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Abstract

The strong chromatic index of a graph G is the minimum integer k such that the edge set of G can be partitioned into k induced
matchings. Faudree et al. [R.J. Faudree, R.H. Schelp, A. Gyárfás, Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B
(1990) 205–211] proposed an open problem: If G is bipartite and if for each edge xy ∈ E(G), d(x)+ d(y) ≤ 5, then sχ ′(G) ≤ 6.
Let H0 be the graph obtained from a 5-cycle by adding a new vertex and joining it to two nonadjacent vertices of the 5-cycle. In
this paper, we show that if G (not necessarily bipartite) is not isomorphic to H0 and d(x) + d(y) ≤ 5 for any edge xy of G then
sχ ′(G) ≤ 6. The proof of the result implies a linear time algorithm to produce a strong edge coloring using at most 6 colors for
such graphs.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Graphs in this paper are finite, undirected, without loops, but parallel edges are allowed.
Let G = (V (G), E(G)) be a graph. Denote by L(G) the line graph of G. We use n to denote the vertex number of

G and m the edge number of G. Let ∆(G) denote the maximum degree of G and ∆L(G) the maximum edge degree
of G (or equivalently the maximum degree of L(G)).

For two integers a and b with a ≤ b, by [a, b] we denote the set of integers a, a + 1, . . . , b.

Definition 1.1. Let e1 and e2 be any two edges of G. The distance between e1 and e2, d(e1, e2), is defined as the
distance between the corresponding two vertices in the line graph of G.

It is clear that if e1 and e2 are at distance 1 then they share at least one end-vertex, and if e1 and e2 are at distance 2
then they share no end-vertex and there exists another edge e′ such that e′ is at distance 1 from e1 and e2, respectively.

Definition 1.2. Given a positive integer k, a k-strong edge coloring of G is a mapping f from E(G) to [1, k] such
that, for any two edges e and e′ of G, d(e, e′) ≤ 2 implies f (e) 6= f (e′).
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It follows from the definition that each color class of a strong edge coloring of G is an induced matching in G.

Definition 1.3. The strong chromatic index, denoted by sχ ′(G), is the minimum integer k such that G has a k-strong
edge coloring.

The strong chromatic index of a graph was studied by Faudree et al. in [5]. It was conjectured (1985) by Erdős and
Nešetřil that sχ ′(G) ≤ 5∆2/4 if ∆ is even and ≤ 5∆2/4−∆/2+ 1/4 if ∆ is odd, where ∆ is the maximum degree
of G, see [10]. The conjecture is clearly true for ∆ ≤ 2. The case ∆ = 3 was settled independently by Andersen [1]
and by Horák, Qing, and Trotter [8]. They showed that sχ ′(G) ≤ 10 for graphs with maximum degree 3. Horák [9]
showed that sχ ′(G) ≤ 23 for graphs with maximum degree 4. And recently, Cranston [4] showed that sχ ′(G) ≤ 22
for graphs with maximum degree 4. The conjecture is unsolved for ∆ ≥ 4.

In [7], Griggs and Yeh introduced the distance two labeling of a graph. Afterwards, this concept was studied
extensively in the literature. The edge version of distance two labeling was first investigated by Georges and Mauro
in [6]. We would like to indicate that the strong edge coloring is related to the edge version of distance two labeling.
We first give the following definition.

Definition 1.4. Let j and k be two positive integers. An L( j, k)-edge-labeling of a graph G is an assignment of
nonnegative integers to the edges of G such that the difference between labels of any two edges at distance 1 is at least
j , and the difference between labels of any two edges that are at distance two apart is at least k. The minimum range
of labels over all L( j, k)-edge-labelings of a graph G is called the λ′j,k-number of G, denoted by λ′j,k(G).

From the above definitions, we know that, for any graph G, sχ ′(G) = λ′1,1(G) + 1. The following theorem is
proved in [3].

Theorem 1.1 ([3]). Let G be a simple or multiple graph and let ∆L be the maximum degree of its line graph. Suppose
∆L ≥ 2. Except the case that G is a 5-cycle and j = k, we have λ′j,k(G) ≤ kb∆2

L/2c + j∆L − 1.

The following corollary is an immediate consequence of Theorem 1.1.

Corollary 1.1 ([3]). Let G be a graph with maximum degree ∆ ≥ 2. Let ∆L be the maximum degree of the line graph
L(G). If G is not isomorphic to a 5-cycle, then sχ ′(G) ≤ b∆2

L/2c +∆L ≤ 2∆2
− 2∆.

This corollary provides an upper bound for sχ ′(G) in terms of ∆L .
When ∆ is small the upper bound in Corollary 1.1 is close to the known bounds for sχ ′(G). For example, the

corollary gives the upper bounds 12 for ∆ = 3 and 24 for ∆ = 4. In particular, when ∆L = 3 the upper bound for
sχ ′(G) given by Corollary 1.1 is 7. This upper bound is the best possible. One can see this from the following defined
graph H0. Let H0 denote the graph obtained from a 5-cycle by adding a new vertex and joining it to two nonadjacent
vertices of the 5-cycle. It is easy to see that any two edges in H0 are at distance at most 2 and H0 has 7 edges. It
follows that sχ ′(H0) = 7.

In [5], Faudree et al. proposed an open problem: If G is bipartite and if for every edge xy ∈ E(G), d(x)+d(y) ≤ 5,
then sχ ′(G) ≤ 6. (If true, this is the best possible. If the bipartite condition is dropped, then sχ ′(G) ≤ 7 follows and
this is the best possible.)

Corollary 1.1 shows that sχ ′(G) ≤ 7 for all graphs G with d(x) + d(y) ≤ 5 for each edge xy ∈ E(G). In this
paper, we shall prove a result which is stronger than that in the open problem proposed by Faudree et al. Actually we
shall show that H0 is the only graph with its strong chromatic index equal to 7 and with its maximum edge degree less
than or equal to 3. Our main result is the following theorem.

Theorem 1.2. Let G be a connected graph. If G is not isomorphic to H0 and d(x)+ d(y) ≤ 5 for any edge xy of G,
then sχ ′(G) ≤ 6.

We would like to indicate that the upper bound given by Theorem 1.2 is the best possible. Let H1 denote the graph
obtained from a 8-cycle C = v1v2 . . . v8 by adding two vertices v′1 and v′5 and joining v′1 to v8, v2 and v′5 to v4, v6.
We show that sχ ′(H1) ≥ 6. If this is not true, suppose c is a 5-strong edge coloring of H1. Then it is easy to see that
c(v7v8) = c(v2v3) and c(v6v7) = c(v3v4). It follows that there are at most three colors for the 4-cycle v1v2v

′

1v8, a
contradiction. Thus sχ ′(H1) ≥ 6. By Theorem 1.2, sχ ′(H1) = 6. Also it is easy to see that sχ ′(K2,3) = 6. It seems
difficult to find a non-bipartite graph G with sχ ′(G) = 6 and ∆L(G) = 3.
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2. Preliminaries

In order to use greedy algorithm to construct a partial strong edge coloring of a cubic graph, Andersen in [1]
introduced a method of ordering the edges of a graph. In this section we first modify this method of ordering the edges
of a graph and then show that a greedy algorithm, in an ordering of edges given by this method, will produce a partial
strong edge coloring using at most 6 colors of a graph G with ∆L(G) ≤ 3, where only a few particular edges may be
left uncolored.

Definition 2.1. Suppose S is a subset of V (G). For a vertex v ∈ V (G), the distance from v to S, denoted by dS(v), is
defined as minw∈S{d(v,w)}.

Definition 2.2. Suppose S is a subset of V (G) and suppose that the maximum distance from a vertex of V (G) to
S is I . For i = 0, 1, . . . , I , let Di = {v ∈ V (G)|d(v, S) = i}. We define a mapping dS from E(G) to [0, I ] as:
dS(e) = min{i |e ∩ Di 6= ∅, 0 ≤ i ≤ I } for any edge e ∈ E(G).

Note that if dS(e) > 0 then there exists an edge e′ sharing one end-vertex with e such that dS(e′) < dS(e).

Definition 2.3. Let S be a subset of V (G) and let R = (ek1 , ek2 , . . . , ekm ) be an ordering of the edges of G. For any
two integers i and j in [1,m], if ki < k j implies dS(eki ) ≥ dS(ek j ), then we say that the edge ordering R of G is
compatible with the mapping dS .

For any edge e in E(G), let N (e) denote the set of edges in E(G) that are at distance at most 2 from e. In our
coloring process, we shall frequently use F(e) to denote the set of colors we have already assigned to the edges in
N (e), and by A(e) the set of colors available for e at that moment.

Lemma 2.1. Let S be any subset of V (G). A greedy algorithm coloring the edges of G in an ordering R compatible
with the mapping dS , will produce a partial strong edge coloring using at most 6 colors of G, where only edges e with
dS(e) = 0 may be left uncolored.

Proof. If e is an edge with dS(e) > 0 then there exists an edge e′ sharing one end-vertex with e such that
dS(e′) < dS(e). Let x be the common end-vertex of e and e′ and y the another end-vertex of e′. Then, at the stage
of the greedy algorithm when e is to be colored, no edges incident with y has yet been colored. It follows from the
structure of G that |F(e)| < 6. Thus e can be colored properly. �

The following lemma was proved by Brualdi and Massey in [2]. It will be useful in the proof of our main result.

Lemma 2.2. Let H be a bipartite graph with bipartition X, Y with no cycles of length 4. Let the maximum degree of
a vertex of X be 2 and the maximum degree of a vertex of Y be Γ . Then sχ ′(H) ≤ 2Γ .

3. The proof of Theorem 1.2

Let Cn be a cycle of length n and Pn the path on n vertices. It is easy to see that sχ ′(P2) = 1, sχ ′(P3) = 2 and
sχ ′(Pn) = 3 if n ≥ 4. Also it is not difficult to prove that sχ ′(C5) = 5, sχ ′(Cn) = 3 if n = 3k, and sχ ′(Cn) = 4 if
n = 3k + 1 or 3k + 2 (n 6= 5).

Note that we assume that G is connected. If ∆(G) ≤ 2 then sχ ′(G) ≤ 5 and the equality holds only when G is
a 5-cycle. If ∆(G) = 4 then G is isomorphic to K1,4 and clearly sχ ′(K1,4) = 4. Thus we only need to consider the
graphs with ∆(G) = 3. Since d(x) + d(y) ≤ 5 for any edge xy of G, any two vertices of degree 3 are nonadjacent.
The proof of Theorem 1.2 consists of a series of lemmas.

Lemma 3.1. If G has a vertex of degree 1 then sχ ′(G) ≤ 6.

Proof. Let v0 be a vertex of degree 1 and let e0 be the edge incident with v0. Put S = {v0}. Then, by Lemma 2.1, all
edges except e0 can be colored properly. Since |N (e0)| ≤ 4, e0 can also be colored properly. �

From now on, we may assume that G has no vertex of degree 1.
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Lemma 3.2. If G has a cut-vertex then sχ ′(G) ≤ 6.

Proof. Due to the construction of the graph G and since we assume that G has not vertex of degree 1, if G has a cut-
vertex then it has a cut-vertex of degree 2. Let v0 be a cut-vertex of degree 2 and let N (v0) = {v1, v2}. Let e1 = v0v1
and e2 = v0v2. Then G − v0 has exactly two components, say G1 and G2. Let G ′1 = G1 + e1 and G ′2 = G2 + e2. By
Lemma 3.1, sχ ′(G ′1) ≤ 6 and sχ ′(G ′2) ≤ 6. Let φi (i = 1, 2) be a strong edge coloring of G ′i using at most 6 colors.
Since we can permute the colors among the edges, we may, without loss of generality, assume that the set of colors
that φ1 assigns to edges incident with v1 is disjoint from the set of colors φ2 that assigns to the edges incident with v2.
Finally, by combining φ1 and φ2, we obtain a strong edge coloring of G using at most 6 colors. �

The girth of a graph G, g(G), is the length of a shortest cycle in G.

Lemma 3.3. If g(G) = 2 or 3 then sχ ′(G) ≤ 6.

Proof. Let S be the set of vertices of a shortest cycle in G. As in the proof of Lemma 3.1, we can show that 6 colors
are enough for the edges of G. �

Lemma 3.4. If g(G) = 4 then sχ ′(G) ≤ 6.

Proof. Let C = v1v2v3v4v1 be a 4-cycle in G. Let S = V (C). If there is at most one vertex on C having degree
3, then G has a cut-vertex and the lemma follows from Lemma 3.2. Thus there are exactly two nonadjacent vertices
on C having degree 3. Without loss of generality, assume that d(v1) = d(v3) = 3. Let u1 and u3 be the vertices
adjacent to v1 and v3 not in C , respectively. Let e1 = v1v2, e2 = v2v3, e3 = v3v4, e4 = v4v1, f1 = v1u1 and
f3 = v3u3. If u1 = u3 then G is isomorphic to K2,3 and it is clear that sχ ′(K2,3) = 6. Thus we assume that u1 6= u3.
If u1u3 ∈ E(G) then G is isomorphic to H0. Therefore we assume that u1u3 6∈ E(G). Let another neighbor of u1 be
w1 and another neighbor of u3 be w3.

We first use the greedy algorithm to color all edges e of G with dS(e) > 0. Denote this partial strong edge coloring
of G by φ. Now there are six edges left uncolored. We shall show that φ can be extended to the whole graph. Note
that f1 and f3 are at distance 3. If A( f1) ∩ A( f3) 6= ∅ then let φ( f1) = φ( f3) ∈ A( f1) ∩ A( f3). It is now easy to see
that |A(ei )| ≥ 4 for i = 1, 2, 3, 4. And we can choose one color from A(ei ) for each edge ei and so get a strong edge
coloring of G using at most 6 colors.

We now assume that A( f1) ∩ A( f3) = ∅. If w1 = w3 then A( f1) = A( f3), a contradiction. Thus w1 6= w3. Let
t1 = u1w1 and t3 = u3w3. Since A( f1) ∩ A( f3) = ∅, φ(t1) ∈ A( f3) and φ(t3) ∈ A( f1). Let φ( f1) = φ(t3) and
φ( f3) = φ(t1). Then |A(ei )| ≥ 4 for each i = 1, 2, 3, 4 and we can easily get a strong edge coloring of G using at
most 6 colors. �

Lemma 3.5. If g(G) = 5 then sχ ′(G) ≤ 6.

Proof. Let C = v1v2v3v4v5v1 be a 5-cycle in G. Let S = V (C). If there is at most one vertex on C having degree 3,
then G has a cut-vertex and the lemma follows from Lemma 3.2. Thus there are exactly two nonadjacent vertices on
C having degree 3. Without loss of generality, assume that d(v1) = d(v3) = 3. Let u1 and u3 be the vertices adjacent
to v1 and v3 not in C , respectively. Let e1 = v1v2, e2 = v2v3, e3 = v3v4, e4 = v4v5, e5 = v5v1, f1 = v1u1 and
f3 = v3u3. Since G has no 4-cycle, we have u1 6= u3. If u1u3 ∈ E(G) then G has no other vertices and it is easy to
see that sχ ′(G) ≤ 6. Therefore we assume that u1u3 6∈ E(G). Let another neighbor of u1 be w1 and another neighbor
of u3 be w3. Let t1 = u1w1 and t3 = u3w3.

We first use the greedy algorithm to color all edges e of G with dS(e) > 0. Denote this partial strong edge coloring
of G by φ. Now there are seven edges left uncolored. We shall show that φ can be extended to the whole graph. Note
that f1 and f3 are at distance 3. If A( f1) ∩ A( f3) 6= ∅ then let φ( f1) = φ( f3) ∈ A( f1) ∩ A( f3). It is now easy to see
that |A(ei )| ≥ 4 for i = 1, 2, 3, 5 and |A(e4)| ≥ 5. Then we can greedily choose one color from A(ei ) for each edge
ei in the order e1, e2, e3, e5, e4 and so extend φ to the whole graph.

We now assume that A( f1) ∩ A( f3) = ∅. If w1 = w3 then A( f1) = A( f3), a contradiction. Thus w1 6= w3. Let
a = φ(t1). Since A( f1)∩ A( f3) = ∅, a ∈ A( f3). Note that when the edge t1 is to be colored we actually have at least
two choices of the colors. Thus we can change the color for t1. Then the color a is available for both f1 and f3. We
are back to the case A( f1) ∩ A( f3) 6= ∅ and the lemma follows. �
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Lemma 3.6. If G has three vertices v1, v2 and v3 of degree 2 such that v1v2v3 is a path in G, then sχ ′(G) ≤ 6.

Proof. Let S = {v2}. The greedy algorithm will produce a strong edge coloring of G using at most 6 colors. �

Lemma 3.7. If G has two adjacent vertices of degree 2 then sχ ′(G) ≤ 6.

Proof. By Lemmas 3.3–3.5, we may assume that the girth of G is at least 6. Let v1 and v2 be the two adjacent
vertices of degree 2. Let u1 and u2 be the two vertices adjacent to v1 and v2, respectively. Let e1 = v1v2, f1 = v1u1,
f2 = v2u2. If u1 or u2 is of degree 2 then, by Lemma 3.6, sχ ′(G) ≤ 6. Thus we assume that d(u1) = d(u2) = 3.
Let N (u1) = {v1, w1, w2} and N (u2) = {v2, w3, w4}. Since G has no cycle of length less than 6 and has no vertex
of degree 1, w1, w2, w3, w4 are four different vertices of degree 2. Let g1 = u1w1, g2 = u1w2, g3 = u2w3 and
g4 = u2w4.

Let G ′ be the graph obtained from G by deleting the vertices v1, v2, u1 and adding the edge w2u2. Then w1 is
a vertex of degree 1 in G ′. Let s1 be the vertex adjacent to w1 in G ′. Clearly s1 is a cut-vertex of G ′. If G ′ is not
connected then u1 is a cut-vertex of G. By Lemma 3.2, sχ ′(G) ≤ 6. Thus we assume that G ′ is connected. Clearly G ′

satisfies the conditions of Theorem 1.2. Since w1 is a vertex of degree 1 in G ′, by Lemma 3.1, G ′ has a strong edge
coloring using at most 6 colors. Since there are at most 4 edges at distance 1 or 2 from w1s1, it is not difficult to see
that G ′ has a strong edge coloring φ using at most 6 colors with φ(w1s1) 6= φ(w2u2).

Now we extend φ to the graph G. Color the two edges g2 and f2 with the same color φ(w2u2). And then color the
remaining three edges in the order g1, f1, e1 in a greedy way. It is not difficult to see that this will produce a strong
edge coloring of G using at most 6 colors. �

Let X be the set of vertices of degree 2 and Y the set of vertices of degree 3 in G. By Lemma 3.7, we may assume
that any two vertices of degree 2 are nonadjacent. This implies that G is bipartite with bipartition X, Y . By Lemma 3.4,
we may assume that G has no cycles of length 4. Theorem 1.2 now follows from Lemma 2.2.

Remark. Except the three graphs H0, H1, and K2,3, we do not find other graphs G with ∆L(G) = 3 and sχ ′(G) ≥ 6.
It seems difficult to find such graphs.

In the proof of Theorem 1.2, the argument for the case that G has no adjacent degree 2 vertices employs a result
from [2] which does not reflect a linear time algorithm to produce the desired strong edge coloring of G. In the next
section, we shall first deal with this case in an algorithmic way and then describe a linear time algorithm that can
produce a strong edge coloring using at most 6 colors of graphs G satisfying the conditions of Theorem 1.2.

4. The 6-strong edge coloring algorithm

The purpose of this section is to give a linear time algorithm that can produce a strong edge coloring using at most
6 colors of graphs G with d(x)+ d(y) ≤ 5 for any edge xy of G or report that G is isomorphic to H0 or ∆L(G) ≥ 4.

Let G be a graph with n vertices. We represent the graph G by listing all its vertices and, for each vertex, we attach
with it the information about the edges incident to it together with the other end-vertices of the edges. It is easy to see
that one can find the connected components of G in O(n) time. And it spends at most O(n) time to check whether
G has some edge xy such that d(x) + d(y) ≥ 6 (i.e. ∆L(G) ≥ 4). If G satisfies the conditions in Theorem 1.2 then
we can find a vertex of degree less than 3 in a constant time. If G satisfies the conditions in Theorem 1.2 then the
number of edges is O(n). Suppose S is a subset of V (G). Then clearly we can get an edge ordering R of G which is
compatible with dS in O(n) time and the greedy algorithm will produce a partial strong edge coloring of G in O(n)
time using at most 6 colors leaving only the edges with dS(e) = 0 uncolored. Thus the proofs in the previous section
actually imply a linear time algorithm to produce a strong edge coloring of G using at most 6 colors provided that we
have found a vertex of degree 1, or a cycle of length l ∈ {2, 3, 4, 5}, or two adjacent vertices both of degree 2.

We first prove in an algorithmic way that sχ ′(G) ≤ 6 if G has no adjacent degree 2 vertices and satisfies the
conditions in Theorem 1.2.

Lemma 4.1. Let G be a graph on n vertices which satisfies the conditions in Theorem 1.2. If g(G) = 6 and a 6-cycle
C = v1v2v3v4v5v6 is given then we can obtain a strong edge coloring of G using at most 6 colors in O(n) time.
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Proof. We assume that G is connected. If there are at most two degree 3 vertices on C then G has two adjacent degree
2 vertices. Using the method from Lemma 3.7, we can obtain a strong edge coloring of G using at most 6 colors in
O(n) time. Thus we assume that d(v1) = d(v3) = d(v5) = 3 and let u1, u3, u5 be the three vertices not on C adjacent
to v1, v3, v5, respectively. Since G has no cycles of length less than 6, u1, u3, u5 are distinct and nonadjacent vertices.
Let G ′ be the graph obtained from G by deleting V (C) and adding an edge u1u3. Then G ′ has at most two connected
components and each component has a vertex of degree 1 or two adjacent vertices of degree 2. By Lemmas 3.1 and
3.7, we can get a strong edge coloring φ of G ′ using at most 6 colors in O(n) time. Next we shall extend φ to G.

Suppose φ(u1u3) = a. Now let φ(v1u1) = φ(v3u3) = a. And color the edge v5u5 with a color from A(v5u5)

(note that A(v5u5) ≥ 3). Then it is easy to see that |A(v2v3)| ≥ 4 and |A(v5v6)| ≥ 3. Thus A(v2v3) ∩ A(v5v6) is
nonempty. Let b ∈ A(v2v3) ∩ A(v5v6). Since a 6∈ A(v2v3), b 6= a. Now assign the color b to both v2v3 and v5v6.
At this moment, we have |A(v1v6)| ≥ 2, |A(v4v5)| ≥ 2, |A(v3v4)| ≥ 2, |A(v1v2)| ≥ 3. By greedily coloring the
remaining four edges in the order v1v6, v4v5, v3v4, v1v2, we get the strong edge coloring of G using at most 6 colors.
The extension of φ to G takes a constant time. �

Lemma 4.2. Let G be a graph on n vertices which satisfies the conditions in Theorem 1.2. If g(G) ≥ 8 and G has
no adjacent vertices both of degree 2 then we can obtain a strong edge coloring using at most 6 colors of G in O(n)
time.

Proof. We may assume that G is connected and has no vertex of degree 1. Let v0 be a vertex of degree 2 and let
N (v0) = {u1, u2}. Then d(u1) = d(u2) = 3. Let N (u1) = {v0, w1, w2} and N (u2) = {v0, w3, w4}. Then d(wi ) = 2
for i = 1, 2, 3, 4. Let si (i ∈ {1, 2, 3, 4}) be the vertex adjacent to wi other than u1 and u2. Since g(G) ≥ 8, all the
vertices specified above are distinct. Then d(si ) = 3 for i = 1, 2, 3, 4. Let N (s1) = {w1, t1, t2}, N (s2) = {w2, t3, t4},
N (s3) = {w3, t5, t6}, and N (s4) = {w4, t7, t8}. Since g(G) ≥ 8, t1, t2, t3, t4 are four distinct vertices, and t5, t6, t7, t8
are also four distinct vertices. But it is possible that some vertex from {t1, t2, t3, t4} is identified with some vertex from
{t5, t6, t7, t8}.

Observation 1. Let f be a partial strong edge coloring of G using at most 6 colors with only v0u1 and v0u2 uncolored.
(By letting S = {v0}, such partial strong edge coloring can be constructed in linear time according to Lemma 2.1). We
observe that if f satisfies one of the following three conditions then it can be extended to all edges of G.

Condition A: | f ({u1w1, u1w2, u2w3, u2w4})| = 2. Then |A(v0u1)|, |A(v0u2)| ≥ 2.
Condition B: | f ({u1w1, u1w2, u2w3, u2w4})| ≤ 3 and f ({w1s1, w2s2}) ∩ f ({u2w3, u2w4}) 6= ∅ (or f ({w3s3,

w4s4}) ∩ f ({u1w1, u1w2}) 6= ∅). Then |A(v0u1)| ≥ 2 and |A(v0u2)| ≥ 1.
Condition C: | f ({u1w1, u1w2, u2w3, u2w4})| ≤ 3 and f ({w1s1, w2s2}) ∩ A(v0u2) 6= ∅ (or f ({w3s3, w4s4}) ∩

A(v0u1) 6= ∅). Then assign v0u2 a color from f ({w1s1, w2s2}) ∩ A(v0u2) and v0u1 can be colored properly.

Observation 2. Let f be a partial strong edge coloring of G using at most 6 colors with exactly all edges incident to
v0, u1, u2 uncolored. If for some color a, f (wi si ) = a for all i ∈ {1, 2, 3, 4} then f can be extended to all the edges
of G.

Proof. Note that both |A(u1w1)| and |A(u2w3)| are equal to 3. Since a 6∈ A(u1w1) ∪ A(u2w3), |A(u1w1) ∪

A(u2w3)| ≤ 5. It follows that A(u1w1) ∩ A(u2w3) 6= ∅. Let b be a color in A(u1w1) ∩ A(u2w3). After assigning the
color b to both u1w1 and u2w3, we have |A(v0u1)| = |A(v0u2)| = 4 and |A(u1w2)|, |A(u2w3)| ≥ 2. Now it is easy
to see that we can properly color the remaining four edges. �

Let G ′ be the graph obtained from G by deleting the three vertices v0, u1, u2 and adding the two edges w1w4,
w2w3. By Lemma 3.7, we can get a strong edge coloring using at most 6 colors f ′ of G ′ in linear time. If
f ′(w1w4) 6= f ′(w2w3) then, by letting f (e) = f ′(e) for e ∈ E(G) ∩ E(G ′), f (u1w1) = f (u2w4) = f ′(w1w4),
and f (u1w2) = f (u2w3) = f ′(w2w3), we get a partial strong edge coloring f of G satisfying Condition A in
Observation 1, and we are done. Thus we now assume that f ′(w1w4) = f ′(w2w3) = a.

If | f ′({w1s1, s1t1, s1t2, w4s4, s4t7, s4t8})|<5 (or | f ′({w2s2, s2t3, s2t4, w3s3, s3t5, s3t6})|<5) then we can redefine
f ′(w1w4) (or f ′(w2w3)) such that f ′(w1w4) 6= f ′(w2w3) and we are back to the above case. Therefore we assume
that | f ′({w1s1, s1t1, s1t2, w4s4, s4t7, s4t8})| = 5 and | f ′({w2s2, s2t3, s2t4, w3s3, s3t5, s3t6})| = 5. This implies that
| f ′({w1s1, s1t1, s1t2}) ∩ f ′({w4s4, s4t7, s4t8})| = 1. Note that f ′(w1s1) 6= f ′(w4s4). Without loss of generality, we
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may assume that f ′(w1s1) = f ′(s4t7) or f ′(s1t1) = f ′(s4t7). Suppose the six colors used by f ′ are a, b, c, x, y, z.
We distinguish two cases.

Case 1: f ′(s1t1) = f ′(s4t7).
Without loss of generality, suppose f ′(s1t1) = f ′(s4t7) = y, f ′(w1s1) = x , f ′(s1t2) = z, f ′(w4s4) = b,

f ′(s4t8) = c.
If f ′(w2s2) 6= b then let f (e) = f ′(e) for e ∈ E(G) ∩ E(G ′), f (u1w1) = b, f (u1w2) = f (u2w3) = a,

f (u2w4) ∈ {x, z} \ { f ′(w3s3)}. Clearly f is a partial strong edge coloring using at most 6 colors of G satisfying
Condition B in Observation 1, we are done. Similarly if f ′(w3s3) 6= x then we can get a strong edge coloring of G
using at most 6 colors. Thus we assume that f ′(w1s1) = f ′(w3s3) = x and f ′(w2s2) = f ′(w4s4) = b.

For edges e ∈ (E(G)∩E(G ′))\{wi si |i = 1, 2, 3, 4}, let f (e) = f ′(e). Then |A(wi si )| ≥ 2 for each i ∈ {1, 2, 3, 4}.
If a 6∈ A(w1s1) then assign the color other than x in A(w1s1) to the edge w1s1 and let f (w2s2) = f (w4s4) = b,
f (w3s3) = f (u1w1) = x , f (u1w2) = f (u2w3) = a, f (u2w4) = z. Then f becomes a partial strong edge coloring
of G using at most 6 colors satisfying Condition B in Observation 1 and we are done. Similarly, if a 6∈ A(wi si )

for some i ∈ {1, 2, 3, 4}, then we can extend f to the whole graph G. Thus we assume that a ∈ A(wi si ) for each
i ∈ {1, 2, 3, 4}. Let f (wi si ) = a for each i = 1, 2, 3, 4. By Observation 2, we can extend f to the whole graph G.

Case 2: f ′(w1s1) = f ′(s4t7).
Without loss of generality, suppose f ′(w1s1) = f ′(s4t7) = x , f ′(s1t1) = y, f ′(s1t2) = z, f ′(w4s4) = b,

f ′(s4t8) = c.
If f ′(w2s2) 6= b then let f (e) = f ′(e) for e ∈ E(G) ∩ E(G ′), f (u1w1) = b, f (u1w2) = f (u2w3) = a. Since

|A(u2w4)| ≥ 1, by assigning a color from A(u2w4) to u2w4, f becomes a partial strong edge coloring of G using at
most 6 colors satisfying Condition B in Observation 1, and we are done. Thus we assume that f ′(w2s2) = b.

If f ′(w3s3) 6= x then since f ′(w2s2) = b and f ′(w2w3) = a we have f ′(w3s3) ∈ {c, y, z}. If f ′(w3s3) = y (or
f ′(w3s3) = z) then let f (e) = f ′(e) for e ∈ E(G)∩ E(G ′), f (u1w2) = f (u2w3) = a, f (u1w1) = c, f (u2w4) = z.
f satisfies Condition C in Observation 1. We are done. Now suppose f ′(w3s3) = c. If c 6∈ f ′({s2t3, s2t4}) then let
f (e) = f ′(e) for e ∈ E(G) ∩ E(G ′), f (u1w1) = f (u2w3) = a, f (u1w2) = c, f (u2w4) = z, f (v0u1) = y,
f (v0u2) = x . Clearly f is a strong edge coloring using at most 6 colors of G. If c ∈ f ′({s2t3, s2t4}) then let
f (e) = f ′(e) for e ∈ E(G) ∩ E(G ′), f (u1w1) = f (u2w3) = a. As A(u1w2) ⊆ {y, z} = A(u2w4), we can
assign u1w2 and u2w4 the same color. Then f is a partial strong edge coloring of G using at most 6 colors satisfying
Condition A in Observation 1 and we are done. Therefore we now assume f ′(w3s3) = x .

At this moment we have f ′(w1s1) = f ′(w3s3) = x and f ′(w2s2) = f ′(w4s4) = b. As in the proof of Case 1, we
can extend f to the whole graph G. �

Combining Lemmas from this and the previous sections, we have the following theorem.

Theorem 4.1. There is a linear time algorithm that finds a strong edge coloring using at most 6 colors for graphs
satisfying the conditions in Theorem 1.2.

Proof. We shall give a sketch of the desired algorithm. Suppose G is a graph as an input to the algorithm. The
algorithm first checks if G satisfies the conditions in Theorem 1.2. If G satisfies the conditions in Theorem 1.2 then it
goes on to identify all its connected components. For each connected component of G, the algorithm runs as follows.

(s1): Choose any vertex, say x , of G. If d(x) = 3 then find a neighbor, say v0, of x (clearly 1 ≤ d(v0) ≤ 2);
otherwise set v0 = x (we also have 1 ≤ d(v0) ≤ 2).

(s2): If d(v0) = 1 then let S = {v0}, as in the proof of Lemma 3.1, the algorithm will produce a strong edge
coloring of G using at most 6 colors. Else d(v0) = 2. Let u1 and u2 be the two neighbors of v0. Go to (s3).

(s3): If u1 = u2, or u1u2 ∈ E(G), or d(u1) = d(u2) = 2, then let S = {v0, u1, u2}, construct the edge ordering of
G compatible with the mapping dS and greedily color all edges of G in the edge ordering constructed just now. Else
if d(u1) = d(v0) = 2 or d(u2) = d(v0) = 2, then as in the proof of Lemma 3.7, the algorithm will produce a strong
edge coloring of G using at most 6 colors. Else d(u1) = d(u2) = 3, go to (s4).

(s4): Let S = {v0}. Find Di for i = 0, 1, 2, 3, 4. If G has two adjacent vertices of degree less than or equal to 2
among

⋃4
i=0 Di then as in the proof of Lemma 3.7, the coloring can be constructed in linear time. Else if G has a cycle

of length less than 8 among
⋃4

i=0 Di , then let S be the set of vertices on that cycle, as in the proof of Lemma 3.3, or
3.4, or 4.1, the coloring can be constructed in linear time. (Note that if any two vertices of degree less than or equal to
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2 in
⋃4

i=0 Di are nonadjacent then
⋃4

i=0 Di contains no odd cycle.) Else, as in the proof of Lemma 4.2, the coloring
can be constructed in linear time.

Thus in total, one can get the required coloring in linear time. �
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