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The work focuses on the effect of a general state of initial stress on the dispersion behavior of guided
waves in viscoelastic waveguides. To this purpose, an extension of the Semi Analytical Finite Element
(SAFE) method is proposed to formulate the wave equation and to extract the waves modal properties
in viscoelastic prestressed waveguides. The wave equation is derived in linearized incremental form
within an updated Lagrangian framework, where the prestressed configuration is considered to be
slightly deviated from the corresponding unstressed one. Next, by using the SAFE method and the Boltz-
mann superposition principle, a linear algebraic system of equations is obtained in the complex wave-
number-frequency domain. Dispersive guided waves wavelengths, phase velocity, group velocity and
attenuation, are extracted by solving a polynomial eigenvalue problem. A modal formula for the wave
energy velocity calculation, that exploits the wave equation SAFE matrices only, is proposed. Such for-
mula is based on the linearized incremental form of the Poynting theorem obtained by manipulating
the energy balance principle expressed in material description.

Numerical examples on a hysteretic 113A standard rail profile and on an ASME 1-1/2 Schedule 160
steel pipe, considering various states of initial stress and applied loadings, are presented to show the
effect of prestress on the dispersive properties of mechanical waves in viscoelastic waveguides.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The importance of ultrasonic guided waves in the field of non-
destructive testing and structural health monitoring has increased
considerably in recent years. Guided waves are used for damage
detection, damage localization and material characterization. Late-
ly, researchers are also trying to use guided waves for revealing the
state of prestress in waveguides. All these applications require an
accurate knowledge of the dispersive characteristics of guided
waves (i.e. the solutions of the guided wave equation must be
known at several frequencies).

For the case of waves propagation in solids with a predeforma-
tion or a prestress state, a first rigorous mathematical treatment of
the problem can be found in the works by Biot (1940, 1957, 1965)
and Hayes (1963). Through the years, the problem has been sub-
jected to an intensive research. Williams and Malvern (1969) used
the harmonic analysis to get the phase-velocity dispersion curves
for prestressed circular rods, flat plates and unbounded mediums
considering both strain-rate-independent and strain-rate-depen-
dent constitutive equations. The effect of tensile and compressive
ll rights reserved.
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axial loads on the dispersive characteristic of elastic waves propa-
gating in submerged beams was investigated by Cook and Holmes
(1981). More recently, Bhaskar (2003) studied the dispersion rela-
tions for propagative and evanescent modes with bending-torsion
coupling, while Tanuma and Man (2006) considered Rayleigh
waves propagating along the free surface of a prestressed aniso-
tropic media, deriving a first-order perturbation formula for the
phase velocity shift of Rayleigh waves from its comparative isotro-
pic value. Frikha et al. (2011) have demonstrated that the effect of
a compressive or tensile axial load on the elastic wave propagation
in helical beams is significant for the four propagating modes in a
low-frequency range.

The wave propagation problem in waveguide-like structures
has been investigated in the literature using different mathemati-
cal approaches. Osetrov et al. (2000) applied the Transfer Matrix
Method (TMM) to study Surface Acoustic Waves (SAW) propagat-
ing in anisotropic and hyperelastic layered systems under residual
stress, including also changes in density, modification of the elastic
stiffness tensor by residual strain and third-order stiffness con-
stants. Lematre et al. (2006) applied matrix methods to predict
Lamb, Shear Horizontal (SH) and SAW propagation in piezoelectric
plates subjected to different stress profiles and to calculate the
acoustoelastic effect on Lamb wave propagation in stressed thin-
films as well as in multilayered heterostructures under biaxial
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residual stresses. In their work, Chen and Wilcox (2007) proposed a
three-dimensional finite element based procedure to predict the
effect of axial load on the dispersive properties of guided waves
in elastic waveguides of arbitrary cross section such as rods, plates
and rails, validating the method at low frequencies by using ana-
lytical formulae for low order theories.

The prediction of dispersive characteristics of waves traveling
along waveguides of arbitrary cross section represents a computa-
tionally expensive problem, especially when dispersive data is re-
quired at high frequencies. For waveguides of arbitrary but
constant cross section the Semi Analytical Finite Element (SAFE)
technique represents a very efficient tool, since it allows to discret-
ize the waveguide cross section only, reducing drastically the
dimension of the problem (Bartoli et al., 2006; Treyssède, 2008;
Mu and Rose, 2008).

To date, Semi Analytical Finite Element (SAFE) formulations
were predominantly exploited for axially-loaded waveguides of
linear elastic materials only (Loveday, 2009). In his work, Loveday
included the effect of the axial load, resulting in a additional geo-
metric stiffness matrix proportional to the mass matrix through
the ratio between the axial stress and mass density. At low fre-
quencies numerical results were shown to be in good agreement
with those predicted by the Euler–Bernoulli beam theory. This
extension has been used subsequently to evaluate the influence
of axial load changes in rails by using sensitivity analysis and phase
shift (Loveday and Wilcox, 2010) as well to support the develop-
ment of a prototype aimed at predicting incipient buckling in Con-
tinuously Welded Rails (CWR) (Bartoli et al., 2010).

Experimental validations of the various formulations proposed
in the literature can be found in different works. For instance, in
their work, Chaki and Bourse, 2009 applied simplified acoustoelas-
tic formulations to calibrate a guided ultrasonic wave procedure
for monitoring the stress level in seven-wire steel strands while
Shen et al. (2008) used guided waves to localize defects in pipes
bearing high pressure gases.

Since the use of guided waves for long range inspection applica-
tions is increasing, a further development of the SAFE formulation
is necessary to extend it beyond the case of mono-axial prestress
states. To this aim, the present study generalizes the SAFE formu-
lations to viscoelastic waveguides subject to a three-dimensional
state of prestress.

The present extension allows thus to predict the effect of pre-
stress on the guided waves group and energy velocity as well as
the wave attenuation. In this context, Caviglia and Morro (1998,
1992) provided a rigorous mathematical treatment of the energy
flux and dissipation of waves traveling in prestressed anisotropic
viscoelastic solids.

In their work, Degtyar and Rokhlin (1998) used an energy veloc-
ity formula to investigate the reflection/refraction problem for
elastic wave propagation through a plane interface between two
anisotropic stressed solids and between a fluid and a stressed
anisotropic solid with arbitrary propagation directions and arbi-
trary incident wave type.

The present paper is organized in the following manner: in Sec-
tion 2, the equilibrium equations of the incremental linearized the-
ory are reviewed including the general state of prestress, the
viscoelastic properties of the material and the effect of nonconser-
vative forces. In Section 3 the discretized system governing the
wave propagation problem is derived via the application of the
SAFE method. The group velocity proposed first in Loveday
(2009) is then updated to account for the new stiffness operators
without including the viscoelastic effect, which is taken into ac-
count in the energy velocity formula derived from the energy
balance principle recasted in incremental form. The scheme devel-
oped is sufficiently general to cover also prestressed waveguides of
viscoelastic anisotropic materials. The formulation can be relevant
in the design of several long range non-destructive techniques
based on guided waves. In particular, it can be extremely helpful
in the prediction of testing results for ultrasonic guided wave
based screening of roller straightened rails (Schleinzer and Fischer,
2001; Keller et al., 2003; Biempica et al., 2009; Ringsberg and
Lindbäck, 2003), where the stress state has to be limited to prevent
crack propagations and rail failures, as well as in pressurized pipe-
lines carrying gases, where the distance of propagation of guided
waves is of primary importance (Shen et al., 2008; Shin and Rose,
1999). The last two applications are considered in Section 4, where
the changes in the dispersive behaviors due to prestress are shown.

2. Wave equation in incremental form

The incremental equations of motion are derived in the
Lagrangian framework depicted in Fig. 1, where C0 is the stress-free
initial configuration, C denotes the prestressed configuration while
C0 is the current configuration in which the prestressed waveguide
deforms due to wave motion. The general particle at x in the pre-
stressed configuration is subjected to a stress field denoted by the
Cauchy stress tensor T0ðxÞ, which is assumed to satisfy the static
equilibrium conditions with the external applied body and surface
forces, f0 and t0, respectively.

Although the Total Lagrangian (TL) description is widely used in
the context of nonlinear solid mechanics, here the Updated
Lagrangian (UL) formulation results convenient since the initial
static displacement field u0 can be accounted implicitly in the
finite element mesh. The TL description obviously still remains of
general validity but the nonlinear strain–displacement relations
include additional high-order terms in u0 (Bathe, 1996), leading
to more complicated equations.

However, when deformations are superimposed on finite
strains, the prestressed state is generally assumed identical or at
most slightly deviated from the unstressed state and the TL and
UL formulations confused by posing x0 � x. This simplification can-
not be applied when large strains and stresses are involved since it
requires the use of appropriate incremental kinematic and consti-
tutive relations (Yang and Kuo, 1994; Bathe, 1996; Bažant and
Cedolin, 1991). Such cases are not considered here but are of great
importance, especially when the stress level reaches the same or-
der of magnitude of the incremental tangential moduli or, if the
body is not thin, when the incremental material moduli shows
high anisotropy (Bažant and Cedolin, 1991).

According to the UL description, the C configuration is taken as
reference and it is computed from C0 considering the initial static
displacement u0, which is assumed to be known, for example, from
previous static analysis. The current configuration vector
x0ðuÞ ¼ xþ u at time t results from the superimposition of a small
incremental time-dependent displacement field u ¼ ½ux; uy; uz�T

due to the mechanical waves on the prestressed configuration x.
For the sake of convenience in the rest of this work the subscript
indexes referring to the x; y and z directions are freely interchanged
with the subscripts 1, 2 and 3, respectively.

2.1. Incremental strain–displacement relations

The geometric nonlinearities associated with the initial stress
enter the problem via the kinematic relations, in force of the finite
strains assumption. For conciseness, with the term ‘‘finite’’ the dif-
ferences in magnitude of strains between the prestress field and
the one associated with the ultrasonic excitations, which is much
smaller, is indicated.

For instance, in many practical applications waveguides can be
treated as slender structures for which magnitudes of strains aris-
ing during their service state are generally included in the range of
10�4 � 10�3, while typically guided waves generate strains in the



Fig. 1. Fundamental configurations for the wave propagation problem in prestressed waveguides.
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order of 10�7 (Rose, 2004; Man, 1998). This means that typical
strains involved in slender structures can be considered ‘‘finite’’ if
compared with ultrasonic strains even if the prestressed configura-
tion posses an elastic reserve.

In this context the appropriate strain measure is represented
by the Green–Lagrange (GL) strain tensor EðuÞ ¼
1
2 ruþ ruð ÞT þ ruð ÞTru
h i

, whose symmetric components can be

collected in the 6� 1 vector �ðuÞ ¼ �LðuÞ þ �NLðuÞ, where
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@
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are the vectors of linear and nonlinear strain components, respec-
tively. In Eq. (1) the compatibility operators Li are defined as

Lx ¼

1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

2
666666664

3
777777775
; Ly ¼

0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

2
666666664

3
777777775
; Lz ¼

0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

2
666666664

3
777777775
: ð3Þ

Assuming as incremental those quantities associated with the dif-
ference of motion between the C0 and C configurations, the linear-
ized incremental strain–displacement relations are obtained for
small increments u x; tð Þ by means of a first order Taylor series
expansion f xþ euð Þ � f ðxÞ ¼ Duf ðxÞ in the neighborhood of the pre-
stressed configuration, where Duf ðxÞ ¼ d

de

��
e¼0 f xþ euð Þ denotes the

directional derivative at x in the direction of the incremental
displacement u. Accordingly, the linearization of the GL strain ten-
sor and the virtual GL strain tensor take the form Du�ðuÞ ¼ �LðuÞ
and Dud�ðuÞ ¼ d�NLðuÞ respectively, where d denotes the first varia-
tion with respect to u.

2.2. Linearized stress–strain relations

The increment of stress related to any strain increment �ðuÞ re-
sults to be small as it depends on the small amplitude waves
assumption. From an energetic point of view, the use of the 2nd
Piola–Kirchhoff stress tensor SðuÞ is required as work-conjugate
of the GL strain tensor. Because of only small amplitude waves
are applied on the initial prestressed configuration, the state of
stress in the current configuration will differ slightly from the pre-
stressed state. Therefore, the symmetric part of the incremental
2nd Piola–Kirchhoff stress tensor, sðuÞ ¼ Sxx; Syy; Szz;

�
Syz; Sxz; Sxy�T, can be linearized as

DusðuÞ ¼ @sðuÞ
@�ðuÞ

����
u¼0

Du�ðuÞ ¼ D0ðxÞ�LðuÞ ð4Þ

where D0
ijðxÞ ¼ @siðuÞ=@�jðuÞ

��
x0¼x is the 6� 6 fourth order symmet-

ric tensor of tangential moduli expressed in Voigt notation
(i; j ¼ 1;2; . . . ;6) and referred to the prestressed configuration.

If an isotropic material with linear viscoelastic behavior is con-
sidered, the Boltzmann superposition principle can be used to ex-
press the incremental stress in force of the small amplitude waves,
and the linearized incremental 2nd Piola Kirchhoff stress tensor in
Eq. (4) can be rewritten in terms of convolution integral as (Lee and
Oh, 2005; Christensen, 2010)

DusðuÞ ¼
Z t

�1
D0 x; t � sð Þ @�L u x; sð Þð Þ

@s
ds ð5Þ

being now D0 x; t � sð Þ the fourth order symmetric tensor of relaxa-
tion functions and t the current time instant.
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2.3. Linearized incremental equilibrium equations

The equilibrium in incremental form is obtained by subtracting
from the linearized equilibrium equations in the configuration C0
those written in the configuration C. The equilibrium equations
for both configurations can be obtained via application of the
Hamilton’s variational principle

dH u; duð Þ ¼
Z t2

t1

d K�W þ Vc þ Vncð Þdt ¼ 0 ð6Þ

where K ¼ 1
2

R
V qðxÞ _u2 dv is the kinetic energy, W ¼

R
V �

TðuÞsðuÞdv
includes the stored and dissipated energies, Vc ¼

R
V uTfc x; tð ÞdvþR

@V uTtc x; tð Þda is the work done by the external conservative
volume and surface loads fc x; tð Þ and tc x; tð Þ, respectively, and
dWnc ¼

R
@V duTtncðuÞda is the nonconservative virtual work done

by the external deformation dependent loads tncðuÞ. In the previous
definitions V denotes the volume of the solid while @V its boundary
surface. It should be remarked that the nonconservative external
virtual work must be evaluated at the current configuration x0ðuÞ,
which is unknown. Therefore, the spatial description should be used
rigorously instead of the material description. However, if the incre-
ment in magnitude of the load is sufficiently small, the integration
of the current load intensity can be performed with good accuracy
over the surface of the prestressed configuration @V (Bathe, 1996).

The linearized variations of the internal and nonconservative
external works are, respectively

DudW u; duð Þ ¼
Z

V
d�T

NLðuÞr0ðxÞdv

þ
Z

V

Z t

�1
d�T

LðuÞD0 ðxÞ; t � sð Þ @�L u x; sð Þð Þ
@s

dt dv ð7Þ

DudVnc u; duð Þ ¼
Z
@V

duT @t0
ncðuÞ
@u

udaþ
Z
@V

duT @DtncðuÞ
@u

uda ð8Þ

where r0ðxÞ ¼ r0
xx; r0

yy; r0
zz; r0

yz; r0
xz; r0

xy

h iT
is the vector collecting

the symmetric components of the Cauchy stress tensor T0ðxÞ in the
prestressed configuration, t0

ncðuÞ denotes the vector of nonconserva-
tive loads in the prestressed configuration while DtncðuÞ represents
its corresponding increment.

Using Eqs. (7) and (8), after some algebra Eq. (6) leads to

dH u; duð Þ ¼
Z t2

t1

Z
V
�duTqðxÞ€u� d�NLðuÞð ÞTr0ðxÞ þ duTDfc x; tð Þ
� �

� dv dt �
Z t2

t1

Z
V

Z t

�1
d�LðuÞð ÞTD0 x; t � sð Þ @�L u x; sð Þð Þ

@s

� dsdv dt þ
Z t2

t1

Z
@V

duTDtc x; tð Þdadt

þ
Z t2

t1

Z
@V

duTDtncðuÞdadt þ
Z t2

t1

Z
@V

duT

� @t0
ncðuÞ
@u

uþ @DtncðuÞ
@u

u
� 	

dadt ¼ 0 ð9Þ

which represents the basic system governing the dynamic of small
oscillations of a three dimensional viscoelastic body subjected to an
initial generic stress field.

3. Safe formulation for prestressed viscoelastic waveguides

3.1. Discretized quantities in the frequency-wavenumber domain

Given a longitudinal invariance, or periodicity, of both material
and geometric characteristics of the waveguide in direction z, the
discretization is performed in the prestressed configuration for
the cross section only using a planar mesh of nel bi-dimensional
finite elements of area Xe, with 3 degrees of freedom per node
associated to the three displacements components ui. Assuming
an in-plane linear mapping from the reference element identified
by the area Xref and boundary @Xref to the corresponding area
Xe and boundary @Xe of the generic eth element, the semi-
isoparametric representation results in an uncoupled description
of the out-of-plane and in-plane motion.

The displacement vector at a certain point xe ¼ xe; ye;0ð Þ within
the eth element is approximated as

ue n; z; tð Þ ¼ NðnÞqeðz; tÞ xe 2 Xe ð10Þ
ue g; z; tð Þ ¼ HðgÞqeðz; tÞ xe 2 @Xe ð11Þ

where NðnÞ and HðgÞ are the matrices containing the shape func-
tions, which are taken linear in the natural coordinates n ¼ n1; n2ð Þ
and g on Xref and @Xref respectively, while qeðz; tÞ is the vector of
nodal displacements (see Fig. 1). Considering a time harmonic dis-
placement field with angular frequency x, the wave equation can
be contracted from the time coordinate t to the angular frequency
x and from the longitudinal coordinate z to the wavenumber jz

using the time and spatial Fourier transforms

�f ðz;xÞ ¼ F½f ðz; tÞ�ðxÞ ¼
Z þ1

�1
f ðz; tÞ exp �ixtð Þdt ð12Þ

f̂ jz; tð Þ ¼ F½f ðz; tÞ�ðjzÞ ¼
Z þ1

�1
f ðz; tÞ exp �ijzzð Þdz ð13Þ

where i denotes the imaginary unit. Since the Fourier transforms act
only on the t and z dependent fields, each wavenumber jzðxÞ (or,
conversely, each angular frequency xðjzÞ) is projected on the x–y
plane and the corresponding waveform propagating in the z-direc-
tion is captured by the in-plane mesh of the waveguide cross
section.

Using the transformations in Eqs. (12) and (13) together with the
fundamental property F dnf ðz; tÞ=dtn

� 

ðxÞ ¼ ixð Þn�f ðz;xÞ, the dis-

placement and acceleration vectors are defined as �̂ue n;jz;xð Þ ¼
NðnÞ�̂qe jz;xð Þ and �̂€ue n;jz;xð Þ ¼ �x2NðnÞ�̂qe jz;xð Þ on Xe respec-
tively, while on the element’s boundary domain @Xe one has
�̂ue g;jz;xð Þ ¼ HðgÞ�̂qe jz;xð Þ. Applying the same transformations to
the external volume and surface loads for the generic eth finite ele-
ment, the corresponding quantities converted in the wavenumber-
frequency domain become �̂fe n;jz;xð Þ and �̂te g;jz;xð Þ.

The transformed kinematic relation given in Eq. (1) is

�̂�e
L n;jz;xð Þ ¼ BnðnÞ þ ijzBzðnÞ½ ��̂qe jz;xð Þ ð14Þ

where

BnðnÞ ¼ Lx
@NðnÞ
@n1

þLy
@NðnÞ
@n2

� �
and BzðnÞ ¼ LzNðnÞ ð15Þ

Similarly, the vector of nonlinear strain components given in Eq. (2)
transformed in the wavenumber-frequency domain takes the form

�̂�e
NL n;jz;xð Þ ¼ 1

2

�̂qe
� �T

@NT

@n1

@N
@n1

�̂qe

�̂qe
� �T

@NT

@n2

@N
@n2

�̂qe

�j2
z

�̂qe
� �T

NTN�̂qe

2ijz �̂qe
� �T

@NT

@n2
N�̂qe

2ijz �̂qe
� �T

@NT

@n1
N�̂qe

2 �̂qe
� �T

@NT

@n1

@N
@n2

�̂qe

2
666666666666666664

3
777777777777777775

ð16Þ

If the material properties are assumed to be constant with the z-
direction and over the element domain Xe, the Fourier transformed
incremental stress–strain position in Eq. (5) yields to the well
known relation (Christensen, 2010)
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D �̂u
�̂se n;jz;xð Þ ¼

Z þ1

�1

Z t

�1
D0

e t � sð Þ @�̂
e
L n;jz; sð Þ
@s

exp �ixtð Þdsdt

¼ �D0
e ixð Þ�̂�e

L n;jz;xð Þ ð17Þ

which states that the incremental stress relative to small deforma-
tions can be obtained in the wavenumber-frequency domain as in a
linear elastic analysis, providing only the substitution of the real
tensor of elastic moduli with the complex tensor of relaxation func-
tions �D0

e ixð Þ ¼ R �D0
e ðxÞ

� �
þ iI �D0

e ðxÞ
� �

, where R �D0
e ðxÞ

� �
is the so-

called tensor of storage moduli and I �D0
e ðxÞ

� �
denotes the tensor

of loss moduli. If, instead, the material is assumed to be elastic,
the tensor of the elastic constants D0

e is independent of time and
therefore not affected by the time–frequency contraction.

The discretized equations of motion can be derived for an infi-
nite long waveguide by observing first that the relationship
between an infinitesimal volume dv ¼ dxdydz and the corre-
sponding volume in the reference system dn1dn2dz is given by

dxdydz ¼ Je
vdn1 dn2 dz, with Je

v ¼ det @ x;yð Þ
@ n1 ;n2ð Þ

h i
denoting the Jacobian

of the isoparametric mapping in the x–y plane. Using these rela-
tions, one can compute each element volume integral in Eq. (9)
as
R

Ve dv ¼
Rþ1
�1 dz

R
Xe Je

v dn1 dn2, where the integration over the z-
coordinate remains unaltered.

Similarly, the relation between an infinitesimal area of the
waveguide in the prestressed and reference states can be written
as da ¼ dsdz ¼ Je

adgdz, where the Jacobian of the in-plane transfor-
mation is now given by Je

a ¼ @xe

@g � n3




 


, where n3 denotes the unit
vector along the z-direction. Therefore, each surface integral in
Eq. (9) can be written as

R
@Ve da ¼

Rþ1
�1 dz

R
@Xe Je

a dg, where again
the integration along the z-direction remains unaltered.

Substituting Eqs. (14), (16) and (17) into Eq. (9), after some
algebra the following linear system of M equations in the jz;xð Þ
domain can be obtained

j2
z K3 � ijzK2 þ K1 �x2M

� 

�̂Q jz;xð Þ ¼ 0 ð18Þ

where �̂Q jz;xð Þ ¼
Snel

e¼1
�̂qe jz;xð Þ is the global vector of nodal dis-

placements, while M ¼
Snel

e¼1me is the global mass matrix. The oper-
ator

Snel
e¼1 means that each global quantity is obtained via the

application of a finite element assembling procedure for all the nel

elements of the mesh. The stiffness operators Ki

K3 ¼
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ke
3 þ ke

r0
zz

h i
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[nel

e¼1
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2 � ke

2

� �T þ ke
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yz
� ke
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� �T
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xz
� ke
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xz

� �T
� �
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[nel

e¼1
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r0
xy
þ ke
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xy

� �T
� �

�
[nr

r¼1

kr
nc

ð19Þ

are derived by assembling the corresponding stiffness quantities at
the element level, which are

ke
3 ¼

Z
Xref

BT
z

�D0
e ixð ÞBzJe

v dn1 dn2; ke
2 ¼

Z
Xref

BT
n

�D0
e ixð ÞBzJe

v dn1 dn2

ke
1 ¼

Z
Xref

BT
n

�D0
e ixð ÞBnJe

v dn1 dn2; me ¼
Z

Xref
qeNTNJe

v dn1 dn2

ke
r0

xx
¼
Z

Xref
r0

xxðnÞ
@NT

@n1

@N
@n1

Je
v dn1 dn2

ke
r0

yy
¼
Z

Xref
r0

yyðnÞ
@NT

@n2

@N
@n2

Je
v dn1 dn2

ke
r0

zz
¼
Z

Xref
r0

zzðnÞN
TNJe

v dn1 dn2

ke
r0

yz
¼
Z

Xref
r0

yzðnÞ
@NT

@n2
NJe

v dn1 dn2

ke
r0

xz
¼
Z

Xref
r0

xzðnÞ
@NT

@n1
NJe

v dn1 dn2

ke
r0

xy
¼
Z

Xref
r0

xyðnÞ
@NT

@n1

@N
@n2

Je
v dn1 dn2 ð20Þ
The integration of these quantities can be performed in a straight-
forward manner via Gauss quadrature rules (Wriggers, 2008). The
algebraic system in Eq. (18) is presented only in its homogeneous
part (omitting thus the external loads contributes) for the purpose
of the dispersive curves extraction, which is covered in the next sec-
tion. It should be observed that this system does not represent a
complete general form of the possible load conditions as it has been
derived making the assumption of invariant initial stresses along
the z direction. In some practical situations this statement may
not be representative of the actual stress distribution in the wave-
guide. In these situations, the various operators defined in Eq.
(20) still remain formally unchanged but their positions inside the
final system of Eq. (18) may vary.

Further considerations can be made concerning the nonconser-
vative forces applied to the system, which in the following are as-
sumed to be of pressure-type only with no friction between the
solid–fluid interfaces. In this case one can recognize that
tnc ¼ �pn, where p is the pressure applied to the surface of external
normal n (see Fig. 1).

If the fluid–structure interaction is neglected, then the second
term on the right hand side of Eq. (8) vanishes since the magnitude
of the pressure does not depend upon the deformation, but only on
the load direction pnðuÞ. It follows that the linearized external vir-
tual work can be re-expressed as

DudVp u; duð Þ ¼
Z
@X
�p0duT DunðuÞð Þda ð21Þ

where p0 is the hydrostatic pressure in the prestressed configura-
tion and DunðuÞ denotes the linearized change of orientation of
the surface normal due to the displacement u at the same point.
The surface integral in Eq. (21) can be reduced to a line integral over
the boundary of the reference element @Xref by introducing the lin-
earization (Wriggers, 2008; Bonet and Wood, 2008)

DunðuÞ ¼
@u
@g � n3

@x
@g� n3




 


 ð22Þ

which require a counterclockwise numeration of the element nodes
of the mesh in order to ensure the positiveness of the sign of the
outward normal nðuÞ. Substituting Eq. (22) into Eq. (21) allows to
rewrite the incremental nonconservative virtual work for the finite
element mesh as follows

DudVp u;duð Þ ¼
[nr

r¼1

Z
@Xref
�p0duT

@u
@g�n3

� �
@x
@g�n3




 


 Je
a dg

¼
[nr

r¼1

dqrð ÞT
Z
@Xref
�p0HT @H

@g
qr �n3

� 	
dg¼ dQ TKpQ ð23Þ

where nr is the total number of elements with edges belonging to
the cross section boundary. The global pressure stiffness matrix
Kp is formed by assembling each element’s stiffness contribute kr

p

in the usual manner, with

kr
p ¼

Z
@Xref
�p0HT

0 1 0
�1 0 0
0 0 0

2
64

3
75 @H
@g

dg: ð24Þ

It should be noted that the particular case of closed surface and con-
stant pressure preserves the symmetry of Kp, that is in general non
symmetric. In force of this property, one can assume an incremental
pressure pseudo potential DuVp ¼ 1

2 Q TKpQ , which is the particular
case of nonconservative work considered in the rest of this work.
Noting that the operator in Eq. (24) is real and independent from
z, and therefore not affected by the time and space contractions,



Fig. 2. Finite element mesh used for the dispersion curves extraction in Sections 4.1
and 4.2.
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the above pseudo potential is readily obtained in the jz;xð Þ domain
by substituting the real eigenvectors with the corresponding com-
plex ones.

3.2. Dispersion analysis

The homogeneous system in Eq. (18) leads to a polynomial eigen-
value problem which can be converted into the state space
and solved in the wavenumbers jm

z ðxÞ ¼ R jm
z

� �
þ iI jm

z

� �
;

ðm ¼ 1; . . . ;2MÞ for any given real positive value of the angular fre-

quency x. The corresponding eigenvector �̂Q m ¼ Rð �̂Q mÞ þ iIð �̂Q mÞ
defines the mth mode shape of the waveguide, while
dispersive quantities, i.e. phase velocity, group velocity and
attenuation, are related to the wavenumber jm

z ðxÞ via the expres-
sions cm

p ðxÞ ¼ x=R jm
z

� �
; cm

grðxÞ ¼ @x=@jm
z and amðxÞ ¼ I jm

z

� �
respectively.

A closed formula for the computation of group velocity in loss-
less medium (I jm

z

� �
¼ 0) and for axial loads only (r0

zz – 0) has
been already discussed in the literature (Loveday, 2009; Loveday
and Wilcox, 2010; Bartoli et al., 2010):

cm
grðxÞ ¼

@x
@jm

z
¼

�̂Q T THK2Tþ 2jm
z ðxÞK3

h i
�̂Q

2x �̂Q TM �̂Q
ð25Þ

Such formula is still valid for the case of general initial stress, with
the exception that the operator Ki inglobes also the geometric stiff-
ness terms related to the nonzero initial stress components r0

yz and
r0

xz as defined in Eq. (19). In Eq. (25) T is an M �M identity matrix
with the imaginary unit substituted in correspondence of each de-
gree of freedom in the z direction and H denotes the complex con-
jugate transpose (Hermitian).

As well stated in the literature (Brillouin, 1960; Whitam, 1974;
Achenbach, 1973), the equivalence between the group velocity cgr

and the velocity of energy transportation ce is guaranteed by the
Lighthill theorem (Biot, 1957; Lighthill, 1965) only in the general
case of dispersive uniform lossless media, for which the central
wavenumber of the wave packets traveling at infinitely close fre-
quencies is conserved. On the contrary, the dissipation mechanism
in nonconservative systems leads to complex wavenumbers and,
as a consequence, the group velocity loses significance and the
meaningful parameter becomes the energy velocity (Gerasik and
Stastna, 2010; Davidovich, 2010).

3.3. Energy velocity

The rate of transfer of the energy is determined as the ratio be-
tween the energy flux density per unit of time and the total energy
density of the system, which follows from the application of the
energy conservation law (Chang and Ho, 1995; Holzapfel, 2000)

DK
Dt
þ Pint þ PD ¼ Pv

ext þ Ps
ext ð26Þ

where the stress power Pint, the viscous power loss PD, the power
supplied on the system by the external volume forces Pv

ext and the
power supplied by the external surface forces, Ps

ext, are expressed,
in the order, as

Pint þ PD ¼
Z

V
PðuÞ : _FðuÞdv ð27Þ

Pv
ext ¼

Z
V

_uTfc dv ð28Þ

Ps
ext ¼

Z
@V

_uT tc � pnð Þda ð29Þ

where PðuÞ is the 1st Piola–Kirchhoff stress tensor and FðuÞ ¼ @x0 ðuÞ
@x

is the deformation gradient. Eq. (26) can be recasted in linear
incremental form by introducing the positions in Eqs. (27)–(29)
and applying the usual linearization concept. Using the power
equivalence

R
V PðuÞ : _FðuÞdv ¼

R
V SðuÞ : _EðuÞdv and considering a

constant pressure p0 applied to closed boundary conditions during
the motion (i.e. no fluid–structure interaction), yields to

@

@t
DKþ DuW � DuVp
� �

¼
Z

V

_uTDfcðtÞdv þ
Z
@V

_uTDtcðtÞda ð30Þ

which represents the incremental form of the balance of energy in
material description. Looking at the second integral on the right
hand side of Eq. (30) in terms of incremental equilibrium at the
boundary surface of the solid, it can be recognized that
DuPðuÞn ¼ DtcðtÞ where, in force of the relations

PðuÞ ¼ FðuÞSðuÞ;
DuFðuÞ ¼ ru;
SðuÞju¼0 ¼ T0ðxÞ;
FðuÞju¼0 ¼ I;
ELðuÞ ¼ symðruÞ;
DuSðuÞ ¼ D0ðt � sÞ : ELðuÞ

ð31Þ

the linearized 1st Piola–Kirchhoff stress tensor takes the form

DuPðuÞ ¼ ruT0ðxÞ þ
Z t

�1
D0 t � sð Þ :

@EL u x; sð Þð Þ
@s

ds ð32Þ

Multiplication of Eq. (32) by n and substitution inside the boundary
integral on the right hand side of Eq. (30) leads finally to the incre-
mental form of the Poynting theorem in material description

@

@t
DKþ DuW � DuVp
� �

þ
Z
@V
� DuPðuÞð ÞT _u � nda ¼ DPv

ext ð33Þ

where � DuPðuÞð ÞT _u is the incremental energy flux vector in mate-
rial description, also known as the acoustic Poynting vector in incre-
mental form.

Given the harmonic behavior of the wave process, the time
derivative can be replaced by the average over a time period
t; t þ 2p=x½ �, leading to

D �̂Kþ D�̂u
�̂W � D�̂u

�̂Vp

D E
þ
Z
@V

D �̂u
�̂Jð �̂uÞ � n

D E
da ¼ D �̂Pv

ext

D E
ð34Þ

where hi ¼ x
2p

R tþ2p
x

t dt denotes the time average operation and the

incremental Poynting vector D�̂u
�̂Jð�̂uÞ ¼ �ðD�̂u

�̂Pð�̂uÞÞT �̂_u in the fre-
quency-wavenumber domain takes the form

D�̂u
�̂Jð�̂uÞ ¼ �ix T0ðxÞ; yðr�̂uÞT þ �D0ðxÞ : �̂ELð�̂uÞ

h i
�̂u ð35Þ

Once the wave solution is known from the eigenvalue problem of
Eq. (18) in terms of jm

z and �̂Q m for the mth propagating mode, the
previous quantities are only function of the angular frequency x.



Fig. 3. Phase velocity, energy velocity and attenuation for the loaded and unloaded cases. The first five modes m1, m2, m3, m4 and m5 are identified as in Bartoli et al. (2006).
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Based on the Umov’s definition (Davidovich, 2010), the energy
velocity for the mth propagating mode is then obtained as the ratio
between the average energy flux component projected along the z-
direction and the total energy density of the waveguide at the given
angular frequency x

cm
e ðxÞ ¼

R
X D �̂u

�̂JmðxÞ � n3

D E
dX

D �̂KmðxÞ þ D�̂u
�̂WmðxÞ

D E���
X
� D�̂u

�̂Vm
p ðxÞ

D E���
@X

ð36Þ

As shown in other works (Treyssède, 2008), Eq. (36) can be
rewritten making use of the matrix operators previously defined.
For the incremental energy flux in the z direction, using Eq. (35)
and the compatibility operator Lz, one obtains
D�̂u
�̂JmðxÞ � n3

D E
¼x

2
I �̂um
� �H

r0
13
@ �̂um

@x
þ r0

23
@ �̂um

@y

 "

þijm
z ðxÞr0

33
�̂um þLT

z
�D0 �̂�m

L

�i
ð37Þ

Substituting the expression in Eq. (10) and recalling the operators in
Eq. (20), the integral of the energy intensity flux over the waveguide
cross section reads
Z
X

D�̂u
�̂JmðxÞ � n3

D E
dX ¼x

2
I �̂Q m
� �H

KT
r0

xz
þ KT

r0
yz
þ KT

2 þ ijm
z ðxÞ

h�

K3 þ Kr0
zz

� �i
�̂Q m
o

ð38Þ



Fig. 4. Normalized phase velocity, energy velocity and attenuation variations
between the unloaded and the axially loaded rail cases (elastic and viscoelastic).
Thin lines denote positive variations while thick lines denote negative variations.
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while the time average incremental kinetic energy, stored and dis-
sipated energy, as well as the average nonconservative work are de-
fined respectively as

D �̂KmðxÞ
D E���

X
¼ x2

4
R �̂Q m
� �H

M �̂Q m

� �
ð39Þ

Du �̂WmðxÞ
D E���

X
¼ 1

4
R �̂Q m

� �H
jm

z ðxÞ
� �2 K3 þ Kr0

zz

� �h�

þijm
z ðxÞ K2 � KT

2 þ 2Kr0
yz
þ 2Kr0

xz

� �
þ K1 þ Kr0

xx
þ Kr0

yy
þ 2Kr0

xy

i
�̂Q m
o
ð40Þ

Du �̂Vm
p ðxÞ

D E���
@X
¼ 1

4
R �̂Q m
� �H

Kp
�̂Q m

� �
: ð41Þ

Substituting Eqs. (38)–(41) into Eq. (36) provides the energy
velocity for the assumed mth wave at given frequency x. This rela-
tion holds for a generic 3D prestress field and linear elastic and vis-
coelastic materials. Moreover, it can be verified that Eq. (25) is
exactly recovered by Eq. (36) for the case of non dissipative (loss-
less) materials.

4. Numerical applications

4.1. Viscoelastic rail under thermal-induced axial stress

Residual stresses represent a fundamental issue in the railway
production and maintenance since they affect negatively the rail
resistance, compromise integrity and reduce durability. While the
presence of high compressive stresses is generally related to buck-
ling problems, especially under hot temperatures, tensile stresses
represent a vehicle for crack initiation and propagation. Moreover,
some geometrical characteristics of the rail such as straightness
and flatness of the running surface can be deteriorated with loss
in comfort. Therefore, it is of great importance for railways compa-
nies to monitor the state of stress of the whole rail.

Some numerical investigations on the effect of a constant axial
prestress r0

zz along with some proposed techniques based on
guided waves for the stress magnitude measurement can be found
in Chen and Wilcox (2007), Loveday (2009), Loveday and Wilcox
(2010) and Bartoli et al. (2010). In these works only perfectly elas-
tic materials are considered. The purpose of this numerical exam-
ple is to show the effect of the material attenuation on the
dispersive behavior of guided waves propagating in the rail sub-
jected to a positive axial elongation e0

zz ¼ 0:1%.
In the following examples a standard A113 rail is considered.

The mesh used is represented in Fig. 2, which is composed of
125 nodes and 182 triangular elements with linear shape func-
tions. The steel in the prestressed configuration is considered as
a hysteretic linear viscoelastic material with mass density
q ¼ 7800 kg/m3, longitudinal and shear bulk waves equal to
cL ¼ 6005 m/s and cS ¼ 3210 m/s respectively, longitudinal bulk
wave attenuation jL ¼ 0:003 Np/k and shear bulk wave attenua-
tion jS ¼ 0:043 Np/k. The complex bulk velocities, Young’s modu-
lus and Poisson’s ratio can be expressed, accordingly to Bartoli
et al. (2006), as

�cL;S ¼ cL;S 1þ i
jL;S

2p

� ��1
; E¼ q�cS

3�c2
L � 4�c2

S

�c2
L � �c2

S

� 	
; �m¼ 1

2
�c2

L � 2�c2
S

�c2
L � �c2

S

� 	
ð42Þ

from which one obtains the complex Lamè constants and the tensor
of complex moduli

�k ¼ E�m
1þ �mð Þ 1� 2�mð Þ ;

�l ¼ E
2 1þ �mð Þ ;

�D0
ijkm ¼ �kdijdkm þ �l dikdjm þ dimdjk

� �
ð43Þ

to be used into the incremental stress–strain relations in Eq. (17). It
should be noted that the tensor of complex moduli remains inde-
pendent from the angular frequency x, in agreement with the
assumed hysteretic behavior of the material. Therefore, there is
no need to update it at each frequency step performed in the eigen-
value problem of Eq. (18) and each stiffness operator defined in Eq.
(20), as well as the matrix operator, can be computed once at the
beginning of the analysis.

The dispersion results in the 0� 10 kHz frequency range are de-
picted in Fig. 3 for the first five low order modes. The mode iden-
tification assumed here is the same adopted in Bartoli et al.
(2006), where the flexural-like modes m1 and m4 as well as the
torsional-like mode m2 result to be antisymmetric with respect
to the x–z plane while the flexural-like mode m3 and the exten-
sional-like mode m5 are symmetric. The three plots represented



Fig. 5. Reconstructed stress patterns for the roller straightened 113A standard profile in Keller et al. (2003).

Fig. 6. Phase velocity, energy velocity and attenuation for the unloaded rail and the roller straightened rail in Keller et al. (2003).
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Fig. 7. Normalized phase velocity, energy velocity and attenuation variations
between the loaded and unloaded cases for the viscoelastic roller straightened rail.
Thin lines denote positive variations while thick lines denote negative variations.
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on the left hand side of Fig. 3 show the phase velocity, energy
velocity and attenuation dispersion curves for the elastic and vis-
coelastic rail without applied loads. It can be noted that the phase
velocity and the energy velocity of the first five modes are almost
unaffected by the presence of the material attenuation. The three
graphs on the right hand side of Fig. 3 report the variations of
the corresponding quantities due to the applied axial stress
r0

zz ¼ 0;001R Eð Þ. The percent variations between the loaded and
unloaded cases are shown in Fig. 4, with the thin lines denoting po-
sitive variations and the thick lines denoting negative variations.
As it can be seen, the presence of an axial load leads to an increase
in the phase velocity for the two flexural-like modes m1 and m3 at
very low frequencies, which corresponds to a decrease of about
40 m/s in the energy velocity. It is interesting nothing that the
maximum shift in the attenuation is located at about 4.5 kHz for
the m1 mode and 6.2 kHz for the m3 mode. This trend is in contrast
with that observed for the shift in phase and energy velocity of the
two modes, which present their maximum for a frequency value
approaching zero. Due to the decrease in attenuation, it follows
that mode m3 at around 6 kHz could be a good candidate for
revealing the state of r0

zz prestress in the waveguide.
The torsional-like mode m2 shows a positive Dcp along the en-

tire frequency range considered due to the tensile r0
zz. However, its

energy velocity shows both positive and negative variations. The
frequency values in correspondence of the maximum and mini-
mum shift in the attenuation for the m2 mode are approximatively
those with minimum and maximum shift on the energy velocity.
Similar behavior can be observed also for the two flexural-
like modes m1 and m3. Similarly to the previous modes, the
flexural-like mode m4 presents an increase in the phase velocity
for the entire frequency range, and an alternate trend for both en-
ergy velocity and attenuation. It can be noticed that while the flex-
ural-like modes present their maximum shift in the phase velocity
at very low frequency values (about 0 kHz for the m1 and m3
modes and in correspondence of the cutoff frequency for the m4
mode), the remaining two modes do not show this behavior. This
is particularly evident for the m5 extensional-like mode, which
presents its maximum at about 6.7 kHz. Moreover, at the same fre-
quency value of about 6.5 kHz, the mode shows the maximum in-
crease in the energy velocity and the maximum decrease in the
attenuation with respect to the unloaded case. The maximum neg-
ative shift in the attenuation is not shown in the frequency-Datt
spectra of Fig. 3 for representative reasons, and its value is
�0:016 Np/m.

4.2. Guided waves propagation in a new roll-straightened viscoelastic
rail

Residual stresses in rails do not depend only on the loads occur-
ring during the service life, but also on those arising from welding
or manufacturing processes, which can be very large. A principal
source of residual stresses is represented by the roller straighten-
ing, which is generally the last stage of the production cycle of
the rail.

The residual stress formation in rails due to roller straightening
has been intensively investigated in the last years (Schleinzer and
Fischer, 2001; Keller et al., 2003; Biempica et al., 2009; Ringsberg
and Lindbäck, 2003) and non destructive techniques, such as
guided waves, can be very useful to determine the state of stress.
To show the effect induced by the residual stress on the dispersive
behavior in new roll-straightened rails, the stress patterns ob-
tained by Keller et al. (2003) for the standard 113A profile have
been considered. In particular, transversal, vertical and longitudi-
nal contours of the residual stress are shown in Fig. 5 along with
the finite element mesh.

The nonzero initial stress components r0
xx;r0

yy and r0
zz are as-

sumed to vary linearly over the generic finite element as a function
of the stress value at each node, r0

iiðnÞ ¼
P3

j¼1NjðnÞ r0
ii

� �
j, with the

jth nodal stress value r0
ii

� �
j depending on the position of the node

itself inside a specific stress region. The remaining stress compo-
nents are neglected since of low order of magnitude.

The effect of the stress patterns on the guided waves dispersive
characteristics is presented in Figs. 6 and 7 in the frequency range
0� 10 kHz.

As previously noticed for the axially loaded rail, the dispersive
behavior for the first five low order modes is only slightly
influenced except for the m2 mode, which phase and energy veloc-
ity tend asymptotically to plus infinity and minus infinity for a



Fig. 8. Finite element mesh of 112 nodes and 150 linear triangular elements for the ASME 1-1/2 Schedule 160 pipe. The transversal stress contours are relative to an inner
pressure pi ¼ 10 MPa and an outer pressure pe ¼ 5 MPa (case 3). Negative values denote compressive stresses.
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frequency value tending to zero, respectively. At the same time, the
mode attenuation decreases.

This particular behavior is not observed in the axially loaded rail
and is a consequence of the presence of the transverse and vertical
stresses r0

xx and r0
yy.

4.3. Pipe under initial pressure loading

In many practical situations the loads applied on the waveguide
are dependent upon the deformation of the solid itself. This is the
case, for instance, of a pressure acting at the inner and outer sur-
faces of a pipe when it undergoes to stress wave propagation,
which is the case studied in this example.

The pressure fluctuations in the gas phase due to the solid–fluid
interaction are neglected and the pressure is assumed to be con-
stant during the motion. The pipe is considered sufficiently long
to assume the cross-section in plain strain state in the prestressed
configuration C. For different inner and outer pressures pi and pe,
the generic point xp; yp

� �
of the pipe cross section with center in

x ¼ 0; y ¼ 0ð Þ is subjected to the following nonzero components
of initial stress (see Fig. 8)

r0
xx;r

0
yy ¼

c1

x2
p þ y2

p
� c2

" #
x2

p ; y
2
p

x2
p þ y2

p

 !
þ � c1

x2
p þ y2

p
� c2

" #
y2

p ; x
2
p

x2
p þ y2

p

 !

r0
zz ¼ R �mð Þ r0

x þ r0
y

� �
¼ �2R �mð ÞpeR2

e � piR
2
i

R2
e � R2

i

ð44Þ

where �m is defined as in Eq. (42) and the constants c1 and c2 take the
form

c1 ¼
R2

i R2
e pe � pið Þ

R2
e � R2

i

c2 ¼
p2

e R2
e � p2

i R2
i

R2
e � R2

i

ð45Þ

Positive values for the two pressures pi and pe produce compressive
stresses r0

xx and r0
yy, which vary quadratically along the pipe wall

thickness, while the axial stress r0
zz is constant for each point of

the waveguide. The geometric stiffness matrices ke
r0

xx
;ke

r0
yy

and ke
r0

zz

can be calculated by integrating via Gauss quadrature the stresses
defined in Eq. (44) over each finite element. The numerical applica-
tion considers an ASME 1-1/2 Schedule 160 steel pipe (outside ra-
dius Re ¼ 24:15 mm and inside radius Ri ¼ 17:01 mm) subjected
to a hydrostatic pressure gradient between the internal and the
external surfaces.

The steel in the prestressed configuration is assumed as isotro-
pic and hysteretic linear viscoelastic, having mass density
q ¼ 7800 kg/m3, longitudinal and shear bulk waves equal to
cL ¼ 5963 m/s and cS ¼ 3187 m/s respectively, longitudinal bulk
wave attenuation jL ¼ 0:003 Np/k and shear bulk wave attenua-
tion jS ¼ 0:008 Np/k.

The complex bulk velocities as well as the tensor of complex
moduli are computed as in Eqs. (42) and (43). In Fig. 9 solutions
relative to five cases are represented considering the mesh of
112 nodes and 150 linear triangular elements depicted in Fig. 8.
In Fig. 10 the percent variations between the loaded and unloaded
cases are shown. All the cases are studied by taking a reference
pressure pref ¼ 5 MPa. The continuous thick line denotes the stress
free case (case 1), in which the pipe is not subjected to any pres-
sure gradient. The solutions for the remaining four cases are ob-
tained by varying the inner and outer pressures. In particular, the
dashed line denotes an internal pressure pi ¼ pref and pe ¼ 0 (case
2); the dotted line denotes that pi ¼ 2pref and pe ¼ pref (case 3); the
dash dotted line refers to pi ¼ 0 and pe ¼ pref (case 4), and finally,
the continuous thin line indicates an internal pressure pi ¼ pref

and an external pressure pe ¼ 2pref (case 5). As it can be seen in
Fig. 9, the presence of a pressure gradient mostly affects the low or-
der modes, essentially the torsional mode T(0,1) and the two flex-
ural modes F(1,1). The most significant effect for this two modes is
essentially related to changes in phase and energy velocities in the
frequency range between 0 and 1000 Hz, which becomes larger if
one assumes pref > 5 MPa.

The presence of an internal pressure only (case 2) produces a
decrease of the phase velocity in the frequency range
0� 1000 Hz for the torsional mode T(0,1), which become disper-
sive. At the same time, an increase of the phase velocity for the
two flexural modes F(1,1) is observed in the frequency range
0� 50 Hz, with a corresponding decrement in the energy velocity.
This is principally due to the fact that an internal pressure pro-
duces a traction stress on the orthogonal direction z (see Eq.
(45)), which translates into an additional geometric stiffness con-
tribute and, as a consequence, into an increased flexural waves
velocity (see also (Chen and Wilcox, 2007 and Loveday, 2009)).
Moreover, an increase of the wave attenuation is observed for
the torsional mode T (0,1) in the frequency range 0� 500 Hz, while
a further drop in the wave attenuation for the longitudinal mode
L(0,1) is observed in the range 0� 100 Hz (phase and energy veloc-
ities for this mode result to be substantially unchanged).

Dispersion curves for the cases 3, 4 and 5 show a similar behav-
ior. In these cases the presence of an external pressure (lower than
the internal pressure in the case 3 and higher in the cases 4 and 5)
produces always a cutoff frequency and an increment in the phase
velocity for the torsional mode T(0,1), which is limited to the



Fig. 9. Phase velocity, energy velocity and attenuation for the ASME 1-1/2 Schedule 160 pipe under different pressure gradients.
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frequency range 25� 250 Hz for the case 3 and 190� 1500 Hz and
240� 1500 Hz for the cases 4 and 5, respectively. The related en-
ergy velocities are always increased for these cases.

In the same frequency ranges the wave attenuation of the T(0,1)
mode is highly reduced by the presence of the prestress field and
the phase velocity for the two flexural modes F(1,1) results to be
lower than the stress-free case for each of the three cases consid-
ered. An interesting observation can be made about the behavior
of the flexural mode F(1,1) in case 2 and case 3. In fact, even if in
both cases the axial stress r0

zz is positive, in case 2 the effect of
the internal pressure increases the mode phase velocity as a conse-
quence of an increased geometric stiffness while in case 3 the extra
external pressure reduces the mode phase velocity. As previously
noticed for the case 2, only very small changes can be observed
for the F(1,1) wave attenuation at very low frequencies, with a
decrease on the attenuation values for the cases 3 and 4 and an



Fig. 10. Normalized phase velocity, energy velocity and attenuation variations
between the loaded and unloaded cases for the viscoelastic pressurized pipe. Thin
lines denote positive variations while thick lines denote negative variations.
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increase for the case 5. However, an increment in the wave atten-
uation (very small for the case 3 and much higher for the cases 4
and 5) is observed for the longitudinal mode L(0,1) while its speed
is not substantially affected by the presence of the pressure
gradient.
5. Conclusions

An extension of the Semi Analytical Finite Element (SAFE)
formulation has been presented to include the effect of a three
dimensional prestress field in viscoelastic waveguides. Based on
a semi-isoparametric discretization, the formulation of the
problem has been extended by taking into account high order
terms in the strain–displacement relations and complex elastic
constants in the incremental stress–strain relations. The energy
velocity formula has been also revisited to include initial stress
terms starting from the balance law of the mechanical energy in
material description. To show the capabilities of the method, some
numerical investigation have been conducted on a 113A standard
rail considering hysteretic material.

The rail has been analyzed in the 0� 10 kHz frequency range,
but knowledge of high-frequency dispersion data (up to 100 kHz)
can be very helpful for axial load measurement.

For the case of an axial load only, the first flexural modes in the
low frequency range are the most influenced, showing generally an
increase in the phase velocity and a corresponding decrease in the
energy velocity when a tensile load is applied. The phase and en-
ergy velocities of the first modes are mostly sensitive in the very
low frequency range, although this does not happen for their cor-
responding wave attenuation, which show the highest changes in
magnitude for higher frequency values.

In the case of a roller-straightened rail, the simultaneous pres-
ence of both longitudinal and transversal stresses modifies signifi-
cantly the behavior of the fundamental torsional mode, while the
sensitivity of the first flexural modes to the residual stress results
to be highly mitigated with respect to the constant axial stress
case. Although the analysis have been conducted in a low fre-
quency range, the knowledge of high-frequency dispersion data
(up to 100 kHz) can be very helpful for axial load measurement
since some higher order modes remain considerable sensitive, pro-
viding useful informations in load detection schemes based on the
measurement of the shift in phase produced by the load itself
(Loveday and Wilcox, 2010).

The dispersive characteristic of guided waves propagating in a
hysteretic ASME 1-1/2 Schedule 160 pipe have been also analyzed
by considering the effect of a pressure gradient between the inner
and outer surfaces. Similarly to the roller-straightened rail, the
presence of the transversal (radial and circumferential) initial
stresses affects principally the first torsional mode, which becomes
dispersive, while the principal flexural mode is slightly influenced
by the axial load which arise by considering the pipe in plane stress
state.

Finally, it appears that the influence of the initial stress on the
dispersive characteristics of compact sections is large for low order
modes at low frequencies while higher order modes are generally
less influenced. The reason is that at high frequencies the geomet-
ric stiffness contribution becomes very small if compared with the
elastic stiffness contribution and therefore the wave propagation
behavior mainly depends on the waveguide properties and it is
slightly affected by the prestress state (Chen and Wilcox, 2007).

Based on the proposed numerical examples, the frequency val-
ues corresponding to the highest shift in the attenuation for the
principal modes seem generally far to those at which the highest
shift in the phase and energy velocity are observed. This particular
behavior could be deepened by assuming a different viscoelastic
model as, for example, the Kelvin–Voigt model or the Linear Stan-
dard Solid.

The obtained results can be helpful to design testing conditions
in guided waves based inspection of rails and pressurized
pipelines.
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