
Differential Geometry and its Applications 27 (2009) 696–701

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Geometric realizations of curvature models by manifolds with constant
scalar curvature

M. Brozos-Vázquez a, P. Gilkey b,∗, H. Kang c, S. Nikčević d, G. Weingart e
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We show any pseudo-Riemannian curvature model can be geometrically realized by
a manifold with constant scalar curvature. We also show that any pseudo-Hermitian
curvature model, para-Hermitian curvature model, hyper-pseudo-Hermitian curvature
model, or hyper-para-Hermitian curvature model can be realized by a manifold with
constant scalar and �-scalar curvature.
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1. Introduction

Let V be a finite dimensional real vector space of dimension m. One says that A ∈ ⊗4(V ∗) is an algebraic curvature tensor
on V if A satisfies the symmetries of the Riemann curvature tensor:

A(x, y, z, w) = −A(y, x, z, w) = A(z, w, x, y),

A(x, y, z, w) + A(y, z, x, w) + A(z, x, y, w) = 0. (1.a)

We say that M := (V , 〈·,·〉, A) is a curvature model if A is an algebraic curvature tensor on V and if 〈·,·〉 is a non-degenerate
symmetric bilinear form of signature (p,q) on V . Two curvature models M1 = (V 1, 〈·,·〉1, A1) and M2 = (V 2, 〈·,·〉2, A2) are
said to be isomorphic, and one writes M1 ≈ M2, if there is an isomorphism φ : V 1 → V 2 so that

φ∗〈·,·〉2 = 〈·,·〉1 and φ∗ A2 = A1.
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Let M be a curvature model. Let εi j and Aijkl be the components of 〈·, ·〉 and A relative to a basis {ei} for V :

εi j := 〈ei, e j〉 and Aijkl := A(ei, e j, ek, el).

Let εi j be the inverse matrix. Adopt the Einstein convention and sum over repeated indices. The components of the Ricci
tensor ρ = ρM and the scalar curvature τ = τM are then given by:

ρil := ε jk Ai jkl and τ := εilε jk Ai jkl.

1.1. Pseudo-Riemannian geometry

Let M := (M, g) be a pseudo-Riemannian manifold of signature (p,q). Let ∇ = ∇M be the Levi-Civita connection of M
and let R = R M ∈ ⊗4T ∗M be the curvature tensor of ∇:

R(x, y, z, w) = g
(
(∇x∇y − ∇y∇x − ∇[x,y])z, w

)
.

Let M(M, P ) := (T P M, gP , R P ) for P ∈ M be the corresponding curvature model. Relating algebraic properties of the cur-
vature tensor to the underlying geometric properties of the manifold is a central theme in much of differential geometry –
see, for example, the discussion of Osserman geometry in [2,5,12,16].

The following result is well known and shows that the relations of Eq. (1.a) generate the universal symmetries of the
Riemann curvature tensor:

Theorem 1.1. Let M be a curvature model. There exists a real analytic pseudo-Riemannian manifold M and a point P of M so that
M ≈ M(M, P ).

The following result extends Theorem 1.1 to the category of manifolds with constant scalar curvature:

Theorem 1.2. Let M be a curvature model. There exists a real analytic pseudo-Riemannian manifold M and a point P of M so that
M has constant scalar curvature and so that M ≈ M(M, P ).

1.2. Conformal geometry

Let M be a curvature model. Let W = WM be the Weyl conformal curvature tensor. One says that M is conformally flat if
WM = 0.

Theorem 1.3. Let M be a conformally flat curvature model. There exists a real analytic conformally flat pseudo-Riemannian manifold
M and a point P of M so that M has constant scalar curvature and so that M ≈ M(M, P ).

1.3. Pseudo-Hermitian and para-Hermitian geometry

Let J be a linear map of V and let M = (V , 〈·,·〉, A) be a curvature model. One says that J is a pseudo-Hermitian structure
if

J 2 = − id and J∗〈·,·〉 = 〈·,·〉.
Similarly, one says that J is a para-Hermitian structure if

J 2 = id and J∗〈·,·〉 = −〈·,·〉.
Note that pseudo-Hermitian structures exist if and only if both p and q are even; para-Hermitian structures exist if and only
if p = q. Let C := (V , 〈·,·〉, J , A) be the associated pseudo-Hermitian curvature model (resp. para-Hermitian curvature model). In
either case, define the �-scalar curvature τ � = τ �

C
by setting

τ � :=
{

εilε jk A(ei, e j, J ek, J el) if C is pseudo-Hermitian,

−εilε jk A(ei, e j, J ek, J el) if C is para-Hermitian.

One says that a model C := (M, g, J ) is an almost pseudo-Hermitian manifold (resp. almost para-Hermitian manifold) if
C(C, P ) := (T P M, gP , J P , R P ) is a pseudo-Hermitian (resp. para-Hermitian) curvature model for every P ∈ M . We do not
assume that the structure J on M is integrable as this imposes additional curvature identities [13]; we will return to
this question in a subsequent paper. Almost pseudo-Hermitian geometry has been studied extensively. We refer to [7]
for further information concerning almost para-Hermitian geometry as it is important as well. For example, para-Hermitian
geometry enters in the study of Osserman Walker metrics of signature (2,2) [8], it is important in the study of homogeneous
geometries [11], and it is relevant to the study of Walker manifolds with degenerate self-dual Weyl curvature operators [6].
We refer to [10] for information concerning almost-Hermitian geometry.
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Theorem 1.4. Let m � 4. Let C = (V , 〈·,·〉, J , A) be a pseudo-Hermitian (resp. para-Hermitian) curvature model. There exists a real
analytic almost pseudo Hermitian (resp. almost para-Hermitian) manifold C = (M, g, J ) and a point P of M so that C has constant
scalar curvature, so that C has constant �-scalar curvature, and so that C ≈ (T P M, gP , J P , R P ).

1.4. Hyper-pseudo-Hermitian and hyper-para-Hermitian geometry

Fix a curvature model M = (V , 〈·,·〉, A). Let J := { J1, J2, J3} be a triple of linear maps of V . We say that J is a
hyper-pseudo-Hermitian structure if J1, J2, J3 are pseudo-Hermitian structures and if we have the quaternion identities:

J 2
1 = J 2

2 = J 2
3 = − id and J1 J2 = − J2 J1 = J3.

Similarly, we say that J is a hyper-para-Hermitian structure if J1 is a pseudo-Hermitian structure, if J2 and J3 are para-
Hermitian structures, and if we have the para-quaternion identities:

J 2
1 = − J 2

2 = − J 2
3 = − id and J1 J2 = − J2 J1 = J3.

Let Q := (V , 〈·,·〉, J , A) be the associated hyper-pseudo-Hermitian curvature model (resp. hyper-para-Hermitian curvature
model). We refer to [3,14,15] for further details concerning such structures. We define:

τ �
Q := τ �

J1
+ τ �

J2
+ τ �

J3
.

The structure group of a hyper-pseudo-Hermitian structure J is SO(3) and of a hyper-para-Hermitian structure is
SO(2,1) since we must allow for reparametrizations; τ �

Q
is invariant under this structure group and does not depend

on the particular parametrization chosen. We say that (M, g, J ) is an almost hyper-pseudo-Hermitian manifold or an almost
hyper-para-Hermitian manifold if J P defines the appropriate structure on (T P M, gP ) for all points P of M; we impose no
integrability condition.

Theorem 1.5. Let m � 8. Let Q = (V , 〈·,·〉, J , A) be an hyper-pseudo-Hermitian (resp. hyper-para-Hermitian) curvature model. There
exists a real analytic almost hyper-pseudo-Hermitian (resp. almost hyper-para-Hermitian) manifold Q and a point P of M so that Q
has constant scalar curvature, so that Q has constant �-scalar curvature, and so that Q ≈ (T P M, gP , J P , R P ).

The problems we are considering are related to the Yamabe problem where one seeks to find a Riemannian metric of
constant scalar curvature in the conformal class of a given compact Riemannian manifold of dimension m � 3; this has
been solved [1,17–19]. The complex analogue of the Yamabe problem is to find an almost Hermitian metric of constant
scalar curvature in the conformal class of a given compact almost Hermitian manifold of dimension m � 4; this problem
also has been solved [4]. Our setting is quite different as we wish to fix the curvature tensor at a point and thus we work
purely locally.

1.5. Outline of the paper

In Section 2, we review the Cauchy–Kovalevskaya Theorem as this is central to our discussion. In Section 3, we prove
Theorems 1.1, 1.2, and 1.3. In Section 4, we prove Theorems 1.4 and 1.5.

2. The Cauchy–Kovalevskaya Theorem

In this section, we state the version of the Cauchy–Kovalevskaya Theorem that we shall need; we refer to Evans [9]
pages 221–233 for the proof. Introduce coordinates x = (x1, . . . , xm) on R

m and let ∂i := ∂
∂xi

. Set x = (y, xm) where y =
(x1, . . . , xm−1) ∈ R

m−1. Let W be an auxiliary real vector space. In Section 3, we will take W = R to consider a single scalar
equation and in Section 4, we will take W = R

2 to consider a pair of scalar equations to deal with both the scalar curvature
and �-scalar curvature. Let

u := (u0, u1, . . . , um) ∈ W ⊗ R
m+1.

We suppose given a real analytic function ψ(x, u) taking values in W and a collection of real analytic functions ψ i j(x, u) =
ψ ji(x, u) taking values in End(W ) which are defined near 0. Given a real analytic function U : R

m → W which is defined
near x = 0, one sets u(x) := (u0(x), . . . , um(x)) where

u0(x) := U (x), u1(x) := ∂1U (x), . . . , um(x) := ∂mU (x).

Theorem 2.1 (Cauchy–Kovalevskaya). If det ψmm(0) 
= 0, there is ε > 0 and a unique real analytic U defined for |x| < ε which satisfies
the following equations:

ψ i j(x, u(x)
)
∂i∂ j U (x) + ψ

(
x, u(x)

) = 0,

U (y,0) = 0 and ∂mU (y,0) = 0.
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3. The proof of Theorems 1.1–1.3

Although Theorem 1.1 is well known, we give the proof for the sake of completeness. Let M be a small neighborhood of
0 ∈ V , let P = 0, let (x1, . . . , xm) be the system of local coordinates on V induced by a basis {ei} for V , and let

gik := εik − 1

3
Aijlkx j xl.

Clearly gik = gki . As gik(0) = εik is non-singular, g is a pseudo-Riemannian metric on some neighborhood of the origin. Let
gij/k := ∂k gi j and gij/kl := ∂k∂l gi j . The Christoffel symbols of the first kind are:

Γi jk := g(∇∂i ∂ j, ∂k) = 1

2
(g jk/i + gik/ j − gij/k).

As g = ε + O (|x|2) and Γ = O (|x|), we complete the proof of Theorem 1.1 by computing:

Rijkl = {∂iΓ jkl − ∂ jΓikl} + O
(|x|2)

= 1

2
{g jl/ik + gik/ jl − g jk/il − gil/ jk} + O

(|x|2)
= 1

6
{−A jikl − A jkil − Aijlk − Ailjk + A jilk + A jlik + Aijkl + Aikjl} + O

(|x|2)
= 1

6
{4Aijkl − 2Ailjk − 2Aiklj} + O

(|x|2)
= Aijkl + O

(|x|2). �
The following fact will be used in the proof of Theorem 1.3. Again, we include the proof for the sake of completeness.

Lemma 3.1. Let M be a conformally flat curvature model. There exists a pseudo-Riemannian manifold M and a point P of M so that
M is conformally flat, and so that M ≈ M(M, P ).

Proof. If A is conformally flat, then A is completely determined by its Ricci tensor. Let g := (1 + φ(x))〈·,·〉 where φ is
quadratic. The metric g is non-singular for x small, g is conformally flat, and φ can be chosen appropriately so that
ρ(0) = ρM:

φ =
∑

j

ε j jτ + (2 − 2m)ρM, j j

2(m − 1)(m − 2)
x2

j +
∑
i< j

2

2 − m
ρM,i j xi x j .

The proof now follows. �
If M is a pseudo-Riemannian manifold and if φ is a smooth function so that 1 + 2φ never vanishes, we can consider the

conformal variation

Mφ = (
M, (1 + 2φ)g

)
.

The metrics constructed to prove Theorem 1.1 and Lemma 3.1 were quadratic polynomials and hence real analytic. Theo-
rems 1.2 and 1.3 will follow from Theorem 1.1 and from Lemma 3.1, respectively, and from the following result which is
perhaps of interest in its own right:

Theorem 3.2. Let M be a real analytic pseudo-Riemannian manifold. Fix a point P of M. There exists an open neighborhood O of
P in M and a real analytic function φ so that 1 + 2φ > 0 on O, so that (O, (1 + 2φ)g) has constant scalar curvature, and so that
M(O, (1 + 2φ)g, P ) ≈ M(O, g, P ).

Proof. Let R be the curvature tensor of g and let τ be the scalar curvature of g . Let x = (x1, . . . , xm) be a system of local
real analytic coordinates on M centered at P and let y = (x1, . . . , xm−1). Let εi j := g(∂i, ∂ j)(0). By making a linear change of
coordinates, we may suppose that {∂i} is an orthonormal frame at P , or, in other words, that

εi j =
{

0 if i 
= j,

±1 if i = j.

Let φ be a real analytic function. We set φi := ∂iφ and φi j := ∂i∂ jφ. We assume

φ(y,0) = 0 and φm(y,0) = 0.

We consider the conformal variation h := (1 + 2φ)g . Since φ(0) = 0, h is non-singular on some neighborhood of 0. Let R̃ be
the curvature tensor of h and let τ̃ be the scalar curvature of h. We work modulo terms ψ(x, φ,φ1, . . . , φm) where ψ(0) = 0
to define an equivalence relation ≡. Then
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R̃ i jkl ≡ Rijkl + g jlφik − gilφ jk − g jkφil + gikφ jl,

τ̃ − τg(0) ≡ hilh jk{g jlφik − gilφ jk − g jkφil + gikφ jl}.
We set h jk = ε jk and compute

εilε jk{ε jlφik − εilφ jk − ε jkφil + εikφ jl} ≡ εikφik − mε jkφ jk − mεilφil + ε jlφ jl.

The coefficient of φmm is thus seen to be (2 − 2m)εmm 
= 0. Consequently, Theorem 2.1 is applicable and we may choose φ

to solve the equations:

τ̃ − τg(0) = 0, φ(y,0) = 0, ∂mφ(y,0) = 0.

The 0 and 1 jets of φ vanish at the origin. And the only possibly non-zero 2-jet of φ at the origin is φmm . The relation
ψ i jφi j ≡ 0 implies ψmmφmm(0) = 0. Thus all the 2-jets of φ vanish at the origin so R̃(0) = R(0) and h(0) = g(0). Theorem 3.2
now follows. �
4. The proof of Theorems 1.4 and 1.5

We begin our discussion by normalizing the 2-jets appropriately:

Lemma 4.1.

(1) Let C = (V , 〈·,·〉, J , A) be a pseudo-Hermitian (resp. para-Hermitian) curvature model. There exists a real analytic almost pseudo-
Hermitian (resp. almost para-Hermitian) manifold C = (M, g, J ) and a point P of M so C ≈ (T P M, gP , J P , R P ).

(2) Let Q = (V , 〈·,·〉, A, J ) be an hyper-pseudo-Hermitian (resp. hyper-para-Hermitian) curvature model. There exists a real analytic
almost hyper-pseudo-Hermitian (resp. almost hyper-para-Hermitian) manifold Q and a point P of M so Q ≈ (T P M, gP , J P , R P ).

Proof. We consider the squaring map T :Ψ → Ψ 2 mapping Mm(R) → Mm(R). We localize at the point Ψ = id and express
(1 + φ) → (1 + 2φ + φ2) to see the Jacobean is multiplication by 2 and hence invertible. Thus by the inverse function
theorem, there is a real analytic map S : Mm(R) → Mm(R) defined near id so S(Ψ )2 = Ψ . Furthermore if ψ2 = Ψ and if ψ

is close to id, then ψ = S(Ψ ).
Suppose given a complex model C = (V , 〈·,·〉, J , A). Set � = −1 if C is pseudo-Hermitian and � = +1 if C is para-

Hermitian. We use Theorem 1.1 to choose an analytic pseudo-Riemannian metric g so that gP = 〈·,·〉 and R P = A. The
difficulty now is to extend J to be a suitable structure J1 on T M . First extend J and 〈·,·〉 to a neighborhood of P to be
constant with respect to the coordinate frame. Express g(x, y) = 〈Ψ x, y〉 for Ψ a real analytic map defined near P taking
values in Mm(R) with Ψ (P ) = id. Let ψ = S(Ψ ). Since Ψ ∗ = Ψ , ψ∗ = ψ . Consequently g(x, y) = 〈ψx,ψ y〉 so g = ψ∗〈·,·〉.
Set J1 := ψ Jψ−1 = ψ∗ J . Then

J 2
1 = (ψ∗ J )2 = ψ Jψ−1ψ Jψ−1 = � id,

J∗
1 g = (ψ∗ J )∗

{
ψ∗〈·,·〉} = ψ∗{ J∗〈·,·〉} = −ψ∗�〈·,·〉 = −�g.

Thus (M, g, J1) provides the required structure. Assertion (1) follows; we use the same construction to prove asser-
tion (2). �

Let C := (M, g, J ) be an almost pseudo-Hermitian [� = −1] or an almost para-Hermitian [� = +1] manifold. Let 2r = m
and let {x1, . . . , x2r} be coordinates centered at P ∈ M so that {∂i} form an orthonormal frame at P and so

J (∂i) =
{

∂i+r if i � r,

�∂i−r if r < i � m = 2r.

We consider an almost pseudo-Hermitian (resp. almost para-Hermitian) variation

hξ,η := g + 2ξ{dx1 ◦ dx1 − � J dx1 ◦ J dx1} + 2η{dxm ◦ dxm − � J dxm ◦ J dxm}
where ξ(P ) = 0 and η(P ) = 0. Theorem 1.4 will follow from Lemma 4.1 and from:

Theorem 4.2. Let (M, g, J ) be a real analytic almost pseudo-Hermitian (resp. almost para-Hermitian) manifold. Fix P in M. There
exists an open neighborhood O of P in M and there exist ξ,η ∈ C∞(O) so that:

(1) {ξ,η} vanish to second order at P .
(2) Both τ and τ � are constant for (O,hξ,η, J ).
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Note that by (1), h = hξ,η is non-singular near P and Rh(P ) = R g(P ).

Proof. If h = g + 2Θ , we have

Rijkl = Θik/ jl + Θ jl/ik − Θil/ jk − Θ jk/il + · · · .
Thus the non-zero curvatures of interest are, up to the usual Z2 symmetries,

Rmrrm = �ηmm + · · · , Rm11m = −ξmm + · · · , Rm,r+1,r+1,m = �ξmm + · · · .
This leads to the same formulas in both the pseudo-Hermitian and in the para-Hermitian settings:

τ = −4ε11εmmξmm − 2ηmm + · · · ,
τ � = 0ε11εmmξmm − 2ηmm + · · · .

These two equations are linearly independent. Consequently the vector valued version of the Cauchy–Kovalevskaya theorem
implies we can solve

τ h − τ g(0) = 0 and τ �,h − τ �,g(0) = 0

with ξ(y,0) = ξm(y,0) = η(y,0) = ηm(y,0) = 0. Again, the only possible non-zero 2-jet is ηmm and ξmm and those are seen
to be zero by the equation. �

The proof of Theorem 1.5 follows similar lines. Let J 2
i = �i id. We may decompose V = V 1 ⊕ · · · ⊕ V� where 4� = m and

where each V i is invariant under the structure J . We set

Ξi := dxi ◦ dxi − �1 J∗
1 dxi ◦ J∗

1 dxi − �2 J∗
2 dxi ◦ J∗

2 dxi − �3 J∗
3 dxi ◦ J∗

3 dxi .

We then consider variations of the form hξ,η := g + 2ξΞ1 + 2ηΞm . It is then immediate that h is invariant under the action
of J . We prove Theorem 1.5 by computing:

τ = −8ε11εmmξmm − 6ηmm + · · · , τ � = 0ξmm − 6ηmm + · · · . �
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