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SUMMARY

Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disease (MPD) initiated by ex-
pression of the p210-BCR-ABL fusion protein. We demonstrate in a murine model of p210-BCR-
ABL-induced MPD that gene targeting of Rac1 and Rac2 significantly delays or abrogates disease
development. Attenuation of the disease phenotype is associated with severely diminished p210-
BCR-ABL-induced downstream signaling in primary hematopoietic cells. We utilize NSC23766,
a small molecule antagonist of Rac activation, to validate biochemically and functionally Rac as
a molecular target in both a relevant animal model and in primary human CML cells in vitro and
in a xenograft model in vivo, including in Imatinib-resistant p210-BCR-ABL disease. These data
demonstrate that Rac is an additional therapeutic target in p210-BCR-ABL-mediated MPD.
INTRODUCTION

Chronic myelogenous leukemia (CML) is a clonal myelo-

proliferative disease (MPD) initiated by malignant transfor-

mation of hematopoietic stem cells (HSC). The charac-

terizing feature of this disease is the presence of the

Philadelphia Chromosome [t(9;22)(q34;q11)], a somatic

mutation in which the 30 region of the Abelson leukemia

virus (ABL) gene is fused to the 50 region of the breakpoint

cluster region (BCR) gene (Konopka et al., 1985; Shtivel-
Can
man et al., 1985; Daley et al., 1990; Kelliher et al., 1990;

Lugo et al., 1990). The p210 isoform of the resulting

BCR-ABL fusion protein is necessary and sufficient for

the development of CML (Daley et al., 1990). Expression

of p210-BCR-ABL, a constitutively active tyrosine kinase,

regulates a variety of signaling cascades, including Ras,

extracellular-signal regulated kinase (ERK), Akt, c-Jun-

activated kinase (JNK), p38, CrkL, signal transducer and

activator of transcription 5 (STAT5), and nuclear factor-

kB (NF-kB) (Ren, 2005); confers a proliferative advantage
SIGNIFICANCE

The introduction of tyrosine kinase inhibitors for the therapy of CML has extended the survival of CML patients by
inducing long-term hematologic remissions. However, some proportion of CML patients demonstrate p210-BCR-
ABL persistence at the molecular level and/or relapse with ABL kinase-inhibitor- resistant disease suggesting that
inhibition of this kinase activity alone is not sufficient to eliminate all leukemic cells. Here, we show that the com-
bined deficiency of Rac1 and Rac2 Rho GTPases significantly attenuates p210-BCR-ABL-induced proliferation in
vitro and MPD in vivo and confirm Rac as a therapeutic target in p210-BCR-ABL disease using a first generation
small molecule inhibitor.
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to cells; and induces abnormal adhesion and migration of

hematopoietic progenitor cells (Ramaraj et al., 2004; Zhao

et al., 2001). p210-BCR-ABL expression appears to be

directly responsible for the development of a transformed

phenotype (Koschmieder et al., 2005).

Although allogeneic bone marrow (BM) transplantation

is a curative treatment for CML, only �25% of CML pa-

tients are eligible for this therapy (Goldman, 1997). Imatinib

mesylate, an Abl kinase inhibitor, has been identified as an

effective treatment option for p210-BCR-ABL-mediated

leukemia (Druker et al., 1996). However, molecular remis-

sions in response to Imatinib are not uniform and kinase

domain mutations have been identified that are resistant

to Imatinib therapy (Gorre et al., 2002; Lowenberg, 2003).

Signaling proteins downstream of p210-BCR-ABL there-

fore may offer additional targets for treating p210-BCR-

ABL-persistent and Imatinib-resistant disease.

The Rac subfamily of Rho guanosine triphosphatases

(GTPases) plays an essential role in regulating hematopoi-

esis (Gu et al., 2003; Yang et al., 2001; Cancelas et al.,

2005; Cancelas and Williams, 2006). Rho GTPases are

Ras-like molecular switches that cycle between inactive,

GDP-bound and active, GTP-bound states. In hematopoi-

etic cells, Rac proteins integrate signals from growth

factor, chemokine, and adhesion receptors to induce

and coordinate a variety of cellular responses (Gu et al.,

2003). The Rac subfamily is comprised of three highly

homologous proteins: Rac1, Rac2, and Rac3. Rac2 is

expressed specifically in hematopoietic cells, while Rac1

and Rac3 are ubiquitously expressed (Moll et al., 1991;

Shirsat et al., 1990; Haataja et al., 1997). Although struc-

turally similar, Rac1 and Rac2 share distinct as well as

overlapping roles in the development and function of he-

matopoietic stem and progenitor cells (HSC/P). Rac1 is

required for engraftment of HSC into the stem cell niche

and regulates cell-cycle progression (Gu et al., 2003; Can-

celas et al., 2005), whereas Rac2 is important for retention

of HSC/P within the hematopoietic microenvironment

(Yang et al., 2001) and regulates survival (Gu et al.,

2003). Combinatorial expression of both proteins is nec-

essary for normal HSC adhesion and migration and sup-

ports long-term hematopoiesis (Gu et al., 2003; Cancelas

et al., 2005). Rac1 and Rac2 also regulate distinct aspects

of cytoskeletal reorganization (Filippi et al., 2004). The role

of Rac3 in hematopoiesis, which was initially cloned from

a CML-derived cell line (Haataja et al., 1997), has not yet

been fully defined.

Rac GTPases have been previously implicated in p210-

BCR-ABL-mediated transformation (Sini et al., 2004;

Renshaw et al., 1996; Skorski et al., 1998; Harnois et al.,

2003; Burridge and Wennerberg, 2004; Schwartz, 2004),

although the specific role(s) of individual Rac subfamily

members in the development of disease in vivo have not

been defined. Recent evidence also suggests that Rac3

plays a role in p190-BCR-ABL-mediated ALL, while

Rac1 and Rac2 do not appear to be hyperactivated in

these lymphoma lysates (Cho et al., 2005). This is of

particular relevance, since p190-BCR-ABL differs from

p210 in potentially important ways as it relates to RhoGT-
468 Cancer Cell 12, 467–478, November 2007 ª2007 Elsevier I
Pases. For instance, while p210-BCR-ABL binds to and

activates the Rho GTPases, apparently through the Dbl

homology domain, p190-BCR-ABL, which lacks this do-

main, cannot bind to Rho GTPases but can still activate

Rac1 and Cdc42 (Harnois et al., 2003) through activation

of the guanine exchange factor (GEF) Vav1 by BCR-ABL

(Bassermann et al., 2002). Rac GTPases have been shown

to regulate signaling pathways that also are downstream

of p210-BCR-ABL (Burridge and Wennerberg, 2004;

Schwartz, 2004). Together, these data suggest that Rac

GTPases may integrate multiple signaling components

of p210-BCR-ABL-activated pathways.

We utilized a retroviral murine model in gene-targeted

BM cells and analyzed primary human CML cells in vitro

and in vivo in a xenograft model to investigate the impor-

tance of Rac GTPase activation in the development and

progression of p210-BCR-ABL-mediated MPD. Here, we

show that Rac GTPases are activated by p210-BCR-

ABL, and the combined deficiency of Rac1 and Rac2

significantly attenuates p210-BCR-ABL-induced prolifer-

ation in vitro and MPD in vivo. Attenuation of the disease

phenotype is associated with severely diminished p210-

BCR-ABL-induced downstream signaling in primary he-

matopoietic cells. We utilize NSC23766, a small molecule

antagonist of Rac activation, to biochemically and func-

tionally validate Rac as a molecular target in both a rele-

vant animal model and in primary human CML cells in vitro

and in a xenograft model in vivo, including in Imatinib-

resistant p210-BCR-ABL disease. These data demonstrate

that Rac is an additional therapeutic target in p210-BCR-

ABL-mediated MPD.

RESULTS

Rac Is Hyperactivated in Chronic-Phase
CML HSC/P
Recent studies in cell lines have suggested that Rho

GTPases can be activated by p210-BCR-ABL in vitro

and in vivo (Skorski et al., 1998; Harnois et al., 2003). Since

the expression of p210-BCR-ABL in HSC appears to be

sufficient to induce a transformation phenotype, we first

analyzed whether Rac isoforms were hyperactivated in

human chronic phase CML HSC/P. Activation of Rac

was determined by p21-activated kinase (PAK)-binding

domain (PBD) pull-down assays in isolated CD34+ cells

from CML patients. We observed that Rac1, Rac2, and,

to a lesser degree, Rac3 were hyperactivated in CD34+

cells purified from peripheral blood of two CML patients

at diagnosis (Figure 1A). To determine the effect of p210-

BCR-ABL expression on activation of the Rac subfamily

of Rho GTPases in a murine model of p210-BCR-ABL

disease, we exogenously expressed p210-BCR-ABL in

primary murine HSC/P. 5-fluorouracil (5-FU)-treated low-

density BM (LDBM) cells were transduced with bicistronic

vectors expressing enhanced green fluorescent protein

(EGFP) either alone (empty vector, MIEG3) or with p210-

BCR-ABL (MSCV-p210-BCR-ABL) (Hawley et al., 1993).

Sorted, EGFP+ cells were starved and then stimulated

with stromal-derived factor-1a (SDF-1a), a chemokine
nc.
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known to induce migration of p210-BCR-ABL-expressing

HSC/P (Zhao et al., 2001). Expression of p210-BCR-ABL

in LDBM cells, confirmed by immunoblot, led to a >2-

fold increase in GTP-bound Rac (Figure 1B) compared to

MIEG3 transduced cells.

Rac1 and Rac2 Deficiency Significantly
Attenuates p210-BCR-ABL-Mediated MPD In Vivo
To determine whether and which Rac GTPases are re-

quired for the development of p210-BCR-ABL-induced

leukemogenesis in vivo, we utilized gene-targeted mice

deficient in Rac2 and with conditional (floxed) alleles of

Rac1 in a retroviral murine model of CML. 5-FU-treated

CreTg+;WT, CreTg+;Rac1flox/flox, CreTg+;Rac2�/�, and CreTg+;

Rac1flox/flox;Rac2�/� LDBM cells were transduced with

MIEG3 (control, empty vector) or MSCV-p210-BCR-ABL

and sorted for EGFP+ expression. Irradiated C57Bl/6

mice were transplanted with 50,000–75,000 of the EGFP+

transduced cells together with 500,000 unmanipulated

BM cells to assure the rescue of normal hematopoiesis in

the postirradiation period. Ten days posttransplant, recip-

ient mice were treated with polyI:C as previously described

(Gu et al., 2003; Cancelas et al., 2005) to delete floxed

Rac1 genomic sequences (hereafter designated Rac1D/D

Figure 1. Rac GTPases Are Hyperactivated in Chronic-Phase

Human CML HSC/P and Murine HSC/P Expressing p210-

BCR-ABL

(A) Primary human CD34+ BM or G-CSF-mobilized peripheral blood

cells and CD34+ chronic-phase CML peripheral blood cells (from

two different CML patients) were starved for 1 hr and analyzed for

Rac activation in a PAK-binding domain (PBD) pull-down assay.

Samples were blotted and analyzed for Rac1-GTP, Rac2-GTP,

Rac3-GTP, total Rac-GTP, and total Rac protein content.

(B) 5-FU-treated murine LDBM cells were transduced with either

MIEG3 or MSCV-p210-BCR-ABL, bicistronic vectors expressing

EGFP. The EGFP+ cells were sorted, serum-starved for 6 hours,

stimulated with 100 ng/ml SDF-1 for 5 minutes, lysed, and used in

a PAK-binding domain (PBD) pull-down assay. The ratio of GTP-bound

Rac to total Rac was determined by densitometry. The data represent

one of three experiments with similar results.
Can
mice). Recipient mice transplanted with MSCV-p210-

BCR-ABL-transduced CreTg+;WT or CreTg+;Rac1flox/flox

LDBM cells that were treated with PolyI:C uniformly devel-

oped CML-like MPD (leukocytosis, splenomegaly, pul-

monary hemorrhage, and extensive liver infiltration with

hematopoietic cells at necropsy) and died within forty

days posttransplant (Figure 2A), consistent with the MPD

phenotype, while all of the mice transplanted with MIEG3-

transduced WT or Rac1D/D cells were still alive at day 100

posttransplant (Table S1). Strikingly, mice transplanted

with p210-BCR-ABL-expressing CreTg+;Rac1flox/flox;

Rac2�/� cells that were treated with polyI:C to delete

Rac1 in the Rac2 null background (designated Rac1D/D;

Rac2�/� mice) showed significantly prolonged survival

(Figure 2A; p < 0.001). Nearly 50% of these mice were still

alive 100 days posttransplant. PCR analysis confirmed

loss of exon 1 of Rac1 in Rac1D/D and Rac1D/D;Rac2�/�

mice treated with polyI:C (Figure 2B). Clonal analysis by lin-

ear amplification-mediated polymerase chain reaction

(LAM-PCR) of BM cells from leukemic mice showed similar

and oligoclonal reconstitution of p210-BCR-ABL-express-

ing wild-type, Rac1D/D, Rac2�/� and Rac1D/D;Rac2�/�

cells (Figure 2C), suggesting that the delay in disease pro-

gression in these animals was not due to loss of p210-

BCR-ABL vector integration and expression. Southern

blot analysis confirmed the LAM-PCR study, showing

1–3 major clones/leukemia and no differences in the num-

ber of clones between genotypes (data not shown). All

recipient mice maintained peripheral EGFP+ cells through-

out the study, confirming sustained engraftment of p210-

BCR-ABL-expressing cells even in the absence of Rac1

and Rac2 (Figure 2D), a finding that is noteworthy due to

our previous observations that hematopoietic engraftment

of Rac1D/D;Rac2�/� HSC/Ps is rapidly lost in the absence

of p210-BCR-ABL (Cancelas et al., 2005). Survival of

mice transplanted with p210-BCR-ABL-transduced

Rac2�/� cells was intermediate to Rac1D/D;Rac2�/� mice

and significantly longer (p < 0.001) than the WT and

Rac1D/D mice (Figure 2A).

We next confirmed that the increased survival seen in

Rac-deficient, p210-BCR-ABL-expressing mice was not

related to defective engraftment of Rac-deficient HSC.

To analyze the homing and engraftment of p210-BCR-

ABL-expressing cells in the presence or absence of the

Rac GTPases, recipient mice were transplanted with

PKH26-labeled WT and Rac1flox/flox;Rac2�/� donor BM

cells transduced with p210-BCR-ABL. The percentages

of PKH26/EGFP-expressing cells in BM at 16 hr post-

transplantation were similar between the WT and

Rac1flox/flox;Rac2�/� animals, suggesting unimpaired

homing despite lack of Rac2 expression (Figure S1A),

consistent with our previous findings in normal hemato-

poietic cells (Cancelas et al., 2005). In addition, there

was an equivalent frequency of EGFP+Lin�Sca1+c-Kit+

cells observed in the BM of recipient mice transplanted

with either WT or Rac1flox/flox;Rac2�/� p210-BCR-ABL-

expressing cells 18 days posttransplant after deletion of

Rac1 sequences, suggesting that Rac-deficient HSC/P

maintain an early graft as efficiently as wild-type cells in
cer Cell 12, 467–478, November 2007 ª2007 Elsevier Inc. 469
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Figure 2. Rac GTPases Are Critical

Regulators of p210-BCR-ABL-Mediated

Leukemogenesis

(A) Kaplan-Meier survival curve of mice that

were transplanted with MSCV-p210-BCR-

ABL-transduced wild-type and Rac-deficient

cells. Mice demonstrating engraftment (moni-

tored by the percentage of EGFP+ cells in the

peripheral blood) of less than 1% at two con-

secutive time points were censored from the

study. Genotypes are abbreviated in all figures

as follows: WT, wild-type or flox allele at Rac1

and Rac2 loci, n = 30; Rac2�/�, wild-type or

flox allele at Rac1 and null allele at Rac2 locus,

n = 18; Rac1D/D, Cre-mediated null allele at

Rac1 locus and wild-type allele at Rac2 locus,

n = 8; Rac1D/D;Rac2�/�, Cre-mediated null

allele at Rac1 locus and null allele at Rac2

locus, n = 19. *p < 0.001 (log P rank test) be-

tween MSCV-p210-BCR-ABL-expressing WT

and Rac1D/D recipient mice and either BCR-

ABL-transduced Rac2�/� or Rac1D/D;Rac2�/�

groups.

(B) Representative PCR showing deletion of

the Rac1 floxed gene in the peripheral blood

of Rac1D/D and Rac1D/D;Rac2�/� recipient

mice 70 days posttransplant, as visualized by

the presence of the knockout (KO) band in

the representative Rac1D/D and Rac1D/D;

Rac2�/� animals. The presence of the wild-

type (WT) allele in these mice does not signify

expression of the Rac1flox/flox allele but rather

represents contribution from unmanipulated

BM cells coinjected with BCR-ABL-trans-

duced cells. Thus, the efficiency of loss of

exon 1 of Rac1 can be determined by compar-

ing the Flox band and the KO band in these

samples.

(C) LAM-PCR amplifying retroviral vector inser-

tion sites in p210-BCR-ABL-expressing BM

cells from mice reconstituted with wild-type,

Rac1D/D, Rac2�/� and Rac1D/D;Rac2�/� cells. 3/3 leukemic Rac1D/D;Rac2�/� animals tested demonstrated oligoclonal integration patterns.

(D) Percentage of EGFP+ cells in the peripheral blood of all surviving mice monitored over the course of the transplant. Data represent mean ± SD of all

the mice included in Figure 2A.
the presence of p210-BCR-ABL (Figure S1B). In agree-

ment with these data, there was no significant difference

in expression of the hyaluronan receptor, CD44, which

has recently been shown to play a specific and essential

role in the homing and engraftment of p210-BCR-ABL-

expressing leukemia-initiating cells (Krause et al., 2006)

either in vitro (Figure S1C), using cotransduced (Cre-YFP

and p210-BCR-ABL-EGFP) and sorted Rac1D/D;Rac2�/�

LDBM cells, or in vivo (Figure S1D), from animals injected

with p210-BCR-ABL-expressing Rac1flox/flox;Rac2�/�

cells, compared to p210-BCR-ABL-expressing wild-type

cells. Thus, these data suggest that prolonged survival

of mice transplanted with p210-BCR-ABL-transduced

Rac-deficient cells is not explained by reduced engraft-

ment of leukemia-initiating stem cells.

Phenotype of MPD in the Rac-Deficient Mice
p210-BCR-ABL-expressing WT mice rapidly developed

significant EGFP+ leukocytosis that persisted until death
470 Cancer Cell 12, 467–478, November 2007 ª2007 Elsevier I
(Figures 2D and 3A). p210-BCR-ABL-expressing Rac1D/D

mice succumbed to splenomegaly and pulmonary hem-

orrhage (Table S1), consistent with the MPD phenotype.

The majority of p210-BCR-ABL Rac2�/� mice showed

gradual progression of leukocytosis and eventually died

of MPD (Figure 3A; Table S2). Differential counts of the

peripheral blood from p210-BCR-ABL-expressing WT

and Rac2�/�mice�30 days posttransplant demonstrated

neutrophilia and the presence of immature granulocyte

precursors and blasts in the peripheral blood (Figures 3B

and 3C), consistent with the MPD previously described

in this model (Daley et al., 1990; Kelliher et al., 1990). As

expected, development of leukemia in these mice was

accompanied by a predominance of EGFP+ cells in the

blood (Figure 2D), BM, and spleen (data not shown).

EGFP+ cells in the spleen and BM of all p210-BCR-ABL-

transplanted WT, Rac1D/D, and Rac2�/� recipient mice

were uniformly Gr-1+/Mac-1+ (Table S2). In contrast to

these mice, p210-BCR-ABL-expressing Rac1D/D;Rac2�/�
nc.
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recipient mice showed normal peripheral blood mor-

phology at �30 days posttransplant in spite of significant

chimerism with EGFP+ p210-BCR-ABL-expressing cells

(Figures 2D, 3B, and 3C). The few p210-BCR-ABL-

expressing Rac1D/D;Rac2�/� mice that developed early

disease (arbitrarily defined as %69 days; 4/19 Rac1D/D;

Figure 3. Deficiency of Rac1 and Rac2 Expression Signifi-

cantly Delays or Appreciably Inhibits the Development of

Leukocytosis in BCR-ABL-Expressing Recipient Mice

(A) Time course showing average leukocyte counts in the peripheral

blood of recipient mice that were injected with either WT or Rac-defi-

cient LDBM cells transduced with MSCV-p210-BCR-ABL. WT, n = 30;

Rac2�/�, n = 18; Rac1D/D, n = 8; Rac1D/D;Rac2�/� n = 19. Data repre-

sent mean ± SD. Crosses represent time points at which no animals

were surviving for analysis.

(B) Differential counts show decreased frequency of blasts and other

immature myeloid progenitors in the peripheral blood of Rac1D/D;

Rac2�/� BCR-ABL-transduced recipient mice approximately 30 days

post-transplant, compared to the WT and Rac2�/� mice. Data repre-

sent mean ± SD. ANC, average neutrophil counts; MM, metamyelo-

cytes; M, myelocytes. WT, n = 7; Rac2�/�, n = 7; Rac1D/D;Rac2�/�,

n = 8. *p < 0.05 between BCR-ABL-expressing WT and Rac2�/�

mice and the BCR-ABL-transduced Rac1D/D;Rac2�/� group.

(C) Morphology of cells present in peripheral blood smears from repre-

sentative BCR-ABL-transduced WT and Rac-deficient recipient mice

approximately 30 days posttransplant. Myeloblasts (arrows) were

apparent in all mice except for BCR-ABL-recipient Rac1D/D;Rac2�/�

mice. Bars, 10 mm.
Can
Rac2�/� mice) had either a myeloid (Gr-1+/Mac-1+, 67%

of three animals tested) or lymphoid (B220+, 33% of three

animals tested) phenotype. One of the mice with a myeloid

phenotype developed a solid tumor in the spine that

showed high (86%) EGFP expression. The mice that suc-

cumbed to late disease (R70 days; 15/19 Rac1D/D;

Rac2�/� mice) had either a myeloid (Gr-1+/Mac-1+, 62%

of 13 animals tested), lymphoid (B220+, 23% of 13 animals

tested), or bilineage (myeloid and lymphoid; 15% of 13

animals tested) phenotype. Additionally, two of the p210-

BCR-ABL-expressing Rac1D/D;Rac2�/�mice with late on-

set disease developed solid tumors in the skull and brain,

with histochemical and histological features consistent

with CD68+ histiocytic sarcoma. Two of the p210-BCR-

ABL-expressing Rac1D/D;Rac2�/� mice developed solid

tumors in the spine with high (>70%) EGFP expression.

One of the animals with a high percentage (40%) of

CD3+ cells also presented with a tumor on the left kidney.

Activation of Signaling Cascades in Transformed
Cells of p210-BCR-ABL-Expressing Mice
These data show that loss of Rac1 and Rac2 expression

plays a key role in attenuation of the MPD phenotype,

but suggest that late molecular events may overcome

the loss of Rac1 and Rac2 function. To assess the status

of Rac activation in p210-BCR-ABL-expressing WT,

Rac1D/D, Rac2�/�, and Rac1D/D;Rac2�/�mice developing

MPD, we performed PBD pull-down assays on spleno-

cytes of diseased animals. Although Rac1 and Rac2

gene deletion was confirmed by PCR analysis (data not

shown), active GTP-bound Rac as detected by a pan-

Rac antibody was elevated in all p210-BCR-ABL-express-

ing leukemic mice tested (Figure 4A), suggesting that the

third member of the Rac subfamily, Rac3, may be acti-

vated in p210-BCR-ABL-expressing Rac1D/D;Rac2�/�

leukemic mice. Rac3 expression was confirmed in all leu-

kemic animals tested by immunoblot (Figure 4B, lower

panel) and PBD pull-down assays of splenocytes har-

vested from additional diseased animals showed

enhanced GTP-bound Rac3 in p210-BCR-ABL-expressing

leukemic mice, most clearly in the Rac2�/� and Rac1D/D;

Rac2�/� samples (Figure 4B, upper panel), suggesting

that Rac3 likely plays a key role in the eventual develop-

ment of CML-like MPD.

Activation of Rac by p210-BCR-ABL in the WT mice was

associated with increased baseline ERK, JNK, p38, Akt,

STAT5, and CrkL phosphorylation (Figure 4C). These

results are consistent with Rac signaling pathways previ-

ously implicated by us and others (Ren, 2005; Gu et al.,

2003). Activation of ERK, JNK, p38, and CrkL was similar

to WT mice in Rac1D/D mice, but was reduced in Rac2�/�

and nearly completely abrogated in Rac1D/D;Rac2�/�

splenocytes harvested from mice that developed MPD,

despite continued activation of BCR-ABL in p210-BCR-

ABL-expressing Rac1D/D;Rac2�/� splenocytes as deter-

mined by phospho-tyrosine immunoblots and increased

activation of Rac3 (Figures 4B and 4D). These biochemical

findings are strikingly in parallel with the survival curves of

p210-BCR-ABL-expressing mice. Phosphorylation of Akt
cer Cell 12, 467–478, November 2007 ª2007 Elsevier Inc. 471
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was reduced in all of the Rac-deficient mice compared

with WT mice. These data strongly suggest that activation

of multiple signaling pathways by p210-BCR-ABL is

dependent on Rac1 and Rac2. Interestingly, STAT5 phos-

phorylation was variably diminished in leukemic spleno-

cytes even in the absence of Rac2 and more severely

Figure 4. Rac GTPases Are Implicated in BCR-ABL-Mediated

Activation of Multiple Signaling Cascades

(A) Representative example of Rac activation (PBD) pull-down assays

performed on splenocytes harvested from MIEG3 and MSCV-p210-

BCR-ABL-transduced WT and Rac-deficient mice developing MPD.

Top panel (Rac-GTP) represents activated total Rac; lower panel

represents total Rac protein expressed by immunoblot.

(B) Representative example of PBD pull-down assays of splenocytes

harvested from leukemic animals to monitor Rac3 activation, using

a Rac3-specific antibody.

(C) Representative examples of immunoblot analyses of splenocytes

from BCR-ABL-expressing WT and Rac-deficient recipient mice de-

veloping MPD using phospho-antibodies specific to ERK, JNK, p38,

Akt, CrkL, and STAT5. b-actin was used as a loading control. For

each analysis, a minimum of three specimens from different mice

were analyzed with similar results.

(D) Activation of p210-BCR-ABL in BM cells harvested from deceased

or sacrificed leukemic mice. Phospho-p210-BCR-ABL expression is

demonstrated in leukemic WT, Rac1D/D, Rac2�/�, and Rac1D/D;

Rac2�/� BM cells with a phospho-tyrosine antibody. A minimum of

3 samples in each genotype confirmed phosphorylation of p210-

BCR-ABL in these samples. Expression of total p210-BCR-ABL and

c-Abl was visualized using a c-Abl antibody. As a positive control,

lysates from Ba/F3 cells stably expressing p210-BCR-ABL were ana-

lyzed.
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reduced but still detectable in the absence of both Rac1

and Rac2. p210-BCR-ABL, thus, may mediate activation

of this pathway via induced Rac3, and/or STAT5 may be

activated independently of Rac GTPases.

Rac Is a Molecular Target in p210-BCR-ABL-
Expressing Cells
These results strongly support the hypothesis that p210-

BCR-ABL signaling is dependent on Rac activation,

suggesting that Rac GTPases may be unique molecular

targets for CML therapy. We next used a genetic

approach to determine whether deficiency of Rac1 and

Rac2 influences p210-BCR-ABL-induced hyperprolifera-

tion of hematopoietic cells in vitro, a characteristic of this

retroviral model of p210-BCR-ABL expression. LDBM

cells were harvested from Rac1flox/flox and Rac1flox/flox;

Rac2�/� mice and cotransduced with MSCV-Cre-YFP

and either MIEG3 or MSCV-p210-BCR-ABL. Deletion of

Rac1 in the Cre-YFP-expressing cells was confirmed by

PCR analysis (data not shown). Proliferation of sorted

EGFP+ (Rac1flox/flox) and EGFP+/YFP+ (Rac1D/D;Rac2�/�)

cells was determined by thymidine incorporation and

cell counts. As shown in Figure 5A, p210-BCR-ABL-

expressing Rac1flox/flox primary hematopoietic cells dis-

played significantly increased proliferation compared to

MIEG3-transduced Rac1flox/flox cells. Rac1D/D;Rac2�/�

cells exhibited significantly reduced p210-BCR-ABL-

mediated hematopoietic cell proliferation, compared to

p210-BCR-ABL-expressing Rac1flox/flox cells, suggesting

that p210-BCR-ABL-mediated hyperproliferation of he-

matopoietic cells in vitro is dependent on activation of

Rac1 and Rac2 and further validating Rac GTPases as

key regulators of p210-BCR-ABL-mediated MPD.

To examine if pharmacologic inhibition of Rac in the

presence of p210-BCR-ABL leads to attenuated cell

proliferation, WT LDBM cells transduced with either

MSCV-p210-BCR-ABL or MIEG3 and sorted for EGFP+

expression were serum starved and incubated for 48 hr

in the presence of increasing concentrations of

NSC23766, a Rac-specific small molecule inhibitor that

has been shown to inhibit Rac1 and Rac2 (Gu et al.,

2003; Cancelas et al., 2005) and that we have found to

inhibit Rac1, Rac2, and Rac3 in BCR-ABL-transduced

LDBM cells (see Figure S2). NSC23766 does not inhibit

RhoA or Cdc42 (Gao et al., 2004). Although inhibition of

Rac activation with NSC23766 is reversible and less com-

plete than genetic deletion, p210-BCR-ABL-induced pro-

liferation was inhibited in a dose-dependent manner (Fig-

ure 5B, solid bars). No inhibition of MIEG3-transduced

cells was detected at the same concentrations of inhibitor

(Figure 5B, empty bars). Since we hypothesized that Rac3

was abnormally activated in splenocytes harvested from

p210-BCR-ABL-expressing Rac1D/D;Rac2�/�mice devel-

oping late MPD, the effect of the Rac-specific inhibitor

NSC23766 was tested in vitro on BM cells derived from

these mice. The proliferation of EGFP+ Rac1D/D;Rac2�/�

BM cells harvested from Rac1;Rac2-deficient mice with

MPD was inhibited in a dose-dependent manner by the

Rac inhibitor (Figure 5C), and immunoblotting confirmed
nc.
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Figure 5. Loss of Rac Activation via Gene Deletion or by

Treatment with NSC23766, a Rac-Specific Inhibitor, Dimin-

ishes the Proliferation of BCR-ABL-Expressing Murine and

Human Cells

(A) 5-FU-treated Rac1flox/flox and Rac1flox/flox;Rac2�/� HSC were trans-

duced with MSCV-Cre-YFP to delete the Rac1 floxed genomic se-

quence, together with MIEG3 or MSCV-p210-BCR-ABL. The EGFP+

and EGFP+/YFP+ cells were sorted and plated. Cell proliferation was

determined by cell counts 48 hr after the cells were plated. Data rep-

resent mean ± SD, n = 3 in each of two independent experiments.

*p < 0.05 between the BCR-ABL-transduced Rac1flox/flox cells and

the MIEG3-expressing Rac1flox/flox and BCR-ABL-expressing Rac1D/D;

Rac2�/� cells.

(B) 5-FU treated WT murine LDBM cells were transduced with either

MIEG3 (white bars) or MSCV-p210-BCR-ABL (black bars), and the

EGFP+ cells were sorted. Cells were then plated in the presence of in-

creasing concentrations of NSC23766, and proliferation was deter-

mined 48 hr later by MTS assay. Data represent mean ± SD, n = 3

for three independent experiments. *p < 0.01, **p < 0.001 versus no

drug.

(C) Effect of NSC23766 on BM cells harvested from BCR-ABL-ex-

pressing Rac1D/D;Rac2�/�mice that developed MPD. Results are rep-

resentative of mean ± SD from proliferation assays performed on three

different Rac1D/D;Rac2�/� mice in triplicate. *p < 0.05 versus no drug.

(D) Effect of increasing concentrations of NSC23766 alone and in com-

bination with Imatinib on the proliferation of Imatinib-resistant Ba/F3

p210-BCR-ABL-T315I cells. Data represent mean ± SD of four inde-

pendent assays per sample done in duplicate. *p < 0.01; **p < 0.001.

(E) Analysis of CFU-GM formation from CML patients that developed

myeloid blast crises in the presence of 1 mM Imatinib (n = 10 patients),

NSC23766 (n = 10 patients), or a combination of Imatinib and

NSC23766 (n = 5 patients). Data represent mean ± SD of the level of

inhibition reached for each specific specimen. *p < 0.01; **p < 0.001.
Can
inhibition of Rac3 activation in leukemic samples har-

vested from Rac1D/D;Rac2�/� animals (data not shown).

These results further implicate Rac3 in the late develop-

ment of MPD in the Rac1D/D;Rac2�/� mice.

To determine the effect of Rac inhibition on proliferation

of an Imatinib-resistant p210-BCR-ABL mutant (La Rosee

et al., 2002, 2004), Ba/F3 cells expressing the highly resis-

tant T315I-p210-BCR-ABL mutant were incubated with

Imatinib and/or NSC23766. As reported previously (Corbin

et al., 2003), addition of up to 3 mM Imatinib alone had

little effect on proliferation of these cells (less than 10%

inhibition, Figure 5D). However, T315I-expressing cells

treated with NSC23766 alone or in combination with Ima-

tinib showed >90% inhibition of proliferation, similar to

Ba/F3 cells expressing nonmutated p210-BCR-ABL

(Figure 5D). Finally, the effect of NSC23766 on the growth

of primary BM cells from CML patients in blast crisis was

evaluated. Addition of 10–100 mM NSC23766 inhibited

20%–78% of blastic phase CML BM colony forming

unit-granulocyte/macrophage (CFU-GM) colonies, a re-

sponse similar to 1 mM Imatinib (Figure 5E). Similar inhibi-

tion was observed for CML blast phase erythroid progen-

itor cells (data not shown), while 100 mM NSC23766, but

not lower doses, inhibited normal human progenitor BM

cells in a fashion similar to 1 mM Imatinib (Figures S3A

and S3B). These data demonstrate that Rac is essential

for p210-BCR-ABL-induced proliferation of primary cells,

and pharmacologic inhibition of Rac significantly reduces

p210-BCR-ABL-mediated proliferation even in the pres-

ence of highly resistant kinase mutants.

To determine the effect of NSC23766 in vivo, mice

were transplanted with p210-BCR-ABL-expressing murine

HSC/P as described above and 10 days posttransplant,

osmotic pumps containing NSC23766 (2 pumps/mouse,

100 mM NSC23766 per pump) or PBS (as controls) were

surgically implanted subcutaneously to allow continuous

infusion of the inhibitor. After 14 days, the pumps were

replaced with fresh pumps and disease progression

was monitored in mice exposed for up to 28 days.

NSC23766-treated mice showed a significant increase in

survival (p < 0.01) compared to control mice (Figure 6A).

NSC23766 plasma levels were analyzed by HPLC and

mass spectrometry and ranged from 1–3 mM (Table S3).

This level of NSC23766 in control mice was associated

with an expected doubling of the peripheral blood leuko-

cyte count (Roberts et al., 1999) (Table S3), providing

pharmacodynamic evidence of the presence of the inhib-

itor. Finally, CD34+ peripheral blood CML cells derived

from leukapheresis products of two chronic-phase CML

patients with significant leukocytosis (>300,000 WBC/

mm3) were transplanted into NOD/SCID mice and, after

engraftment for 10 days, treated with NSC23766 by

osmotic pumps for 14 days. As shown in Figure 6B, com-

pared to the PBS-treated control mice, NSC23766 induced

�85% reduction in human CML by 17 days posttransplant.

Taken together, these data indicate that NSC23766 im-

pairs p210-BCR-ABL-induced leukemogenesis in primary

murine and human cells in vivo and provides a rationale

for targeting Rac proteins in this disease.
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DISCUSSION

Imatinib (Gleevec, also known as STI571 or CGP57148),

an Abl kinase inhibitor that shows significant activity in

all phases of CML and Ph-positive acute leukemias

(Druker et al., 2002) by selective induction of apoptosis

of p210-BCR-ABL-positive cells (Druker et al., 1996; Dein-

inger et al., 1997; le Coutre et al., 1999), has provided an

effective means of treatment in CML. The persistence of

p210-BCR-ABL-positive HSC in Imatinib-treated patients

suggests that inhibition of Abl kinase activity alone might

not be sufficient to eliminate all leukemic stem cells.

We have previously shown that both Rac1 and Rac2 are

essential for the regulation of multiple HSC functions with

unique as well as overlapping roles, including prolifera-

tion, apoptosis, homing, and retention (Gu et al., 2003;

Cancelas et al., 2005). These biological functions of Rac

Figure 6. NSC23766 Significantly Delays the Development

of MSCV-p210-BCR-ABL-Mediated Leukemogenesis in a

Murine In Vivo Model and Inhibits Engraftment of Human

Chronic Phase CML Cells in NOD/SCID Mice

(A) Survival curve of recipient mice that were transplanted with MSCV-

p210-BCR-ABL-transduced wild-type cells, then implanted with Alzet

osmotic pumps containing either NSC23766 (2 pumps; 100 mM

NSC23766 per pump; n = 16) or PBS (1 pump; n = 14) ten days post-

transplant. Mice that died during surgery were censored from the

study. *p < 0.05 (log P rank test) between PBS and NSC23766-treated

groups. Data represent survival of pooled animals from two indepen-

dent experiments with similar results.

(B) NOD/SCID mice were transplanted with CD34+ human CML

peripheral blood cells from two newly diagnosed patients. Fifteen

days posttransplant, Alzet osmotic pumps containing either

NSC23766 (2 pumps, 75 mM NSC23766 per pump) or PBS (1 pump)

were surgically implanted into the animals. Preimplant levels of human

chimera in peripheral blood were 66.3 ± 30.3% and 76.3 ± 9.9%, re-

spectively. Seventeen days postsurgery, animals were sacrificed and

human chimerism in peripheral blood was analyzed. Data represent

mean ± SD of pooled data from two independent experiments (n = 9

mice per group), *p < 0.01 (log P rank test).
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are associated with activation of multiple kinase signaling

cascades, many of which are activated in CML blasts or in

cell lines expressing p210-BCR-ABL. Thus, Rac proteins

may integrate signals affecting survival/proliferation and

cytoskeletal rearrangements leading to the motility and

adhesion phenotypes reported in these cells. These

observations led us to examine the requirement of Rac

proteins in p210-BCR-ABL-mediated transformation.

In the studies reported here, significantly prolonged

survival in vivo of p210-BCR-ABL-expressing Rac1D/D;

Rac2�/� mice is apparent despite the observation by

LAM-PCR and Southern blotting that all genotypes dem-

onstrate oligoclonality. One to three retroviral integrations

of the p210-BCR-ABL vector were observed in each ge-

notype by Southern blot, a result not surprising based

on the number of transduced cells injected into each ani-

mal and assuming the development of a HSC-initiated

disease.

The increased survival of p210-BCR-ABL-expressing

Rac1D/D;Rac2�/� mice correlates with nearly complete

elimination of baseline hyperactivation of ERK, p38, JNK,

Akt, and CrkL in BM cells from these mice. BCR-ABL

Rac1D/D/Rac2�/� mice that did develop MPD invariably

appeared to induce Rac3 activation. The data supporting

this conclusion include the absence of Rac1 and Rac2 ge-

nomic sequences in the EGFP+ peripheral blood cells of

diseased animals, the increased Rac3 activity in spleno-

cytes from these animals shown by pull-down assays,

and the inhibition of proliferation in vitro of BM cells from

Rac1D/D;Rac2�/� leukemic mice when incubated with

NSC23766, a Rac-specific small molecule inhibitor (Gao

et al., 2004). These data are consistent with previous re-

ports of Rac3 activation in p190-BCR-ABL expressing

malignant precursor B-lineage lymphoid cells (Cho et al.,

2005).

p210-BCR-ABL-expressing Rac2�/� animals showed

less reduction in the baseline activation of these pathways

and less, although significant, prolongation of survival.

p210-BCR-ABL-expressing Rac1D/D mice behaved simi-

larly to WT mice in this model. These data strongly suggest

that each Rac protein plays a specific role in p210-BCR-

ABL-mediated leukemogenesis, as we have noted in

normal HSC/P functions (Gu et al., 2003; Cancelas et al.,

2005). Alternately, these phenotypes could represent

a combinatorial but variable decrease in total Rac activity.

Studies are underway to determine the individual and

combinatorial role(s) of each Rac protein, including Rac3,

using Rac3�/� mice (Corbetta et al., 2005) bred into the

Rac1flox/flox;Rac2�/� mouse line.

CrkL has been suggested in some studies to be a direct

effector of the kinase domain of ABL. Thus, Rac activation

in this model would not be expected to be dependent on

CrkL activation. In that sense, our results are surprising

but highly reproducible among leukemic animals. As

CrkL activation has recently been reported to be depen-

dent on a large multimeric protein complex that contains

at least phosphoinositide-3 kinase (PI3K), docking protein

2 (DOK2), CrkL, Vav (a GEF responsible of Rac activation),

and Rac (Nishihara et al., 2002; Sattler et al., 2001), we
nc.
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suggest that the deficiency of Rac (Rac2 and especially

the combined deficiency of Rac1 and Rac2) would also

impair the activation of CrkL. The persistence of STAT5

signaling in Rac1D/D;Rac2�/� cells may also be important

in at least two ways. First, we have previously shown that

mice engrafted in a competitive repopulation assay lose

contribution of Rac1D/D;Rac2�/� HSC/P shortly after

Cre-mediated deletion of Rac1 sequences in the absence

of Rac2 (Cancelas et al., 2005). Thus, persistent engraft-

ment of p210-BCR-ABL-expressing Rac1D/D;Rac2�/�

cells over 100 days suggests that p210-BCR-ABL may

be providing important signals affecting HSC retention

and function in the BM in this setting. In this regard,

STAT5 is a reasonable downstream candidate. STAT5

has been previously implicated in both the p210-BCR-

ABL transformation phenotype and in normal HSC/P pro-

liferation (Bradley et al., 2002; Sillaber et al., 2000; Ye

et al., 2006; Ilaria and Van Etten, 1996). Independently,

JAK proteins, particularly JAK2, which are known to acti-

vate STATs, have been implicated in p210-BCR-ABL

transformation (Xie et al., 2001; Wilson-Rawls et al.,

1996). Indeed, we have seen inhibition of proliferation in

vitro of BM cells harvested from p210-BCR-ABL-express-

ing Rac1D/D;Rac2�/� mice that developed MPD using

a JAK inhibitor (data not shown) (Thompson et al., 2002).

Whether STAT5 activation in the absence of Rac1 and

Rac2 is the result of direct signaling from p210-BCR-

ABL via JAK (Xie et al., 2001) or the result of activation

through Rac3 (or both) is yet to be determined.

In addition to the genetic data provided, our studies

suggest that Rac proteins may prove to be useful molec-

ular targets for pharmacologic intervention in human CML,

particularly in p210-BCR-ABL-persistent and Imatinib-

resistant disease. The combination of NSC23766 and

Imatinib led to highly significant inhibition of proliferation

of cells expressing the T315I mutant of p210-BCR-ABL.

This first generation small molecule inhibitor of Rac is

relatively nontoxic when administered chronically in vivo

to mice (Cancelas et al., 2005) and appears to inhibit

p210-BCR-ABL-induced leukemogenesis of primary

murine and human cells in vivo.

Deregulated expression of Rac GTPases has previously

been associated with several aspects of the leukemic

phenotype. In particular, Rac1 has been shown to be an

important downstream signaling component of p210-

BCR-ABL (Skorski et al., 1998). p210-BCR-ABL-trans-

duced Ba/F3 cells exhibit increased F-actin staining and

an increased formation of filopodia and pseudopodia,

reflecting elevated Rac1 activity (Salgia et al., 1997). In ad-

dition, a dominant-negative Rac1 mutant has been shown

to inhibit p210-BCR-ABL-induced transformation in this

cell line, and a signal cascade linking Abl kinase, phos-

phorylated Sos-1, and Rac-dependent phenotypes has

been proposed (Sini et al., 2004). Harnois et al. reported

that a stable complex could form between p210-BCR-

ABL and multiple Rho GTPases and that Rac1, Rac2,

Rho, and Cdc42 could be activated by p210-BCR-ABL,

possibly through the Dbl homology domain of Bcr or acti-

vation of Vav as a guanine nucleotide exchange factor
Can
(GEF) that is associated with the complex (Harnois et al.,

2003). However, these previous studies do not elucidate

which specific Rac proteins are crucial in leukemic trans-

formation and suffer from the lack of in vivo data on

primary hematopoietic cells. The data presented here

implicate Rac2, the combinatorial loss of both Rac1 and

Rac2, and compensatory activation of Rac3 in leukemia

development in p210-BCR-ABL disease. Our current

data indicate that Rac GTPases are critical for p210-

BCR-ABL-mediated transformation and, therefore, pro-

vide important targets for new therapy in CML.

EXPERIMENTAL PROCEDURES

Cell Lines

Stable Ba/F3 cell lines expressing full-length p210-BCR-ABL with the

T315I point mutation and parental Ba/F3 cells were maintained as

previously described (La Rosee et al., 2002).

Mice

The generation of C57Bl/6 Cre-transgenic (Cre-Tg+);Rac1flox/flox,

CreTg+;Rac1flox/flox;Rac2�/�, and CreTg+;Rac2�/�mice has been previ-

ously described (Gu et al., 2003; Cancelas et al., 2005). Animals used in

these experiments were littermates. NOD/LtSz-scid/scid (NOD/SCID)

mice, 5–6 weeks of age, were bred and housed under specific patho-

gen-free conditions in a laminar air flow unit and supplied with sterile

food and drinking water containing doxycycline (6 mg doxycycline

per gram of food, Bioserve Biotech, Laurel, MD) ad libitum. Housing,

care, and all animal experimentation were done in conformity with pro-

tocols approved by the Institutional Animal Care and Use Committee

of Cincinnati Children’s Hospital Medical Center.

Human Specimens

Normal BM and CML BM and PB were obtained through Institutional

Review Board-approved protocols and donor informed consent from

either Oregon Health Science University or Cincinnati Children’s Hos-

pital Medical Center. Material from therapeutic leukaphereses from

two CML patients was submitted to CD34 selection by CliniMACS

(Miltenyi Biotec Inc, Auburn, CA). Postselection purities were 99.6%

and 99.7%. Interphase FISH showed that 98.6% and 99.4% of

CD34+ cells carried the t(9,22) translocation, respectively.

Retroviral Vectors and Generation of Retroviral Stock

The retroviral vectors used have been described previously (Zhao et al.,

2001; Gu et al., 2003; Williams et al., 2000). Generation of retroviral

supernatants is described in Supplementary Experimental Procedures.

Bone Marrow Harvest, Transduction, and Transplantation

C57Bl/6 Cre-Tg+;WT, Cre-Tg+;Rac1flox/flox, CreTg+/Rac1flox/flox;Rac2�/�,

and CreTg+;Rac2�/� mice were injected with 5-fluorouracil (5-FU,

American Pharmaceutical Partners, Inc, Schaumburg, IL; 150 mg/kg

i.p.) to enrich for HSC. BM cells were harvested as previously

described (Gu et al., 2001) and stimulated with IMDM containing 2 mM

L-glutamine, 10% FCS, 100 IU/ml penicillin, 0.1 mg/ml streptomycin,

100 ng/ml AMP-4, 100 ng/ml recombinant human granulocyte-colony

stimulating factor (G-CSF), and 100 ng/ml recombinant rat stem cell

factor (rr-SCF, all Amgen, Thousand Oaks, CA) (cytokine-containing

medium). Transduction of 5-FU-treated, LDBM cells was performed

as previously described (Williams et al., 2000; Hanenberg et al.,

1996). Two days posttransduction, EGFP+ sorted cells were used

either for transplantation or in vitro assays. For transplantation, a total

of 50,000–75,000 EGFP-positive transduced BM cells were trans-

planted into lethally irradiated (1175 cGy, split-dose) 6–8 week old

C57Bl/6 mice (Jackson Laboratories, Bar Harbor, ME) in the presence

of 500,000 freshly isolated C57Bl/6 erythrocyte-lysed BM cells.
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Hematological and Pathological Examination of Transplanted

Mice

Animals were bled weekly starting ten days posttransplant. Complete

blood counts and leukocyte differentials were determined and disease

progression was monitored. Animals in which the percentage of

EGFP+ cells in the peripheral blood fell below 1% for two consecutive

time points were censored from the study, due to loss of engraftment.

While no WT and Rac1D/D;Rac2�/� animals were removed from the

study, four out of 12 Rac1D/D animals and 10 out 28 Rac2�/� animals

were censored for this reason.

Homing and Engraftment Assays

See Supplemental Experimental Procedures online.

Generation of Rac1-Deficient Hematopoietic Cells

Cre-mediated recombination of floxed Rac1 sequences in hematopoi-

etic cells was performed in vivo 10 days posttransplant as previously

described (Cancelas et al., 2005; Mikkola et al., 2003). For in vitro

deletion of the Rac1 floxed gene, LDBM cells were cotransduced

with either MIEG3 and MSCV-Cre-YFP or MSCV-p210-BCR-ABL-

EGFP and MSCV-Cre-YFP and were sorted for EGFP+/YFP+ expres-

sion.

In Vivo Administration of NSC23766

Ten days posttransplant, Alzet osmotic pumps (Model 2002, Durect,

Cupertino, CA) containing either NSC23766 (2 pumps, 100 mM/

pump) or PBS control at a flow rate of 0.5 ml/hr for 14 days were sub-

cutaneously implanted into recipient mice. For NOD/SCID mice, mice

were transplanted with a total of 10 3 106 CD34+ cells per mouse and

pumps were implanted on day +16 posttransplantation.

Proliferation Assays

Cell proliferation was assessed by either thymidine incorporation as-

says (transduced LDBM cells, Rac1D/D;Rac2�/� BM cells expressing

p210-BCR-ABL, and Ba/F3-pSRC-T315I cells), cell counts (trans-

duced LDBM cells and Rac1D/D/Rac2�/� BM cells expressing p210-

BCR-ABL), or MTS assays (transduced LDBM cells, Promega, Madi-

son, WI), which are described in detail in Supplemental Experimental

Procedures.

Rac Activation Assays

Splenocytes from transplanted mice or purified human CD34+ cells

were processed for the preparation of protein extracts. The generation

of protein extracts and Rac activation assays and electrophoresis are

described in Supplemental Experimental Procedures.

Immunoblotting

Aliquots (25 mg) of protein extracts from the spleens of mice expressing

either MIEG3 or MSCV-p210-BCR-ABL-EGFP were separated by

electrophoresis on 7.5% or 12% SDS-PAGE gels under reducing con-

ditions. Membranes were probed with antibodies specific for phos-

pho-p42/p44 MAPK (1:1000), phospho-Akt (1:1000), phospho-p38

MAPK (1:1000), phospho-JNK (1:1000), phospho-CrkL (1:1000), phos-

pho-STAT5 (1:1000), and b-actin (1:5000) (Cell Signaling) To examine

phosphorylation of p210-BCR-ABL, BM cells from leukemic animals

were lysed in high pH lysis buffer (150 mM NaCl, 1% Triton X-100,

1 mM MgCl2 10% glycerol, 20 mM Tris [pH 8.0]) supplemented with

Complete protease inhibitor cocktail (Roshe Diagnostics, Indianapolis,

IN) to which 1.25% of 10 M NaOH was added immediately before lysis.

Cells were incubated on ice for 10 min, clarified at 12,000 3 g for 3 min,

and lysates were separated on a 7% SDS-PAGE gel. Membranes were

probed with antiphosphotyrosine (4G10, Upstate, Charlottesville, VA)

and anti b-actin antibodies. Blots were then incubated with a second-

ary antibody conjugated to HRP and directed against mouse or rabbit

IgG (Cell Signaling Technology) and reactive proteins were visualized

with LumiGLO (Upstate, Charlottesville, VA).
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Flow Cytometric Analysis

Flow cytometric analysis is described in Supplemental Experimental

Procedures.

Bone Marrow Hematopoietic Progenitor Assays

Colony-forming units-granulocyte/macrophage (CFU-GM) quantita-

tion assays in methylcellulose have been previously described

(Cancelas et al., 1998, 2005).

LAM-PCR

For clonality analysis of the p210-BCR-ABL insertion sites of leukemic

animals, we performed LAM-PCR as previously described (Schmidt

et al., 2003).

Statistical Analysis

Statistical analysis was performed using the unpaired Student’s t test

except for survival curves where the log P rank test was used. Values of

p < 0.05 were considered significant.

Supplemental Data

The Supplemental Data include Supplemental Experimental Proce-

dures, three supplemental tables, and three supplemental figures

and can be found with this article online at http://www.cancercell.

org/cgi/content/full/12/5/467/DC1/.
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