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In this paper we propose a system based on a network of wearable accelerometers and an off-the-shelf
smartphone to recognize the intensity of stationary activities, such as strength training exercises. The
system uses a hierarchical algorithm, consisting of two layers of Support Vector Machines (SVMs), to first
recognize the type of exercise being performed, followed by recognition of exercise intensity. The first
layer uses a single SVM to recognize the type of the performed exercise. Based on the recognized type
a corresponding intensity prediction SVM is selected on the second layer, specializing in intensity predic-
tion for the recognized type of exercise. We evaluate the system for a set of upper-body exercises using
different weight loads. Additionally, we compare the most important features for exercise and intensity
recognition tasks and investigate how different sliding window combinations, sensor configurations and
number of training subjects impact the algorithm performance. We perform all of the experiments for
two different types of features to evaluate the feasibility of implementation on resource constrained
hardware. The results show the algorithm is able to recognize exercise types with approximately 85%
accuracy and 6% intensity prediction error. Furthermore, due to similar performance using different types
of features, the algorithm offers potential for implementation on resource constrained hardware.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Physical activity is an important component of a healthy life
style. Evidence suggests that regular exercise participation results
in improvements in the function of the cardiovascular system
and the skeletal muscles [1] and significantly reduces the risk of
developing different chronic diseases, such as hypertension, obe-
sity, depression, and cardiovascular diseases [2–5].

Most health guidelines prescribe the recommended physical
activity intake in terms of exercise duration and intensity [2].
While exercise duration can simply be measured with a stopwatch,
exercise intensity is not as straightforward to capture. This is par-
ticularly true for stationary indoor exercises such as weightlifting
and similar strength training activities that are unable to leverage
the capabilities of the Global Positioning System (GPS) sensor.
Speed and position, derived from the GPS data, can accurately
represent the intensity of cardio training activities such as running
or cycling, but are not suitable for activities performed in place
such as upper body exercises. Capturing the intensity of such exer-
cises is equally important, as studies have shown strength training
is an important component of a balanced exercise regimen [6].
Additionally, exercise intensity awareness is important as under-
training fails to deliver optimal training benefits [7], while over-
training results in excessive exhaustion and consequently loss of
exercise motivation [8]. Furthermore, appropriate exercise inten-
sity is not only important for leisure activities. Studies have shown
that in the medical rehabilitation environment, inappropriate exer-
cise intensity could lead to injuries or even death in specific cases
[9].

In this work, we introduce a hierarchical algorithm for detecting
self-perceived intensity of strength training exercises. We define
intensity as a derivative of Borg’s rating of perceived exertion
[10]. The algorithm uses two layers of supervised learning classi-
fiers to first recognize the type of the exercise being performed
and to detect the intensity of the exercise once its type has been
recognized. The following allows us to perform intensity recogni-
tion more accurately and makes the algorithm easily extendible,
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as new exercises can be included with minimal interference with
the existing classifiers.

We evaluate the algorithm for different upper body exercises
using a set of wearable accelerometers mounted on the upper body
of participating subjects. However, due to the modular hierarchical
approach, the algorithm could easily be extended to support arbi-
trary exercises. We choose to relay solely on accelerometers, as
they are small and cheap and have already been validated for mea-
suring activity intensity [11]. We investigate whether the sensors
provide sufficient information to derive exercise intensity informa-
tion for two distinct types of acceleration features, namely single-
sensor (SS) and multi-sensor (MS) features. We define SS features
as features calculated from a single sensor in real-time. Conse-
quently, raw data does not need to be communicated between
sensors, which improves the sensor autonomy. In contrast, we
define MS features as those based on acceleration data from at
least two distinct sensors, thus requiring raw data to be transferred
either between sensor nodes or to a common gateway, such as a
smartphone. The paper provides the following contributions:

� A hierarchical algorithm for intensity recognition of strength
training exercises.

� Evaluation of the algorithm in terms of exercise type recogni-
tion accuracy and intensity prediction error for a set of upper
body exercises.

� Comparison of the algorithm performance for two distinct
groups of features.

� A study of using the algorithm with different sliding window
configurations, sensor setups, and number of training subjects.

The rest of the paper is organized as follows. In Section 2 we
briefly describe the related work. Section 3 contains a short over-
view of the system proposed. Section 4 outlines the algorithm
and explains individual processing steps. We describe the evalua-
tion protocol in Section 5 and provide results in Section 6. A short
discussion of limitations of the proposed approach is presented in
Section 7 before we conclude the paper in Section 8.
2. Related work

There have been several industrial and academic attempts
investigating quantitative observations of stationary activities,
such as strength training and rehabilitation exercises. Most of the
existing approaches are based on video [12,13], garment [14,15],
or wearable sensors. Since our approach uses wearable sensor,
the rest of this chapter outlines some of the relevant work using
wearable technology.

In [16] authors propose a Wireless Body Area Network of
accelerometers to monitor biometric parameters while exercising.
The sensors are positioned on the body of the person exercising
and are able to capture the correctness of exercise repetitions.
The authors define exercise correctness based on the body posture
and execution speed during exercise. However, the proposed
approach is very exercise specific and does not provide any evalu-
ation for a broader set of exercises.

Chang et al. [17] propose a system for monitoring free weight
exercises. The proposed solution, comprised of a smartphone and
two wearable sensors, is able to recognize different exercises along
with the number of repetitions performed. However, the system
does not report any information on the quality and correctness of
exercises being performed.

Similarly, myHealthAssistant [18] captures exercise repetition
count using a smart phone and a set of wearable sensors. The
authors leverage the modern smart phone processing capabilities
to deploy an algorithm based on a trainable classifier. The
algorithm is able to recognize exercise repetitions in real time with
minimal impact on overall system’s resources, but does not offer
any guidance on exercise correctness.

In [19] the authors propose an algorithm for spotting upper
body exercises and predicting the number of repetitions
performed. The algorithm is able to perform user independent
exercise recognition from a continuous stream of data provided
by an off-the-shelf smartphone placed in a commercial arm hol-
ster. However, similarly as in [17,18] the proposed algorithm is
not able to provide any information on exercise correctness.

In our previous work [20] we have proposed an approach that
was able to advance the solutions described by performing not
only exercise repetition counting, but also capturing exercise cor-
rectness for a range of different exercises. Exercise correctness
recognition was performed by detecting individual repetition’s
start- and end-points and consequently recognizing the exercising
tempo. Similar work has also been proposed by Spina et al. [21].
They have proposed a smartphone based motion rehabilitation
system for individual exercising of chronic patients. The system
is able to process motion sensor data online on the phone and
provide real-time acoustic feedback regarding the exercise perfor-
mance and quality. However, both approaches use a single sensor
device and are thus constrained to simple exercises only. Addition-
ally, only basic exercise correctness metrics, such as exercising
tempo, were considered.

We advance the related work by using a network of wearable
accelerometers with different groups of acceleration features and
by predicting another exercise correctness metric, namely exercise
intensity.
3. System overview

The prototype system consists of an off-the-shelf smartphone
and five wearable sensors connected over bluetooth into a piconet
local area network. In such setting, the smartphone serves as a hub
responsible for receiving data from up to seven interconnected
sensors and doing all the heavy processing. Additionally, such
setting makes it possible to easily transfer data and processed
results from the smartphone to remote locations and thus enables
real-time supervision of the training by rehabilitation specialists or
personal trainers.

Five wearable 3-axis accelerometers were body-mounted on
different body locations of the participants. The sensors were
sampling acceleration data with a sampling frequency of 30 Hz,
which has turned out to be adequate for recognition of activities
with similar motion dynamics [20,22]. Due to the most discrimina-
tive type of motion, the following sensor mounting locations were
selected (as depicted on the left in Fig. 1):

� chest,
� left and right wrist, and
� left and right upper arm.

All the sensors were mounted using standard sports equipment,
such as cotton wrist and elbow bands and a textile chest strap.
Such installation of the sensors is low-cost and does not require
any specific or hard to acquire equipment. Furthermore and most
importantly, the placement of the sensors is not obstructing the
exercise execution in any way.
4. Hierarchical algorithm

This section describes the hierarchical algorithm for predicting
exercise intensity. The idea of the algorithm is to break the inten-
sity recognition problem into two sequential tasks and solve each



Fig. 1. Exercise recognition pipeline. Raw data is extracted from sensors depicted on the left. Features are extracted from raw data and passed to the hierarchical algorithm.
Layer 1 classifier (dashed blue box) recognizes the type of exercise. Layer 2 classifiers (solid red box) are used to predict exercise intensity once its type has been recognized.
At the end, both, exercise type and intensity are known. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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one independently. We design a two-step algorithm that first rec-
ognizes the type of the executed activity, followed by recognition
of exercise intensity. The motivation for such an approach is based
on the following observations:

1. different types of exercises are often reflected in different pat-
terns of the acceleration signal, independent of the exercise
intensity and

2. similar exercise intensities are reflected in a similar accelera-
tion pattern, which is usually local and specific for a particular
type of exercise.

This enables us to detect the intensity of various exercises using
two layers of predictive models with different specializations. The
first layer exploits the first observation and is used to recognize
only the type of the performing exercise, ignoring all the intensity
information. The second layer is based on the second observation
and only recognizes the intensity of known exercise patterns. This
allows us to detect exercise specific features and use them for
intensity prediction. Fig. 2 provides visual motivation for the
approach, depicting acceleration data for the low (first row) and
high (second row) intensity lateral lift exercise. Acceleration data
is shown for sensors placed on three different body locations
represented in individual columns (chest, right wrist and elbow,
respectively). A repetitive pattern pertaining to a series of repeti-
tions is clearly visible. While in the scope of this paper we do not
perform any exercise segmentation and repetition detection, an
approach similar to the one we have proposed in [20] could be
adapted to achieve this. Multisensor comparison of the same
exercise performed with different intensities shows that while
the signals in general look similar there are some obvious differ-
ences between high and low intensity exercises. In the case of
the high intensity exercise there is much more motion registered
by the chest sensor. This can be explained by the subject’s upper
body swinging while trying to perform the exercise with heavier
weights. Furthermore, the acceleration amplitudes during the high
intensity exercise are higher due to less controlled and conse-
quently faster movement. Finally, the figure also shows that the
high intensity signals are less stable, due to subjects not being able
to perform those exercises as smooth as exercises with lower
intensity. While similar properties can be observed for different
exercises, they are not exactly the same, mostly varying in partic-
ipating sensor channels, amplitudes, etc. Thus, different models are
used to capture the specifics of individual exercises. Moreover,
such approach makes the algorithm easily extendible, as new exer-
cises can be added by retraining the first level and only adding the
appropriate model to the second layer.

Fig. 1 depicts the exercise recognition pipeline and outlines the
hierarchical structure of the algorithm. We used a supervised
machine learning algorithm to implement the predictive models
on different layers. More specifically, Support Vector Machines
(SVM) were chosen due to their previous use in similar physical
activity studies [19,23]. The following sections provide more infor-
mation on the preprocessing steps, selected features and algorithm
details.
4.1. Preprocessing

Two preprocessing steps are applied to the raw data to trans-
form the acceleration information into a form suitable for predic-
tive modeling. The steps used are:

� temporal alignment and
� uniform resampling.

In the temporal alignment step, we align each acceleration
frame according to it’s sampling time. Time synchronization is per-
formed based on the arrival time of each frame to the smartphone.
This means that we simply discard the internal sampling time
information for each local sensor and consider only the time
recorded by the central component of our network, the smart-
phone. This step does not influence the algorithm accuracy, since
the latency of the bluetooth data transfer is negligible in relation
to the dynamics of the movement we are trying to capture.

To decrease the computational complexity of the algorithm,
temporally aligned data is then uniformly resampled with a
sampling frequency of 25 Hz. Consequently, features calculated
in the next step of the algorithm can easily be extracted without
any temporal arithmetic. Preprocessing is performed indepen-
dently for each of the three sensor channels, resulting in a total
of 15 aligned streams of acceleration data.
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Fig. 2. Examples of acceleration signals for the LL exercise. In each column data from a particular sensor location is shown (left to right: chest, right wrist, right elbow). The
first row represents sensor data of the lowest exercise intensity, the second row of the highest. Individual sensor channels are depicted with different colors (X: black, Y: red,
Z: blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Features used along with their types (SS: single-sensor, MS: multi-sensor) and formal
definitions. Notation: N is the number of frames in the sliding window, i is the index
of the individual frame, a and b represent individual sensor channels
ða; b 2 fChests ;Wristsr ; Elbow

s
rg; r 2 fLeft;Rightg; s 2 fx; y; z;mg; a – bÞ.

Name Type Definition

Minimum SS, MS minðaÞ = lowest ai; i ¼ 1;2; . . . ;N
Maximum SS, MS maxðaÞ = highest ai; i ¼ 1;2; . . . ;N
Range SS, MS ranðaÞ ¼ maxðaÞ �minðaÞ
Arithmetic mean SS, MS meanðaÞ ¼ 1

N

PN
i¼1 ai

Standard deviation SS, MS sdðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 ðai �meanðaÞÞ2

q

Root Mean Square SS, MS rmsðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N a21 þ a22 þ � � � þ a2N
� �q

Correlation MS
cða; bÞ ¼

PN

i¼1
ðai�meanðaÞÞðbi�meanðbÞÞ
ðN�1ÞsdðaÞsdðbÞ
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4.2. Feature engineering

Preprocessed data from the previous step is used to construct
multiple aggregated features that are later on used to train and
classify the type and intensity of the exercises. The features were
calculated from raw acceleration data recorded in x; y, and z direc-
tion of individual sensor. Additionally, for each sensor, a magnitude

(m) value was calculated m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p� �
. A sliding window

approach is used to calculate features from the temporal stream
of acceleration information. The sliding window parameters were
chosen based on the results of a comparison study of four different
sliding window sizes and two different overlaps. Feature extraction
significantly reduces the dimensionality of the problem and allows
more efficient implementation of the predictive models on each
layer.

The calculated features are grouped into single-sensor (SS) and
multi-sensor (MS) features, based on the number of sensors partic-
ipating in the calculation of each individual feature. While MS fea-
tures provide additional information about temporal interaction
between different parts of the body, they significantly impact the
autonomy of the system, as raw data has to be transferred over
the network constantly. On the other hand SS features can be
precalculated on each sensor node, which significantly decreases
the network load and increases the autonomy of the system.
Table 1 outlines the features used, along with the feature type
information and instructions on how the features can be calcu-
lated. MS features type includes all the SS features along with
the correlation information between different sensor nodes. While
calculating correlation is much more expensive then calculating
the other features, we hypothesized that it will allow us to capture
more complex motion information, such as synchronicity of the
upper extremities movement [24].
4.3. Classification

Calculated features were fed into two layers of SVM classifiers,
the first doing type and the second doing intensity recognition. Fol-
lowing the recommendations on the SVM usage [25], the features
were first scaled and centered. No feature selection was performed
for statistical models on individual levels. Thus, all features calcu-
lated in the previous step of the algorithm were passed to SVM
classifiers for exercise type and intensity recognition. Due to exer-
cise types expressed as nominal groups and intensity expressed as
a number denoting the rating of perceived exertion, the classifier at
the first layer performed classification, while the classifiers at the
second layer performed numerical regression. In addition to
the six exercise classes, the first layer was also able to recognize
the activity as non-exercise activity in case the subject was not
exercising.



Fig. 3. Overview of exercises performed in the experiment. Each row contains a
sequence of execution steps for an exercise. The exercise are depicted in the
following order: biceps, triceps, front vertical lift, lateral vertical lift, rowing,
overhead extension.
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Due to the ability to detect non-linear relations, Gaussian Radial
Basis Function (RBF) kernel was used for SVM classifiers on both
layers. For each of the predictive models, parameter tuning of com-
plexity (C) and radius of the RBF kernel (r) was performed using the
grid search approach. The selected parameters C ¼ 2 and r ¼ 0:01
where used through all of the experiments.

5. Evaluation

Here we describe the experimental protocol used to evaluate
the accuracy of the algorithm. We first, outline the demographics
of the participants, explain the evaluation procedure and describe
the sensors used in the experiment. Finally, we give a brief over-
view of the exercises used in the experiment along with their
descriptions and reasons for inclusion.

5.1. Participants

To evaluate the algorithm 11 healthy individuals (3 female, 8
male; age: 27� 4:5 years) were recruited to perform exercises
depicted in Fig. 3. Prior to performing the exercises all individuals
have signed an informed consent explaining the protocol of the
experiment. Moreover, an active IRB protocol for measurements
of human activities with wearable sensors was in place.

Each individual performed ten repetitions of all exercises
repeating the process with four different weights, which resulted
in a total of 264 data tracks, 44 per each exercise. The load was
selected according to the gender of the participant. Female subjects
were asked to execute the first series without any load, followed
by 3 lbs, 9 lbs and 15 lbs weights. Male subjects carried out the
exercises using 3 lbs, 8 lbs, 15 lbs and 20 lbs weights. All partici-
pants were first shown an instructional video, demonstrating the
correct execution of exercises with additional practical advice for
optimal performance. Similar instructional videos, but shorter,
were shown to the subjects before each individual exercise to
remind them of proper execution.

During the experiments, the following data was collected for all
subjects: (i) acceleration from five body mounted accelerometers
(Shimmer Research, Dublin, Ireland), (ii) 3D motion using a motion
capturing system Impulse (PhaseSpace Inc., San Leandro, CA), and
(iii) video. Only acceleration data was used as an input to the pro-
posed algorithm. The motion capturing system, consisting of 10
cameras in a circular configuration, was solely used as a reference
for determining the start- and end-points for each series and rep-
etition. Similarly, the video was used for annotation of individual
activities with appropriate exercise type and load information. To
synchronize different sensor streams each subject was asked to
perform a clapping motion prior to starting the first exercise. This
motion was then manually looked for in individual sensor streams
and used to align the signals.

Furthermore, after each series of repetitions, participants were
asked to self-assess the intensity of the exercise using the Borg’s
rating of perceived exertion (RPE) [10]. We have decided to use a
subjective measure of intensity rather than an objective one (e.g.
heart rate), as the available objective measures were not able to
provide deterministic reference data. It is well known that
sensor-observed heart rate changes are delayed with respect to
actual intensity changes [26], however this lag is not constant
and depends on different factors, such as age, gender and fitness
level of the person. Due to all of our exercises being fairly short,
such misalignment would impact a significant portion of our data.
However, to make the Borg’s RPE a bit more robust to operation by
inexperienced user, an additional step was introduced. As
described by the Eq. (1) Borg’s RPE was further normalized for each
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participant (index i), resulting in a number between 0 and 1, where
0 represented the lowest and 1 the highest perceived intensity. The
normalization was performed to minimize the effects of partici-
pants having no prior experience with the Borg’s scale and conse-
quently using different values for e.g. the highest perceived
intensity. Normalized RPE (NRPE) was then used as a ground truth
for evaluating exercising intensity.

NRPEi ¼ RPEi �minðRPEiÞ
maxðRPEiÞ �minðRPEiÞ ð1Þ
5.2. Exercises

A set of six upper body strength training exercises was chosen
to evaluate the algorithm. Fig. 3 depicts the sequence of execution
steps for each exercise. Due to the limited number of sensors being
able to connect in a bluetooth piconet and the fact that in the past
the upper body received much less attention in terms of movement
quality evaluation [27], only upper body exercises were chosen.

All of the exercises with the exception of the triceps exercise
were performed using both upper limbs. Although there are ver-
sions of the triceps exercise involving both arms, we decided to
use the single arm version. The main reason for this was the partic-
ipant’s safety, as this exercise was quite strenuous to perform with
the heavy load and involved movement around the participant’s
head. Thus, the participants were able to help themselves with
the free hand if the exercise load became too heavy.

Deliberately some exercises with similar motion paths were
chosen, to test the robustness of the algorithm against similar
movement. An example of such exercises are front (FL) and lateral
vertical lift (LL). Both exercises contain vertical movement, but dif-
fer in the orientation of the upper limbs while performing the exer-
cise. Thus, the FL exercise is performed in front of the subject,
while the LL exercise contains movement on the side of the sub-
ject’s body.

As described in the previous section, all the exercises were per-
formed with different loads, each load corresponding to a particu-
lar level of exercise intensity.
6. Results

The algorithm accuracy was evaluated in terms of exercise type
and intensity recognition using the leave-test-out validation proto-
col. The leave-test-out is a robust cross-validation protocol that
exploits the fact that the evaluation data was collected from differ-
ent subjects. It does not split the data into the test and training set
randomly, but rather uses data from some subjects for testing and
data from others for training. Consequentially, test and training
data never contain samples from the same subject, which makes
the algorithm very robust to overfitting problems. In our case,
the leave-one-user-out (LOUO) evaluation protocol was used,
which means the algorithm was trained on data from 10 subjects
and evaluated on the remaining subject. This was repeated until all
the subjects were exactly once included in the test set. However, to
facilitate easier comparison of the algorithm results, we additionally
present the results for the standard 10-fold cross-validation (CV)
evaluation protocol. In this case the dataset is divided into the test
and training set using stratified splits to retain class distributions.
We use 75% of data for training and the remainder for testing. CV
evaluation protocol is less rigorous as data from the same subject
can appear in both training and test set resulting in potentially overfit
classifiers. To alleviate this, we use CV only to report general results
in Table 4 and use the LOUO protocol for all other evaluations.

Furthermore, we evaluated the algorithm for two different
types of features, as outlined in Table 1. For each feature type
two numbers were reported, one expressing the accuracy of
classifying the exercise types in one of the seven classes, the other
expressing the error of intensity prediction. Thus, the first number
was desired to be as close to 100 as possible (denoting the accuracy
of 100%), while the lower second number meant a lower intensity
recognition error (10 denoting 10% intensity prediction error).

6.1. Sliding window configurations

Selecting an optimal sliding window length and overlap impor-
tantly impacts the accuracy of the algorithm. Based on a review of
similar studies [28–31,19,32], four different sliding window
lengths (1 s, 2 s, 4 s and 6 s) and two different overlap sizes (25%
and 50%) were evaluated to select a single sliding window param-
eter configuration to be used for all further algorithm evaluations.

Generating features from the same raw data stream with differ-
ent sliding window parameters produces a different number of
feature frames. E.g. using a 6 s sliding window with 50% overlap
yields 3045 feature frames, while using a 1 s sliding window with
25% overlap generates 36,689 feature frames on the same data.
Consequently, using all feature frames for each sliding window
parameters combination favors the combinations with smaller
window and overlap sizes, as using more feature frames for train-
ing the classifier produces more accurate prediction models. To
alleviate this bias, we have selected a random subset of 2000
feature frames for each sliding window configuration and per-
formed sliding window parameter evaluations against this subset
of feature frames. However, all further evaluations of the algorithm
were performed on the full dataset of features.

The accuracy of the algorithm for different sliding window con-
figurations was evaluated for both, type recognition and intensity
prediction. Table 2 reports the results as the difference between
individual sliding window combinations. Exercise type recognition
and intensity prediction error results are presented for two types of
features. Furthermore, Table 3 provides a more detailed view of
intensity prediction error for different types of exercises. In both
tables 0 in each row denotes the sliding window combination with
optimal exercise type recognition accuracy or intensity prediction
error. The numbers in other columns represent the difference in %
with respect to the optimal configuration.

The results clearly show that the 2 s window length with 50%
overlap yields the highest exercise recognition accuracy for both,
SS and MS features. In the case of intensity prediction error, the
optimal sliding window parameters are split between 1 s (SS)
and 2 s (MS) sliding window length with 50% overlap. However,
detailed results in Table 3 show that for SS features the 2 s combi-
nation still produces the lowest intensity prediction error for 3 out
of 6 exercises (B, FL, OE), while the 1 s combination results in the
lowest intensity prediction error only for a single exercise (LL). Fur-
thermore, using the same sliding window combination for exercise
type recognition and intensity prediction has the advantage of
generating features only once, which is especially important in
resource limited wearable systems. Thus, all further experiments
are performed with the 2 s sliding window length and 50% window
overlap.

6.2. Algorithm accuracy

Table 4 presents the algorithm accuracy for 2 s sliding window
length with 50% overlap. The results, presented for the LOUO and
CV evaluation protocol, show that the algorithm performs similarly
with both types of features. As LOUO evaluation results are
obtained using a more rigorous validation procedure, we used
those numbers to report the algorithm performance. However, to
facilitate comparison with approaches using CV, we additionally
provide CV results. As expected exercise type recognition accuracy



Table 2
Exercise type recognition accuracy and intensity prediction error (both in %) for different sliding window configurations. In each row 0 denotes the sliding window configuration
with optimal accuracy and error, while other configurations are expressed as a relative difference with respect to the best one. Lower numbers for exercise type recognition
represent lower accuracy, higher numbers for intensity prediction denote higher error.

1 s 2 s 4 s 6 s

25% 50% 25% 50% 25% 50% 25% 50%

Type SS �3.2 �4.6 �4.5 0 �1.7 �3.9 �8.1 �6.3
MS �3 �3.9 �0.3 0 �2.6 �1.9 �3.5 �3.9

Intensity SS 0.2 0 1.2 0.9 3.1 2.6 2.3 2.1
MS 0.3 0.6 0.3 0 1.8 2.1 1.4 1.3

Table 3
Intensity prediction error (in %) for individual exercises and different sliding window configurations. In each row 0 denotes the sliding window configuration with the lowest
intensity prediction error, while other configurations are expressed as a relative difference with respect to the best one. Higher number represents higher intensity prediction
error.

1 s 2 s 4 s 6 s

25% 50% 25% 50% 25% 50% 25% 50%

SS B 1.7 0.6 0.8 0 1 1.3 1.7 1.8
FL 0.4 0.4 0.5 0 0.5 1.4 1.8 2.2
LL 0.6 0 1 0.4 0.5 0.2 0.3 0.5
T 0 0.4 0 0.8 1.9 2.3 1.3 2.3
R 0.9 0.9 0.8 1 0 0.3 0.3 0.6
OE 0.4 0.4 0.4 0 0.2 0.4 0.1 0.1

MS B 0.9 0.9 0.6 0 0.4 0.7 0.8 0.6
FL 0.3 0.4 0.5 0.3 0.4 0.3 0.2 0
LL 0.9 0.7 0.7 0.5 0.6 0.6 0.4 0
T 0.1 0.2 0.5 0 0.8 1.3 1.5 2.2
R 0.1 0 0.9 0.6 0.6 0.4 0.7 0.8
OE 0.5 0.6 0.1 0.1 0 0 0.4 0.2

Table 4
Algorithm type and intensity recognition accuracy (mean ± standard deviation) for
single (SS) and multi sensor (MS) features, calculated for the leave-one-user-out
(LOUO) and cross validation (CV) evaluation protocol.

Type accuracy (%) Intensity error (%)

LOUO CV LOUO CV

SS 84:2� 11:3% 92:4� 0:4% 6:6� 2:5% 1:2� 0:1%
MS 86:1� 8% 93:6� 0:5% 5:7� 0:6% 1:2� 0%
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and intensity prediction error are slightly better for MS features,
mostly due to additional information introduced by sensor to sen-
sor correlations. However, the difference in type recognition accu-
racy is less than 2%, while the intensity prediction error is only 1%
off, which makes the algorithm very useful for SS implementation
on resource-constrained sensors.

We additionally evaluated exercise type recognition accuracy
and intensity prediction error for individual exercises. Table 5
shows that the algorithm had the most problems recognizing the
front (FL) and lateral lift (LL) exercises. The following was expected
as those exercises were deliberately chosen to test the algorithm’s
robustness to exercises with similar movement. However,
Table 5
Column-wise normalized exercise type recognition confusion matrix for MS features
(in %). Rows represent actual exercise labels, while columns show algorithm
predictions. To improve the readability, the cells with the value 0 are left blank.

NA B T LL FL R OE

NA 79.2 8 16.1 11.2 15.5 3.4 3.4
B 3 92
T 6.5 83.9
LL 3.7 75.4 7
FL 3 13.5 77.5
R 2.2 96.6
OE 2.3 96.6
although the algorithm frequently confused those two exercises,
it was still able to achieve 75% recognition accuracy for them.
Moreover, the algorithm more frequently misclassified triceps (T)
and FL exercises as non-exercise activity (NA). The following was
due to those exercises being very strenuous to perform with heavy
loads. Thus, the subjects took more time between individual repe-
titions while performing those exercises, making the algorithm
infer they stopped exercising. However, the problem is a conse-
quence of frame-based classification and could easily be alleviated
by performing decisions on a higher level, taking into account
sequences of subsequent frames. E.g. if a one second NA activity
is detected in the middle of a five seconds exercise activity, it’s
reasonable to infer that the NA activity is misclassified. A majority
voting approach could be used to further improve the type
recognition accuracy and provide decisions based on the dominant
exercise type in a sequence of frames.

Table 6 depicts individual exercise intensity recognition errors
for both feature types. Similarly as with the overall intensity recog-
nition, the mean intensity prediction error was only slightly lower
for most of the exercises using MS features. This offers promising
potential for developing resource constrained solutions, as the
use of MS features does not significantly improve intensity recog-
nition error for any exercise. The results show that the algorithm
had the least trouble recognizing biceps (B), rowing (R) and over-
head extension (OE) exercises, while similarly to exercise type
recognition was more frequently struggling with front lift (FL),
Table 6
Mean and standard deviation of intensity prediction error (in %) for individual
exercises.

B FL LL T R OE

SS 3.8 ± 2 9.2 ± 6.7 7.2 ± 2.5 8.9 ± 8.3 5.5 ± 3.9 5.1 ± 3.6
MS 4.5 ± 2.3 6.7 ± 3.6 7 ± 2.4 7.1 ± 3 5.1 ± 3.1 3.9 ± 2.1



Table 8
A list of top 10 most important features (in decreasing order) used for predicting
intensity of different exercise types. Each features is expressed as a combination of
the statistical function (Table 1), sensor placement (C: chest, W: wrist, E: elbow; R:
right, L: left) and acceleration channel (m: magnitude, x, y, z).
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lateral lift (LL), and triceps (T) exercises. However, the mean error
for FL, LL, and T was still under 10% and thus fairly close to the
actual intensity the subjects perceived. Similarly as with type
recognition, temporal aggregation can be used to additionally
improve the results. Currently, the intensity recognition error is
obtained for individual frames. However the intensity could signif-
icantly fluctuate in subsequent frames by going from easy (0.1) to
hard (0.9) and then back to easy (0.2). Such kind of intensity fluc-
tuation is not realistic and could be eliminated by introducing a
kind of central measure of tendency calculation, such as median,
mode or geometric mean, on a per exercise basis.

6.3. Feature importance

To depict the structure of individual statistical models, we here
outline the most important features used for recognizing type and
intensity of different exercises. Due to space constraints we do not
provide the calculated importance scores for individual features,
but simply list them in decreasing order. While feature importance
scores allow detailed analysis of the degree a particular feature is
more or less important than other, listing the features in relative
order is sufficient to understand which sensors and statistical
methods are contributing the most towards recognition of a partic-
ular exercise aspect. A filter-based feature importance approach
was used for both, exercise and type recognition models. In case
of exercise type recognition ROC curve analysis was performed.
To estimate feature importance for exercise intensity prediction a
loess smoother was fit between the outcome and the predictor
and the R2 statistic was calculated to derive the relative measure
of feature importance. More detailed descriptions of the methods
used for calculating feature importance are available in [33].

Table 7 presents the 10 most important features used for recog-
nition of individual exercise types. The results clearly show that
the most important statistical functions were maximum (max),
root mean square (rms), and correlation (c) of different sensor
streams. While the features derived from the chest worn sensor
(C) were less frequently selected as being important for detection
of exercise types, there was no significant difference in participa-
tion of features derived from left or right arm-worn sensors. The
most important features consistently included correlations
between elbow- and wrist-worn sensors. The results also show
that features based on the magnitude (m) of individual sensor
streams were less frequently included in the top features list and
that the most informative features were based on single-axis
motion of individual sensor.

Table 8 provides the lists of top 10 most important features
used for predicting the intensity of individual exercises. There is
a clear difference in comparison to the most important features
Table 7
A list of top 10 most important features (in decreasing order) used for recognizing
different exercise types. Each variable is expressed as a combination of the statistical
function (Table 1), sensor placement (C: chest, W: wrist, E: elbow; R: right, L: left) and
acceleration channel (m: magnitude, x, y, z).
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used for recognizing exercise types. While correlation between
different sensor streams represented an important property used
for recognizing exercises, it was rarely highly ranked when predict-
ing feature importance. Standard deviation, range, minimum and
maximum were most frequently selected due to those features
being the most discriminative when recognizing different acceler-
ation amplitudes. Fig. 2 provides a visual intuition for this, showing
that sensors during low intensity training produce significantly
lower amplitudes. This is particularly obvious in the case of the
chest mounted sensor (first column), where almost no acceleration
variability was recorded during the low intensity exercise, while
substantial movement on more than one axis was registered dur-
ing high intensity workout. The results are also consistent with
the fact that in Table 8 the top three most important features for
the LL exercise were derived from the chest sensor. Furthermore,
in contrast to exercise type recognition, magnitudes were fre-
quently used for calculating top scoring features, most probably
due to the fact that the direction of the movement vector was
not as important as its size.
6.4. Different sensor combinations

Here we evaluate the algorithm accuracy for different sensor
combinations to find the optimal trade-off between the number
of sensors needed and the accuracy of the algorithm. Table 9 shows
exercise type recognition and intensity prediction results for sen-
sor configurations depicted in Fig. 4. The results are expressed as
a distance to the reference sensor configuration, consisting of all
the five sensors used in the experiment (S5). In case of exercise
type recognition positive distance means accuracy higher than
Table 9
Algorithm results (in %) for different sensor combinations in terms of type recognition
accuracy and intensity prediction error using single-sensor (SS) and multi-sensor
(MS) features. The results are expressed as a difference between a particular sensor
combination and the full sensor setup (S5).

Type rec. accuracy Intensity pred.
error

SS MS SS MS

S1 (Fig. 4a) �9.4 �11.3 3 4
S2 (Fig. 4b) �2.6 �1.8 0.5 2.2
S3 (Fig. 4c) �0.9 0.8 0.5 1.3
S4 (Fig. 4d) �1.2 0.3 0.8 0.9
S5 (Fig. 4e) 0 0 0 0
S6 (Fig. 4f) �1.5 �1.3 7.8 7.1
S7 (Fig. 4g) �3.1 �5.1 6.3 5.6
S8 (Fig. 4h) �1.7 �0.5 6.7 5.8



Fig. 4. Evaluated sensor combinations. Red spots depict sensor locations on a face-forward oriented body silhuete. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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those achieved by the reference configuration. In case of intensity
prediction, the numbers represent prediction errors and should
thus be lower and negative for better results.

The results show that the use of all five sensors achieves the
lowest intensity prediction error for both, SS and MS features.
However, in case of exercise type prediction, combination S3 and
S4 actually outperform the reference combination for MS features.
A possible reason for that could be the fact that a large number of
extra MS features introduces noise in the exercise classification
models and consequently degrades the results. Additionally, com-
binations S2, S3 and S4 yield much higher accuracy than combina-
tions S1, S6, S7 and S8. This clearly show that single arm sensor
setups are not capable of capturing full exercise dynamics and that
the chest sensor location does not add any significant information
and could safely be excluded without a serious impact on the algo-
rithm accuracy.
MS SS

Fig. 6. Intensity prediction error (in %) for different numbers of training subjects.
6.5. Number of training subjects

Finally, we investigate how the number of subjects used for
training the type recognition and intensity prediction models
impact the algorithm accuracy. This is important as an algorithm
that needs a large number of training subjects to train the super-
vised models would not be able to scale to a real world setting with
a variety of different test subjects.

To evaluate how the number of training subjects impacts the
algorithm, we train the algorithm’s supervised models with differ-
ent numbers of training subjects. We start by training the models
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Fig. 5. Exercise type recognition accuracy (in %) for different numbers of training
subjects.
with only one subject’s data and continue by iteratively adding
randomly chosen subjects, until there is only one subject left in
the test set. Figs. 5 and 6 depict the results for different number
of training subjects.

The results show that exercise type recognition accuracy gets
stable after the third subject has been added (Fig. 5). Adding addi-
tional subjects does not considerably improve exercise type recog-
nition accuracy. On the other hand, intensity prediction error
converges much later, after adding the sixth subject (Fig. 6). This
is expected as intensity prediction is a harder task to perform.
Additionally, the results reveal an interesting fact as by adding
additional subjects to the test set, the exercise type recognition
accuracy for both types of features converges, while in the case
of intensity prediction, adding test subjects mostly benefits the
MS feature group. The following means that for smaller training
sets SS features perform similarly to MS features, which is promis-
ing for developing resource constrained sensor setups.

7. Discussion

In the scope of the paper a hierarchical algorithm for recogniz-
ing strength training exercise type and intensity was proposed. The
results clearly show that wearable acceleration sensors present a
promising technology for performing automated exercise assess-
ment. In general, the algorithm was able to achieve 86% accuracy
when performing exercise type detection and reported an average
error of 6% when doing intensity prediction. It has to be pointed
out that the error was not constant across different exercises, with
some of them being easier to recognize than others. However, even
in worst case scenario, the algorithm was still able to correctly rec-
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ognize 75% of exercise types and commit only a 7% error when per-
forming intensity prediction. In Section 6 we have already outlined
some measures for improving the per exercise accuracy of the
algorithm, such as performing majority voting over a range of
consecutive classifier results to produce even more stable deci-
sions. Furthermore, in the current implementation, only time
domain features were used for performance evaluation of the algo-
rithm. Calculating additional features in the frequency domain
could potentially improve the algorithm results, particularly when
predicting exercise intensity. Fig. 2 clearly shows that low intensity
exercises (upper row) contain less high frequency components
than high intensity ones (lower row). Thus, adding additional fea-
tures encompassing frequency properties of the acceleration signal
could further improve the results.

Although exercises selected for the experiments were targeting
different muscle groups, all of them focused on the upper body.
The reason for this was the limitation of the number of sensors
imposed by the bluetooth piconet topology, described in Section 3.
Instead of spreading the sensors across the participant’s body, we
decided to position them redundantly on the same body parts
(e.g. wrist and elbow) to compare sensor importance for individual
exercises. However, due to modular structure of the proposed algo-
rithm, it is easy to accommodate for new exercise types. While the
first layer of the recognition framework needs to be retrained, the
second layer classifiers can stay intact and only need to be
extended with intensity prediction models for additional exercises.
Furthermore, results for evaluated exercises suggest that addi-
tional exercises including different muscle groups most probably
would not degrade the overall algorithm accuracy, as exercises tar-
geting different muscles follow different paths of motion and result
in distinct movement dynamics. Existing results confirm this
assumption, as exercises targeting similar muscles (FL, LL) produce
lower accuracy scores as exercises encompassing different muscle
groups (B, OE, R).
8. Conclusion

We have proposed an approach that uses a network of wearable
sensors along with an off-the-shelf smartphone to recognize exer-
cise intensity for a set of upper-body strength training exercises. To
perform the recognition, we proposed a hierarchical algorithm that
recognizes the exercise intensity in two sequential steps, by first
recognizing the type of the exercise and recognizing the intensity
of the exercise only once the type of the exercise is already known.
We first evaluated the algorithm with different sliding window
configurations. We have shown that using a sliding window of
length 2 s with 50% overlap produces the best results. We than
evaluated the algorithm for two groups of features with different
calculation complexities in terms of exercise type recognition
accuracy and intensity prediction error. The results showed, that
the algorithm achieves high exercise type recognition accuracy
(around 85%) and low intensity prediction error (around 6% of nor-
malized Borg’s RPE) for both feature groups. Furthermore, the
results showed that high intensity exercises are harder to
recognize as low intensity movement. Additionally, we evaluated
the algorithm for different sensor combinations and with differ-
ent number of training data. The results are promising, and
show, that the algorithm produces comparable results with only
a subset of sensors and training data used to train the prediction
models.

In the future we plan to expand our work by including addi-
tional exercise quality parameters, such as exercise posture and
dynamics. Additionally, we plan to include more rehabilitation
specific exercises to study the appropriateness of the algorithm
in the medical domain.
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