rl(s, t) is a polynomial in s and t of degree at most l in terms of t , and q(t, tj ) is the
product of three Z and three Z′ terms with λ replaced by α,β, γ . Note |q(t, tj )| � T 6, uniformly

in t and tj . To be clear, we should choose a G(s) that decays rapidly for Im(s) large, such as es2
,

truncate the s-integral at say log2 T , apply Stirling’s formula, and then relax the truncation, all
with an acceptable error.

The representation (4.6) with σ > 0 very large shows that we may truncate the sum over n at
T 3+ε with an acceptable error term. With this truncation in place, we then fix σ = 1 and insert the
asymptotic expansion (4.6) into (4.5). According to (4.6), write V = V0 + O(T 3σ (U

T
)k) (so that

V0 accounts for all the terms in the expansion except for the error term). For k sufficiently large in
terms of U and T , this error term is acceptable. Then change variables X → Xπ3T 3/|q(t, tj )|1/2

and by positivity extend the X-integral to a fixed interval, say [X0,X1] ⊂ (0,∞). Now

∣∣∣∣L
(

uj × φ,
1

2
+ it

)∣∣∣∣2

�
X1∫

X0

∣∣∣∣∑
n

λφ×uj
(n)

n
1
2 +it

∫
(1)

G(s)

s

(
XT 3

n

)s(
1 + · · · + Rk−1(s, t)

tk−1
j

)
ds

∣∣∣∣2

dX

+ (similar term) + O
(
T −200).

Here the sum over n is truncated at T 3+ε , but since the contour can be shifted far to the right,
we may relax this condition without making a new error term. Next write Rl(s, t) = R0,l(s) +
R1,l(s)t + · · · + Rl,l(s)t

l , and use Cauchy’s inequality on the asymptotic expansion to obtain

∣∣∣∣L
(

uj × φ,
1

2
+ it

)∣∣∣∣2

�
X1∫

X0

∑
i�l<k

U2i

T 2l

∣∣∣∣∑
n

λφ×uj
(n)

n
1
2 +it

Vi,l

(
n/

(
XT 3))∣∣∣∣2

dX + (similar)

+ O
(
T −200),

where

Vi,l(x) = 1

2πi

∫
(1)

G(s)

s
Ri,l(s)x

−s ds.

Clearly each Vi,l satisfies (4.1) with Y = 1. The “similar” term has the same form as the displayed
term, except the coefficients are conjugated and the weight function is different (the Langlands
parameters α,β, γ are changed) yet it satisfies the same bounds (the proof was for any α,β, γ
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fixed), so again it takes the same form as the right-hand side of (4.2). The total number of terms
in the asymptotic expansion is finite. �
Theorem 4.3. With conditions as in Lemma 4.1, we have

M(T ,U,�) � T 3+ε. (4.7)

From Theorem 4.3, we deduce Theorem 1.1 by taking U = T 1−ε , and covering the interval
[T ,2T ] with O(T ε) subintervals of the form [T ′, T ′ + �] with � = T 1−ε .

Lemma 4.4. Let

h(r) = r2 + 1
4

T 2

[
exp

(
−

(
r − T

�

)2)
+ exp

(
−

(
r + T

�

)2)]
. (4.8)

Then there exists a smooth function w with support in a dyadic interval [P,2P ] with

P � T 3+ε (4.9)

satisfying (4.1) with Y = P such that

M(T ,U,�) � T εH(U,T ,�,w) + O
(
T −100),

where

H(U,T ,�,w) =
U∫

−U

∑
tj

αjh(tj )

∣∣∣∣∑
n

λuj ×φ(n)

n
1
2 +it

w(n)

∣∣∣∣2

dt.

Proof. We start with (4.4). From the lower bound αj � t−ε
j we may attach the weight αj at the

cost of O(T ε). By positivity, we freely attach the weight function h and extend the summation
to all tj . Finally, we apply a smooth dyadic partition of unity to the inner n-sum, and apply
Cauchy’s inequality to this sum over the partition (only the terms with P � T 3+ε are relevant by
a trivial bound), completing the proof. �
Lemma 4.5. Let g be a fixed nonnegative, even, Schwartz function satisfying g(t) � 1 for |t | � 2
whose Fourier transform is compactly supported, and define for any finite sequence of complex
numbers bn,

H(U,T ,�;bn) =
∞∫

−∞
g(t/U)

∑
tj

αjh(tj )

∣∣∣∣∑
n

λj (n)n−it bn

∣∣∣∣2

dt. (4.10)

Then for some L with

L � √
P , (4.11)
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and with coefficients

an,l = n− 1
2 A(l, n)wL(n), (4.12)

where wL(n) has support in n � P/L2 and satisfies (4.1) with Y = P/L2, we have

H(U,T ,�,w) � T ε
∑
l�L

l−1 H(U,T ,�;an,l) + O
(
T −200). (4.13)

Proof. We begin by writing λuj ×φ(n) in terms of λj (n) and A(l, n) using (2.3), and using
Cauchy’s inequality on the sum over l. Then we break up the sum over l into O(logT ) dyadic
segments with l � L � √

P .
Considering the value of L which maximizes the bound, this gives a bound of the form (4.13)

except that the weight function is of the form w(l2n) which unfortunately depends on l. We
remove the l-dependence by multiplying w(l2n) by w1(n), say, which satisfies (4.1) with Y =
N/L2, is supported in an interval of the form n � Y , and is identically one on the union of the
supports of w(l2n), for l � L. Then we separate variables with the Mellin technique, writing

w1(n)w
(
l2n

) = w1(n)
1

2π

∞∫
−∞

w̃(iy)
(
l2n

)−iy
dy.

By the rapid decay of w̃, we may truncate the integral at |y| � T ε � U with an acceptable
error. Then we apply Cauchy–Schwarz to take the y-integral to the outside and change variables
t → t − y. By positivity, we extend the t-integral to |t | � 2U , and integrate trivially over y.
Finally, by positivity we attach the weight function g(t/U) and extend the integral to R. �

Set

N = P/L2, (4.14)

so that wL satisfies (4.1) with Y = N .
With the above reductions, our goal for the rest of this paper is to prove the following.

Theorem 4.6. With an,l given by (4.12), we have

∑
l�L

l−1 H(U,T ,�;an,l) � T 3+ε
∑

l2n�T 3+ε

|A(l, n)|2
ln

. (4.15)

We now briefly explain how Theorem 4.6 implies Theorem 4.3 (and hence Theorem 1.1).
Using the polynomial growth of the Rankin–Selberg convolution L(φ × φ, s), one can show

that (see Remark 12.1.8 of [6])

∑
2

∣∣A(l, n)
∣∣2 � x.
l n�x
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Actually, if φ is a Hecke eigenform then one can include more terms and obtain

∑
ln�x

∣∣A(l, n)
∣∣2 � x1+ε, (4.16)

which we explain now. The Hecke relations for φ imply

A(l, n) =
∑

d|(l,n)

μ(d)A(l/d,1)A(1, n/d).

Inserting this into the left-hand side of (4.16), applying Cauchy’s inequality to the sum over d ,
and using the standard divisor function bound, we quickly obtain (4.16).

One of the basic techniques used throughout this paper is to apply an asymptotic expansion to
a particular quantity and reduce the estimation of the entire quantity to that of the leading-order
term, as the lower-order terms have all the essential characteristics of the main term yet are of
smaller magnitude.

For the rest of the paper we fix

� = T 1−ε. (4.17)

5. Applying the Kuznetsov formula

Lemma 5.1. Let K0(U,T ,�;bn,l) denote a sum of the form

K0 = �T√
N

∞∫
−∞

g(t/U)
∑
m,n

bm,lbn,l

(
m

n

)−it

×
∑

c� NT ε

�T

S(m,n; c)√
c

e

(−2
√

mn

c

)
e

iT 2c
2π

√
mn w1

(
c�T√

mn

)
, (5.1)

where g is as in Lemma 4.5,

bn,l = A(l, n)√
n

w(n), (5.2)

where w has support in the dyadic interval [N,2N ] and satisfies (4.1) with Y = N , and w1 is a
smooth function on R

+ satisfying (4.1) with Y = 1. If for all L � T 3/2+ε we have

∑
l�L

l−1
∣∣K0(U,T ,�;bn,l)

∣∣ � T 3+ε
∑

l2n�T 3+ε

|A(l, n)|2
ln

, (5.3)

then Theorem 4.6 holds.
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Our strategy of proof for Theorem 4.6 is thus to show (5.3) holds.

Proof of Lemma 5.1. Our first step in estimating H is to apply Lemma 3.2. It is a somewhat
involved task to analyze the integral transform ȟ, but Jutila and Motohashi [16] have obtained a
precise asymptotic expansion of ȟ for the particular choice (4.8). By (3.19) of [16], we obtain an
asymptotic expansion for ȟ(x) with leading term

4

π

√
2

x
�T exp

(
−

(
2�T

x

)2)
cos

(
x − 2T 2x−1 + π

4

)
. (5.4)

Actually they wrote the expansion in terms of a critical point u0 solving sinhu0 = 2T
x

, which has
the expansion u0 = 2T

x
+O((T

x
)3); in fact, u0 is holomorphic in terms of T/x. Strictly speaking,

the asymptotic is of the form cos(x − 2T 2x−1 + π
4 + O(T 4x−3)), which can be expanded into

power series with leading term (5.4) provided � � T 1/3+ε .
Applying the Kuznetsov formula gives that

H(U,T ,�;an,l) + (Eisenstein) = D + K(U,T ,�;an,l), (5.5)

say, where D corresponds to the diagonal term and K is the sum of Kloosterman sums. The
Eisenstein contribution is nonnegative and can be discarded for purposes of estimation of H. An
easy computation gives

D � U�T
∑
n�N

|A(l, n)|2
n

,

which is sufficient for the goal of (4.15).
Inserting the asymptotic expansion for ȟ(x), noting that the exponential decay in (5.4) natu-

rally allows the truncation

c � NT ε

�T
, (5.6)

and writing 2 cos(y) = eiy + e−iy , we obtain an analogous asymptotic expansion for K of the
form

K = K1 + K−1 + · · · + Kr + K−r + O
(
T −200),

for some absolute constant r , where each Ki is of the form (5.1), and by a simple symmetry
argument each |K−i | = |Ki |. In fact, the lower-order terms would have a weight function f that
is smaller by a certain power of T , but it only complicates the notation to include this behavior.
Thus Theorem 4.6 follows from (5.3). �
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6. Diophantine approximation

The extreme oscillation of the term e(
−2

√
mn

c
) is a source of difficulty in exploiting cancella-

tion in the sum over m. For instance, an application of the GL(3) Voronoi formula would lead to
a sum where the dual variable has size ≈ T 6 (for “typical” choices of the parameters), which is a
catastrophic loss (though there turns out to be a gain in the simplicity of the arithmetical proper-
ties of the new sum). It seems necessary to somehow dampen the oscillations of this exponential.
To do so, note that the t-integral forces m and n to be close: essentially m = n(1 + O(U−1)),
so that the identity −2

√
mn = −m − n + (

√
m − √

n )2 implies a close approximation (note that

(
√

m − √
n )2 � (m − n)2/N � NU−2). Although e(−m−n

c
) is just as oscillatory as e(

−2
√

mn
c

)

(meaning the arguments of the exponential are of the same order of magnitude), it has the prop-
erty of being periodic in m and n modulo c so that one can treat this term arithmetically and

absorb the “remainder” e(
(
√

m−√
n )2

c
) into the weight function, which is much less oscillatory.

This is a key idea in this paper. The papers [1] and [17] also found arithmetical features of this
phase but only after applying a summation formula.

Another pleasant feature of e(−m−n
c

) is that m and n are naturally separated. However, this
“twisting” of the Kloosterman sum by the exponential e(−m−n

c
) has the side effect of creating

terms of the form e(
(h−1)m

c
) where h is coprime to c, so that it does not always hold that h − 1 is

coprime to c, thus making the use of the large sieve inequalities or Voronoi summation problem-
atic. Naturally one can factor out the greatest common divisor of h − 1 and c to proceed further;
that is the content of the following

Lemma 6.1. For all integers m, n, and positive integers c, we have

S(m,n; c)e
(−m − n

c

)
=

∑
ab=c

∑
x (mod b)

(x(x+a),b)=1

e

(
xm − (x + a)n

b

)
. (6.1)

Remark. This calculation seems to have been first performed by Luo [19], but see also [14] for
some curious connections.

Proof of Lemma 6.1. By opening the Kloosterman sum, the left-hand side of (6.1) is

∑
h (mod c)
(h,c)=1

e

(
(h − 1)m + (h − 1)n

c

)
.

Write (h−1, c) = a, c = ab, and change variables h ≡ 1+ax (mod c) where now x runs modulo
b and satisfies (x(1 + ax), b) = 1. Note that 1 + ax − 1 ≡ −ax(1 + ax) (mod b). Replacing x

by x gives (6.1). �
Inserting (6.1) into (5.1) gives

K0 = �T√
N

∑
ab� NT ε

�T

1√
ab

∑
x (mod b)

∑
m,n

bmbne

(
xm − (x + a)n

b

)
Z(m,n), (6.2)
(x(x+a),b)=1
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where

Z(m,n) = e
iT 2ab

2π
√

mn w1

(
ab�T√

mn

)
e

(
(
√

m − √
n )2

ab

) ∞∫
−∞

g(t/U)

(
m

n

)−it

dt. (6.3)

Let

J =
∑
m,n

bmbne

(
xm − (x + a)n

b

)
Z(m,n), (6.4)

so that

K0 � �T√
N

∑
ab� N

�T
T ε

1√
ab

∑
x (mod b)

(x(x+a),b)=1

|J |. (6.5)

7. Separation of variables

Next we want to separate the variables m and n in Z(m,n), for which we shall use oscillatory
integral transforms. This will allow us to express J in terms of a bilinear form so that we can
apply the powerful technology of the large sieve inequality.

Lemma 7.1. Let K00(U,T ,�;bn,l) denote an expression of the form

K00 = �T 1+ε
∑

ab� NT ε

�T

1

ab

∫
v�1

∑
x (mod b)
(x,b)=1

∣∣∣∣∑
m

bme

(
xm

b

)
miy0e

(
v
√

mN

Uab

)∣∣∣∣2

dv, (7.1)

where bm = bm,l satisfies the condition (5.2) as in Lemma 5.1, and y0 � T ε is fixed. If

∑
l�L

l−1K00(U,T ,�;bn,l) � T 3+ε
∑

l2n�T 3+ε

|A(l, n)|2
ln

, (7.2)

then Theorem 4.6 holds.

Proof. We find an asymptotic expansion J = ∑
1�i�r Ji + O(T −200) such that when inserted

into (6.5), gives a bound of the form, say |K0| � ∑
i |K0,i | + O(T −150), and such that each

|K0,i | is of the form (7.1). In this way we reduce the estimation of K0 to that of K00.
First attach a smooth, compactly-supported weight function w2(

√
mn/N) to Z(m,n) that

takes the value 1 for all m and n in the support of the implicit weight function appearing in
bmbn, and write Z(m,n) = Z1(m,n)Z2(m,n), where

Z1(m,n) = e
iT 2ab

2π
√

mn w1

(
ab�T√

mn

)
w2

(√
mn

N

)
, (7.3)

and
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Z2(m,n) = e

(
(
√

m − √
n )2

ab

) ∞∫
−∞

g(t/U)

(
m

n

)−it

dt. (7.4)

We separate variables in each of Z1 and Z2 in turn. By Mellin inversion, we obtain

Z1(m,n) = 1

2π

∞∫
−∞

Fa,b,�,T ,N (iy)

(
N√
mn

)iy

dy, (7.5)

where

Fa,b,�,T ,N (iv) =
∞∫

0

w1

(
ab�T

Nx

)
x−1w2(x)e

iT 2ab
2πNx xiv dx.

If |y| � T ε then repeated integration by parts shows F(iy) is smaller than any negative power
of T . For |y| � T ε , a trivial bound shows F(iy) � 1. This separates the variables m and n by a
very short integral (essentially no cost).

Next we separate variables in

Z2(m,n) = e

(
(
√

m − √
n )2

ab

)
Uĝ

(
U

2π
log

m

n

)
. (7.6)

Recalling that ĝ has compact support, which restricts m and n so that |m − n| � U−1N , we can
then use a Taylor expansion to write

log
m

n
= 2 log

(
1 +

√
m − √

n√
n

)
= 2

√
m − √

n√
n

−
(√

m − √
n√

n

)2

+ · · · , (7.7)

noting |
√

m−√
n√

n
| � U−1. Then we get an asymptotic expansion for ĝ in the form

ĝ

(
U

2π
log

m

n

)
= ĝ

(
U

π

√
m − √

n√
n

)
− 1

2
U−1

(
U

√
m − √

n√
n

)2

ĝ′
(

U

π

√
m − √

n√
n

)
+ · · · . (7.8)

Note that each successive term has the same form as the leading term, but is smaller by a power
of U , so we shall treat the generic term in what follows.

Thus it suffices to consider

Z3(m,n) = e

(
(
√

m − √
n )2

ab

)
Uw3

(
U

√
m − √

n√
n

)
,

where w3 is compactly supported and satisfies (4.1) with Y = 1. Let z =
√

m−√
n√

ab
, and Z =

1
√

n , so that

U ab
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Z3(m,n) = Ue
(
z2)w3

(
z

Z

)
.

Suppose Z � T ε (in our application this is always satisfied since ab � (�T )−1+εN , � = T 1−ε ,
and U � �). Then by Fourier inversion,

Z3(m,n) =
∞∫

−∞
Y(v)e

(
v(

√
m − √

n )√
ab

)
dv, Y (v) = U

∞∫
−∞

e
(
z2 − vz

)
w3

(
z

Z

)
dz.

With inspiration here from pp. 431–432 of [23], we want to apply the Plancherel formula. The

function e(z2) is not L2 so instead we argue directly by using e(z2) = eπi/4√
2

∫ ∞
−∞ e(tz − t2

4 ) dt

(which can be checked directly, the integral seen to converge uniformly on integration by parts)
and reversing the order of integration. Thus

Y(v) = eπi/4

√
2

UZ

∞∫
−∞

e

(
−

(
v + y

2

)2)
ŵ3(−yZ)dy.

Expanding the square, we get

Y(v) = √
2eπi/4UZe

(−v2

4

) ∞∫
−∞

e
(−y2 − vy

)
ŵ3(−2yZ)dy.

Next truncate the integral at T −ε (with negligible error), expand e(−y2) into a Taylor series
taking O(1/ε) terms so that the remainder is O(T −2009), and then extend the integral back to R.
This gives an asymptotic expansion for Y(v), with leading-order term say Y1 given by

Y1(v) = √
2eπi/4UZe

(−v2

4

) ∞∫
−∞

e(−vy)ŵ4(−2yZ)dy = U
eπi/4

√
2

e

(−v2

4

)
w3

(
v

2Z

)
.

The lower-order terms are similar but multiplied by powers of Z−1, and with derivatives of w3

replacing w3, which of course are also compactly supported and satisfy (4.1) with Y = 1. Thus
we conclude that

Z2(m,n) ∼ eπi/4

√
2

∞∫
−∞

e

(−v2

4U2

)
w3

(
v

2UZ

)
e

(
v(

√
m − √

n )

U
√

ab

)
dv. (7.9)

Combining (7.5) and (7.9), we get an asymptotic expansion for J with leading-order term J1 of
the form
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|J1| �
T ε∫

−T ε

∫
|v|�

√
N
ab

∣∣∣∣∑
m

bme

(
xm

b

)
m−iy/2e

(
v
√

m

U
√

ab

)∣∣∣∣

×
∣∣∣∣∑

n

bne

(
(x + a)n

b

)
niy/2e

(
v
√

n

U
√

ab

)
w3

(
v√
n
ab

)∣∣∣∣dv dy. (7.10)

Using the simple inequality |A||B| � 1
2 |A|2 + 1

2 |B|2, we obtain a bound for |J1| with two similar
terms, one involving w3, the other without w3. Consider the term with w3, the other term being
similar yet easier. Inserting this bound into (6.5), we get a term of the form

�T√
N

∑
ab� NT ε

�T

1√
ab

T ε∫
−T ε

∞∫
−∞

∑
x (mod b)

(x(x+a),b)=1

∣∣∣∣∑
n

bne

(
(x + a)n

b

)
niy/2

× e

(
v
√

n

U
√

ab

)
w3

(
v√
n
ab

)∣∣∣∣2

dv dy.

Now we simply drop the condition (x, b) = 1 by positivity, change variables x → x − a and

change variables v →
√

N√
ab

v. In this way we arrive at a term of the form

�T
∑

ab� NT ε

�T

1

ab

T ε∫
−T ε

∫
|v|�1

∑
x (mod b)
(x,b)=1

∣∣∣∣∑
n

bne

(
xn

b

)
niy/2e

(
v
√

nN

Uab

)
w3(v

√
N/n)

∣∣∣∣2

dv dy,

which after summing over l and bounding the y-integral by its length times the supremum over y

would give the desired form for Lemma 7.1, except for the presence of w3(v

√
N
n
). However, we

can remove this dependence by a simple Mellin inversion similarly to how we handled Z1(m,n),
so we omit the details (recall that the support on bn implicitly has n � N ). The lower-order terms
involving powers of Z−1 can also be seen to have the same form. �

We shall use different methods of estimation depending on the sizes of a and b. Let KA,B =
KA,B(U,T ,�,an,l) denote the same sum as K00 given by (7.1) but with A < a � 2A and B <

b � 2B , so that

K0,0(U,T ,�;an,l) � log2 T sup
AB� NT ε

�T

KA,B(U,T ,�,an,l), (7.11)

where (5.6) translates to give the condition

AB � NT ε

�T
. (7.12)

By changing variables v → ab v and summing trivially over a, note that

AB
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KA,B � T ε �T

B

∫
v�1

∑
b�B

∑
x (mod b)
(x,b)=1

∣∣∣∣∑
m

bme

(
xm

b

)
miy0e

(
v
√

mN

UAB

)∣∣∣∣2

dv. (7.13)

We can immediately apply Lemma 3.1, noting as well that |bm|2 � |am|2, to get

Lemma 7.2. We have

KA,B(U,T ,�;an) � T ε�T (B + UA)
∑
n�N

|an|2 � T ε

(
T 3

A
+ T 2UA

) ∑
n�N

|an|2. (7.14)

This estimate is sufficient for (7.2) for A small (A � U−1T 1+ε), so we henceforth assume

A � T ε, (7.15)

which simplifies some later work. Also, notice that we used no special properties of the coeffi-
cients an so far.

8. Voronoi summation

In order to improve on Lemma 7.2 we resort to use special properties of the coefficients an.
Our tool is the GL(3) Voronoi summation formula proved by [20]. We will state this important
formula in a form developed by X. Li [17].

Theorem 8.1 (Miller–Schmid). Let ψ be a smooth function with compact support on the positive
reals. Then

∑
n

A(l, n)e

(
nx

b

)
ψ(n) = bπ− 5

2

4i

∑
n1|bl

∑
n2>0

A(n2, n1)

n1n2
S

(
lx, n2; bl

n1

)
Ψ1

(
n2n

2
1

b3l

)

+ bπ− 5
2

4i

∑
n1|bl

∑
n2>0

A(n2, n1)

n1n2
S

(
lx,−n2; bl

n1

)
Ψ2

(
n2n

2
1

b3l

)
, (8.1)

for certain integral transforms Ψ1 and Ψ2.

We need an explicit asymptotic expansion of Ψ1 and Ψ2, which is provided by Lemma 6.1 of
[18] (generalizing Lemma 3 of Ivić [10]). Each of Ψ1 and Ψ2 is a linear combination of two other
functions Ψ0(x) and x−1Ψ0,0(x), say, where each has similar asymptotic behavior, so it suffices
to treat Ψ0(x).

Lemma 8.2 (Ivić, Li). Suppose ψ(r) is supported on [N,2N ]. Then there exist constants cj,±
such that

Ψ0(x) =
L∑

j=1

∑
±

cj,±x

∞∫
0

ψ(r)e
(±3(xr)1/3) dr

(xr)j/3
+ O

(
(xN)

−L+2
3

)
. (8.2)
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An easy contour shift argument shows that Ψ0(x) has rapid decay for xN → ∞, and is
bounded for xN � 1 (see the original expression (6.12) of [18]).

Write (7.13) in the form

KA,B � �T 1+ε

B

∫
v�1

∑
b�B

∑
x (mod b)
(x,b)=1

∣∣V (v;x, b)
∣∣2

dv,

where

V (v;x, b) = N− 1
2
∑
m

A(l,m)e

(
xm

b

)
miy0e

(
v
√

mN

UAB

)
w(m), (8.3)

where w is a function as in Lemma 4.4; notice that we wrote n− 1
2 = N− 1

2 (N
n
)

1
2 , and absorbed

the latter term into the weight function w.

Applying the Voronoi summation formula to V (v;x, b) with ψ(r) = riy0e( v
√

rN
UAB

)w(r), we
obtain V (v;x, b) = V1(v;x, b) + V2(v;x, b), say, corresponding to the two terms on the right-
hand side of (8.1). We accordingly write KA,B � K+

A,B +K−
A,B . Changing variables by x → −x

shows that K−
A,B is of a form similar to that of K+

A,B , so we shall henceforth only treat K+
A,B .

First we claim we may assume xN � T ε . Otherwise, using b � NT ε

AT 2 , then

n2
1n2 � b3l

N
� T ε N2l

A3T 6
.

Recalling that N � T 3+ε/L2, we get that n2
1n2 � T ε

L3A3 . By (7.15), this condition is never satis-
fied.

Since xN � T ε , Lemma 8.2 gives an asymptotic expansion of V1. As usual, we treat the
leading-order term, say K0

A,B , which takes the form

K0
A,B = �T 1+ε

B

∫
v�1

∑
b�B

∑
x (mod b)
(x,b)=1

∣∣∣∣∑
n1|bl

∑
n2>0

A(n2, n1)

n1n2
S

(
lx, n2; bl

n1

)
Φ

(
n2n

2
1

b3l

)∣∣∣∣2

dv, (8.4)

where Φ is a function of the form

Φ(λ) = b√
N

λ

∞∫
0

w(r)riy0e

(
−3(λr)1/3 + u

√
rN

UAB

)
dr

(λr)1/3
,

where w is smooth, supported on [N,2N ], satisfying (4.1) with Y = N , and y0 � T ε , possibly
after changing variables v → −v or y0 → −y0. The change of variables r → Nr gives, with
wN(r) = w(Nr),

Φ(λ) = b√
N

(λN)2/3Niy0

∞∫
wN(r)r− 1

3 +iy0e

(
−3(λrN)1/3 + v

√
rN

UAB

)
dr. (8.5)
0
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Our plan now is to express K0
A,B into a form where we can apply Lemma 3.1; the v-integral

is critical for an extra saving effect, and as such it is important to understand the phase of the
integral transform Φ (not just its magnitude).

9. Asymptotic behavior of Φ(x)

Under the assumption xN � T ε (with y0 � T ε/100, say), the first term in the exponential
in (8.5) dominates over the phase of yiv0 . Unless the two terms in the exponential are of the
same order of magnitude and of opposite signs (in particular, v must be positive), then an easy
integration by parts argument shows that Φ(λ) is negligible (smaller than T −2009). That is, Φ(λ)

is small unless

λ � v3N2

(UAB)3
, (9.1)

with certain absolute implied constants. Now suppose (9.1) holds.
We shall treat general integrals of the form

I =
∞∫

0

f (y)e
(
αy1/2 − βy1/3)dy,

where α,β > 0, α � β , and f satisfies

f is smooth of compact support on R
+, satisfying f (j)(y) � T

j

0 , (9.2)

for some parameter 1 � T0 � |α|1/100. The stationary phase method easily gives the main term
for I , but a search of the literature did not find an adequate asymptotic expansion. In this section
we show that I has an asymptotic expansion (as α → ∞) with leading term equal to

I ∼ 6(
2β
3α

)5

(2β)
1
2

e

(−4β3

27α2
+ 1

8

)
f

((
2β

3α

)6)
, (9.3)

and where the lower-order terms have the same phase, but are smaller by powers of α.
Applying (9.3) to Φ , we find that

Φ(λ) ∼ b
√

λh

(
(UAB)3λ

v3N2

)
e

(−4λ(UAB)2

v2N

)(
λ2

v6

)iy0

z(N,U,A,B),

where h is a smooth function of compact support on R
+, satisfying (4.1) with Y = 1, and

z(N,U,A,B) is some bounded function (not depending on either v or λ). Noting b
√

λ =√
n1n2

1√
bl

and inserting this expression into (8.4), we obtain

n1
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K0
A,B � �T 1+ε

B

∫
v�1

∑
b�B

∑
x (mod b)
(x,b)=1

∣∣∣∣∑
n1|bl

∑
n2

A(n2, n1)√
n1n2

S(lx,n2; bl
n1

)√
bl/n1

× h

(
(UAB)3n2n

2
1

v3b3lN2

)
e

(−4n2n
2
1(UAB)2

v2b3lN

)(
n1n

2
2

)2iy0

∣∣∣∣2

dv. (9.4)

We will continue with this expression in the following section.

Proof of (9.3). Our goal is to use known properties of the Airy function, using ideas similar to
those appearing in Section 7. First apply the change of variables y = t6 to get

I =
∞∫

0

h(t)e
(
αt3 − βt2)dt,

where h(t) = f (t6)(6t5) satisfies (9.2). We will show

I ∼ 1

(2β)
1
2

e

(−4β3

27α2
+ 1

8

)
h

(
2β

3α

)
, (9.5)

which immediately implies (9.3).
Next change variables t → t + β/(3α) to get

I = e

(−2β3

27α2

) ∞∫
−∞

h

(
t + β

3α

)
e

(
αt3 − β2

3α
t

)
dt.

Now use Fourier inversion on hα,β(t) = h(t + β
3α

) (again, hα,β satisfies (9.2) except its support
may include negative reals) and reverse the orders of integration (justified by uniform conver-
gence following from integration by parts) to get

I = e

(−2β3

27α2

) ∞∫
−∞

ĥα,β(−t)

∞∫
−∞

e

(
αy3 −

(
β2

3α
+ t

)
y

)
dy dt.

From a change of variables and some simple symmetry arguments, note that

∞∫
−∞

e

(
αy3 −

(
β2

3α
+ t

)
y

)
dy = 2

(6πα)1/3

∞∫
0

cos

(
1

3
y3 − 2π

β2

3α
+ t

(6πα)1/3
y

)
dy,

which using the definition of the Airy function Ai(x) can be expressed as

2π

1/3
Ai

(
−2π

β2

3α
+ t

1/3

)
.

(6πα) (6πα)
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In terms of I , we thus have

I = 2π

(6πα)1/3
e

(−2β3

27α2

) ∞∫
−∞

ĥα,β(−t)Ai

(
−2π

β2

3α
+ t

(6πα)1/3

)
dt.

Next change variables by t → β2

3α
t to get

I = 2π

(6πα)1/3
e

(−2β3

27α2

) ∞∫
−∞

β2

3α
ĥα,β

(
−β2

3α
t

)
Ai

(
−2π

β2

3α
(1 + t)

(6πα)1/3

)
dt.

We insert the asymptotic expansion for the Airy function at large negative argument (see (4.07)
of [21]), namely

Ai(−x) ∼ 1
√

πx
1
4

[
cos

(
2

3
x3/2 − π

4

)∑
k

c2k

x3k
+ sin

(
2

3
x3/2 − π

4

)∑
k

c2k+1

x
3
2 (2k+1)

]
,

for certain explicit constants ck (in particular, c0 = 1). To justify this, we note that integration by
parts shows ĥα,β(y) � (y−1T0)

j where the implied constant depends on the support of h. Thus
we may truncate the integral at t � α−2/3, say, with a negligible error of size any power of α−1.
We then have

I ∼ 2
√

π

(6πα)1/3
e

(−2β3

27α2

) α−2/3∫
−α−2/3

β2

3α
ĥα,β

(
−β2

3α
t

)cos( 2
3 (

2π
β2

3α
(1+t)

(6πα)1/3 )3/2 − π
4 )

(
2π

β2
3α

(1+t)

(6πα)1/3 )1/4

dt,

where the lower-order terms have a similar shape but are multiplied by powers of α2

β3 (1+ t)−3/2 �
α−1(1 + t)−3/2. The terms with cos replaced by sin are treated similarly, so we work with cos
only. This expression simplifies as

I ∼ 2
1
2

β
1
2

e

(−2β3

27α2

) ∞∫
−∞

β2

3α
ĥα,β

(
−β2

3α
t

)
(1 + t)−

1
4 cos

(
2

3

(
2π

β2

3α
(1 + t)

(6πα)1/3

)3/2

− π

4

)
dt.

We expand (1 + t)− 1
4 into a Taylor series, developing the expansion futher.

Now write cosx = 1
2 (eix + e−ix), and write I ∼ I+ + I− correspondingly. Thus

I± ∼ 1

(2β)
1
2

e

(−2β3

27α2

) α−2/3∫
−α−2/3

β2

3α
ĥα,β

(
−β2

3α
t

)
e

(
±

(
2β3

27α2
(1 + t)

3
2 − 1

8

))
dt.

Next we take a Taylor series for (1 + t)3/2 = 1 + 3
2 t + · · · in the exponential. The quadratic and

higher terms are small (much less than 1) so we take a Taylor series expansion for the exponential
of these terms, giving another asymptotic expansion with leading-order term
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I± ∼ e(∓1
8 )

(2β)
1
2

e

(−2β3(1 ∓ 1)

27α2

) α−2/3∫
−α−2/3

β2

3α
ĥα,β

(
−β2

3α
t

)
e

(
±

(
β3

9α2
t

))
dt.

Extending the integral back to R and changing variables back via t → 3α

β2 t gives

I± ∼ e(∓1
8 )

(2β)
1
2

e

(−2β3(1 ∓ 1)

27α2

) ∞∫
−∞

ĥα,β(−t)e

(
±

(
β

3α
t

))
dt.

Calculating the integral in terms of h, we get

I± ∼ e(∓1
8 )

(2β)
1
2

e

(−2β3(1 ∓ 1)

27α2

)
hα,β

(
∓ β

3α

)
.

Note hα,β(∓ β
3α

) = h(
β
3α

(1 ∓ 1)). Since h has support on the positive reals, we have h(0) = 0, in
which case only I− contributes to I , so then

I ∼ 1

(2β)
1
2

e

(−4β3

27α2
+ 1

8

)
h

(
2β

3α

)
.

One easily checks that this is the expected main term one obtains from stationary phase. �
10. Cleaning

We have reduced the problem of estimating KA,B (originally given by (7.13)) to estimating
the rather messy expression K0

A,B given by (9.4), in the sense that any bound for K0
A,B with a

general compactly-supported weight function h satisfying (4.1) with Y = 1, is also a bound on
KA,B (plus a negligible error term of size, say O(T −100) which shall be dwarfed by our upper
bound on KA,B ).

We shall make some preliminary transformations to clean up this expression for K0
A,B . The

reader interested in the essential details should consider the crucial case v � 1, l = n1 = 1, which
greatly simplifies the forthcoming calculations.

Lemma 10.1. Suppose that K0
A,B is any expression of the form (9.4) with h satisfying (4.1) with

Y = 1, and let L = L(A,B,L,T ,U,�,N1,N2) be an expression of the form

L = �T

B

W ′

L

∑
l�L

∑
b�B

∑
x (mod b)
(x,b)=1

∑
n1|bl

n1�N1

∫
v�1

∣∣∣∣ ∑
n2�N2

b(n1, n2)√
n1n2

S(lx,n2; bl
n1

)√
bl/n1

e

(
vn2

W

)∣∣∣∣2

dv, (10.1)

where b(n1, n2) are complex numbers satisfying |b(n1, n2)| � |A(n1, n2)|, and where

W = N
2/3
2 BL1/3

N
2/3

N1/3
, W ′ = UAN

1/3
2 N

2/3
1

L1/3N2/3
. (10.2)
1
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Then for some such choice of b(n1, n2), we have

∑
l�L

l−1K0
A,B � T ε sup

A,B,N1,N2

L, (10.3)

where recall (7.12), and where

N2
1 N2 � LN2

(UA)3
. (10.4)

Proof. We begin with the representation (9.4) and apply Cauchy’s inequality to take the sum over
n1|bl outside the absolute values, and divide up the sum over n2 into dyadic intervals n2 � N2,
where in view of (9.1),

N2 � lN2

n2
1(UA)3

. (10.5)

With the shorthand notation

K ′ =
∫

v�1

∣∣∣∣ ∑
n2�N2

a(n1, n2)√
n1n2

S(lx,n2; bl
n1

)√
bl/n1

h

(
(UAB)3n2n

2
1

v3b3lN2

)
e

(
4n2n

2
1(UAB)2

v2b3lN

)∣∣∣∣2

dv, (10.6)

where a(n1, n2) are certain complex numbers with the same absolute value as A(n2, n1), we
have

K0
A,B � T ε �T

B

∑
b�B

∑
x (mod b)
(x,b)=1

∑
n1|bl

K ′. (10.7)

Next, locate n1 � N1, so that (10.4) holds, and recall l � L. For such l and n1, change vari-
ables in v via

v → UAB3/2N
1/3
2 n1L

1/6

b3/2l1/2N2/3N
1/3
1

v−1/2,

to get

K ′ � W ′
∫

v�1

∣∣∣∣ ∑
n2�N2

a(n1, n2)√
n1n2

S(lx,n2; bl
n1

)√
bl/n1

h

((
v3b3ln2

2N
2
1

B3LN2
2 n2

1

)1/2)
e

(
vn2

W

)∣∣∣∣2

dv,

where W and W ′ are given by (10.2), the restriction to v � 1 is redundant to the support of h, and
where we use positivity and the location of the variables to write W ′ in terms of capital letters
rather than lowercase letters.

Next separate the variables v, b, l, n1, and n2 in h((
v3b3ln2

2N
2
1

B3LN2
2 n2

1
)1/2) by using the Mellin inver-

sion formula; since v is already located to be � 1, and b � B , l � L, and n1 � N1, n2 � N2.
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This can be done with a Mellin integral of length O(T ε) which can be taken to the outside of∑
l l

−lK0
A,B (after an application of Cauchy–Schwarz) and then bounded by its length times

the supremum. Effectively this simply changes the coefficients to say b(n1, n2) having the same
absolute values as a(n1, n2). �
11. Final step: applying the large sieve

Lemma 11.1. Suppose that L is given by (10.1) as in Lemma 10.1. Then

L � T 3+ε
∑

ln�T 3+ε

|b(l, n)|2
ln

. (11.1)

Lemma 11.1 shall complete the proof of Theorem 4.6 by the reductions of Lemmas 5.1, 7.1,
and 10.1, combined with the bound of Lemma 7.2 for A � T ε .

Proof of Lemma 11.1. Let d = (b,n1) and change variables b → db, n1 → dn1 to get

L � T ε �T

B

W ′

L

×
∑
l�L

∫
v�1

∑
d�N1

∑
b�B/d

∑
x (mod bd)
(x,bd)=1

∑
n1|l

(n1,b)=1
dn1�N1

∣∣∣∣∑
n2

b(dn1, n2)√
dn1n2

S(lx,n2; bl
n1

)√
bl/n1

e

(
vn2

W

)∣∣∣∣2

du. (11.2)

Write l
n1

= rs where r|b∞ (meaning all primes dividing r also divide b) and (s, b) = 1. Next
change variables to eliminate l and note that the sum over x only depends modulo b to give

L � T ε �T

B

W ′

L

∫
v�1

∑
d�N1

d
∑
b� B

d

∑
n1rs�L

(n1s,b)=1
dn1�N1

∑
r|b∞

1

brs
L1, (11.3)

where as shorthand

L1 =
∑

x (mod b)
(x,b)=1

∣∣∣∣∑
n2

b(dn1, n2)√
dn1n2

S(n1rsx,n2;brs)e

(
vn2

W

)∣∣∣∣2

. (11.4)

Next we simplify L1, by showing

L1 � br2s
∑∗

h (mod bs)

∣∣∣∣∑
n2

b(dn1, rn2)√
dn1rn2

e

(
hn2

bs

)
e

(
vrn2

W

)∣∣∣∣2

. (11.5)

Proof of (11.5). From the multiplicativity relation for Kloosterman sums, we obtain

S(n1rsx,n2;brs) = S(n1rssx,n2s, br)S(n1rsbrx,n2br; s) = S(n1rx,n2s, br)S(0, n2; s),
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which becomes S(rx,n2;br)S(0, n2; s) after the change of variables x → sn1x (recall n1 is
coprime to br). Thus

L1 =
∑

x (mod b)
(x,b)=1

∣∣∣∣∑
m

bmS(rx,m;br)

∣∣∣∣2

, with bm = b(dn1,m)√
dn1m

S(0,m; s)e
(

vm

W

)
.

Next we compute for arbitrary complex numbers cm,

∑
x (mod b)

∣∣∣∣∑
m

cmS(rx,m;br)

∣∣∣∣2

= b
∑

m1,m2

cm1cm2

∑∗

h1,h2 (mod br)
h1≡h2 (mod b)

e

(
h1m1 − h2m2

br

)
. (11.6)

Change variables via hi = y + bzi , i = 1,2, where y runs modulo b and zi runs modulo r . Since
r|b∞, the condition that (hi, br) = 1 is equivalent to (y, b) = 1. The sum over zi vanishes unless
r|mi , in which case the sum is r . Thus (11.6) equals

br2
∑

r|m1,m2

cm1cm2

∑∗

y (mod b)

e

(
y(m1

r
− m2

r
)

b

)
= br2

∑∗

y (mod b)

∣∣∣∣∑
r|m

cme

(
y m

r

b

)∣∣∣∣2

,

and hence

L1 � br2
∑∗

y (mod b)

∣∣∣∣∑
r|m

cme

(
y m

r

b

)
S(0,m; s)

∣∣∣∣2

, with cm = a(dn1,m)√
dn1m

e

(
vm

W

)
.

By Cauchy’s inequality, we have for any complex coefficients bl that

∣∣∣∣∑
l

blS(0, l; s)
∣∣∣∣2

� s
∑∗

h (mod s)

∣∣∣∣∑
l

ble

(
hl

s

)∣∣∣∣2

. (11.7)

Note that S(0, l; s) = S(0, l
r
; s) since (r, s) = 1. Hence

L1 � br2s
∑∗

h (mod s)

∑∗

y (mod b)

∣∣∣∣∑
r|m

cme

(
y m

r

b

)
e

(
hm

r

s

)∣∣∣∣2

,

which gives (11.5) using the Chinese remainder theorem and changing variables m → mr . �
Picking back up the chain of reasoning, we insert (11.5) into (11.3), getting

L � T ε �T

B

W ′

L

∫
v�1

×
∑

d�N1

d
∑
b� B

d

∑
n1rs�L

(n1s,b)=1

∑
r|b∞

r
∑∗

y (mod bs)

∣∣∣∣∑
n2

b(dn1, rn2)√
dn1rn2

e

(
yn2

bs

)
e

(
vrn2

W

)∣∣∣∣2

dv. (11.8)
dn1�N1
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Next relax the condition that r|b∞ and for convenience locate the variable s � S, where

N1rS � dL. (11.9)

We need to bound the supremum over S, where note that we may assume S � L. In addition
change variables bs → c, getting

L � T ε �T

B

W ′

L

×
∑

dn1�N1

d
∑

r� L
n1S

r

∫
v�1

∑
c� BS

d

∑∗

h (mod c)

∣∣∣∣ ∑
rn2�N2

b(dn1, rn2)√
dn1rn2

e

(
yn2

c

)
e

(
vn2

W/r

)∣∣∣∣2

dv, (11.10)

for some value of S. Finally, an application of Lemma 3.1 gives

L � T ε �T

B

W ′

L

∑
dn1�N1

d
∑

r� L
n1S

r

((
BS

d

)2

+ W

r

) ∑
rn2�N2

|b(dn1, rn2)|2
dn1rn2

.

We simplify this by first letting rn2 → n2 be a new variable, getting

L � T ε �T

B

W ′

L

∑
dn1�N1

d

(
L

n1S

(
BS

d

)2

+ W

) ∑
n�N2

|b(dn1, n2)|2
dn1n2

.

Similarly, let dn1 → n1 be a new variable to get

L � T ε �T

B

W ′

L

(
LB2S

N1
+ WN1

) ∑
l2n�N2

1 N2

|b(n1, n2)|2
n1n2

. (11.11)

Note that from (10.4) we have W ′ � 1 and

W ′W = UABN2

N
� BLN

(UA)2N2
1

.

Thus using S � L, the expression (11.11) simplifies as

L � T ε�T

(
BL

N1
+ N

N1(UA)2

) ∑
l2n�N2

1 N2

|b(l, n)|2
ln

. (11.12)

Recalling that B � NT ε

A�T
, L2N � T 3+ε , and � = U = T 1−ε , finishes the proof. �
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