Tuesday, March 09, 2004, 2:00 p.m.-3:30 p.m.
Morial Convention Center, Room 217

849-1
Uncoupling Proteins Shift During Cardiac Hypertrophy and Renin-Angiotensin System Suppression

Susan Marie Dallabrida, Maria Ann Rupnick, Brigham and Women’s Hospital, Boston, MA. Children’s Hospital, Boston, MA

Background: Improving energetics during heart failure may aid to preserve cardiac function. Uncoupling proteins (UCPs) are key regulators of energetics in skeletal muscle and adipose tissue. They reduce the proton electrochemical gradient across the inner mitochondrial membrane. However, their role in cardiac tissue is poorly understood. In mice with heart failure, increased UCP2 coincides with reduced high-energy phosphates. In humans, reduced UCP3 in failing hearts is normalized with left ventricular assist devices. RAAS suppression with angiotensin converting enzyme (ACE) inhibitors or angiotensin II receptor I (ATR1) blockers improve cardiac function and reduce remodeling. We asked if these benefits were associated with improved cardiac energetics.

Methods: We examined UCP1, UCP2, UCP3 mRNA levels (real-time RT-PCR) in thyro-roid-hormone (T3)-induced cardiac hypertrophy (C57BL/6 mice) and in mice given T3 plus an antiangiogenic drug, TNP-470 on 1-4, 14 d. We measured the effect of captopril or candesartan (14 d) on UCPs in C57BL/6 mice. Body, leaflet/right ventricle, and atria weights and tibia length were assessed.

Results: T3-induced hypertrophy increased left ventricle (LV) UCP2 and UCP3 mRNA levels, and reduced UCP1. Compared to controls, UCPs increased 5 fold (1, 2, 10 fold (3-d), and 20 fold (d) with no further increases despite continued LV increases (14 d). The UCP2 increases coincided with the most angiogenic phase (1-4 d) of T3-induced hypertrophy. We examined the effects of an antiangiogenic agent, TNP-470, on UCP shifts and hypertrophy. We treated mice with T3 plus TNP-470 (1, 4, 10, 14 d). TNP-470 reduced UCP2 to normal and limited increases in LV mass (T3: 11.7±12 mg; T3+TNP-470: 9±6 mg, but did not negate UCP3 or UCP1 shifts. In addition, mice given captopril or candesartan (14 d) had reduced UCP2 levels (2 fold) and LV weights (controls: 125±10; capto-pril: 94±4; candesartan: 95±2 mg). UCP3 and UCP1 were unchanged.

Conclusion: UCPs may be important regulators of cardiac energetics. Perturbations may contribute to heart failure. Agents that normalize UCP expressions (ie: TNP-470, ACE inhibitors/ATR1 blockers) may improve cardiac function during hypertrophy and failure.

ABSTRACTS - Cardiac Function and Heart Failure 225A

2:15 p.m.

849-2
Left Ventricular Assist Device Support Fails to Normalize the Beta-1/Beta-2 Adrenergic Receptor Ratio in Human Heart Failure

Wendy E. Sweet, Maria Yared, Monique L. Ogtrell, Patrick M. McCarthy, James B. Young, Christine S. Moravec, Cleveland Clinic Foundation, Cleveland, OH

Background: Human heart failure is associated with a decreased response to beta-adrenergic activation due to a decrease in beta-adrenergic receptors, particularly a decrease in density of beta-1 receptors. During heart failure, the ratio of beta-1/beta-2 receptors is approximately 60/40, as compared to 80/20 in non-failing hearts. We have shown that following left ventricular assist device (LVAD) support of the failing heart, total receptor density recovers quickly, but recovery of the inotropic response to stimulation is delayed. This study tested the hypothesis that delayed recovery of inotropy is due to a delayed restoration in the ratio of beta-1/beta-2 adrenergic receptors.

Methods: Inotropic responsiveness to one micromolar isoproterenol was measured in isolated, isometrically contracting human trabecular muscles from tissue removed at LVAD implant and explant. Total beta receptor density was quantified in the same tissue pairs by Scatchard analysis using radiolabeled cyanopindolol, while receptor subtypes were determined by two-site competition binding curves using 15 doses of ICI 118,551.

Results: At time of LVAD explant, the inotropic response to isoproterenol was greater (149 ± 29%) as compared to the time of implant (68 ± 14%, p < 0.05), and the response continued to improve with increased duration of support (p < 0.05). Total receptor density was increased after LVAD (72.3 ± 7.8 vs 42.2 ± 3.6 fmol/mg protein; p < 0.0001), whereas the percent of beta-1 receptors was not different between the two groups (64.4 ± 6.1% at implant; 68.4 ± 2.0% at explant). While the percent of beta-1 receptors was not changed, the absolute number of both beta-1 (50.3 ± 6.4 vs 19.4 ± 3.5 fmol/mg protein; p < 0.0001) and beta-2 receptors (21.9 ± 2.2 vs 10.8 ± 2.6 fmol/mg protein, p < 0.05) was increased after LVAD.

Conclusion: Although the total density of beta-adrenergic receptors recovers following LVAD support of the failing human heart, the ratio of beta-1/beta-2 receptors remains at failure (60/40) rather than non-failing (80/20) levels. The larger percentage of beta-2 receptors after LVAD may contribute to delayed recovery of the inotropic response.

2:30 p.m.

849-3
Extracellular Matrix Remodeling During Left Ventricular Assist Device Support: Relation Between Collagen and Passive Pressure-Volume Relations

Stefan Krott, Marc L. Dickstein, Jeffrey A. Morgan, Robert F. Forony, Angou Gu, Jeanine D. Armentino, Daniel Burkhoff, Columbia University, New York, NY

Introduction: Left ventricular assist device (LVAD) support of failing hearts induces reverse remodeling, manifest as shifts towards lower volumes of the passive pressure-volume relationship (PVR). This may be a consequence of regression of hypertrophy and/or changes in myocardial properties due to extracellular matrix remodeling. However, the relative contributions of these factors to reverse remodeling are unknown.

Methods: LV tissue samples were collected from idiopathic dilated cardiomyopathic (DCM) hearts at the time of cardiac transplantation in patients requiring (n=16) or not requiring (n=16) prior LVAD support and from 5 normal hearts not suitable for transplantation. Total collagen (hydroxyproline), soluble collagen and insoluble collagen were measured. Chamber capacitance and myocardial stiffness were calculated from e-vo PVs and measured LV wall volume.

Results: Compared to normals, total collagen and soluble collagen were increased in DCM (3.1±1.5 vs 6.1±3.4 µg/mg, p=0.014; 1.4±0.3 vs 4.1±0.9 µg/mg, respectively, p=0.15). LVAD support further increased total collagen (9±3 µg/mg). Cecam, which was due to an increase of insoluble collagen (2.0±0.3 vs 5.1±3.1 µg/mg, p<0.008) with no change in soluble collagen (4.1±0.9 vs 3.9±1.0, p=NS). LV mass was decreased by LVAD support (296±73 vs 234±60 g, p=0.014), the PVR shifted towards lower volumes with a chamber capacitance (volume at a pressure of 30 mmHg) increasing from 266±136 ml to 192±87 ml (p=0.024). However, myocardial stiffness constant was not affected (9.9±0.7 vs 10.6±0.9, p=NS).

Discussion: LVAD-support of the failing human heart leads to increased total collagen and cross-linking of collagen, suggestive of increased tensile strength of the extracellular matrix. Despite these changes, however, global myocardial stiffness constant was unaffected. These data lead to the provocative hypothesis that the profound changes induced by LVADs of reverse structural remodeling are mainly due to regression of myocyte hypertrophy, with relatively little impact of the changes in collagen matrix on passive myocardial properties.

2:45 p.m.

849-4
Soluble Tumor Necrosis Factor Receptor (Etanercept) Treatment Enhances Left Ventricular Dysfunction in an Experimental Model of Chronic Chagas Disease Cardiomyopathy

Angélica M. Blag, Vera C. Salesi, Felix J. Ramires, Daniel Gregio, Jorge Kalil, Edecio Cunha-Neto, Heart Institute- University of São Paulo Medical School, São Paulo, Brazil

Background: chronic Chagas’ disease cardiomyopathy (CCD), caused by the protozoan Trypanosoma cruzi, affects ca. 3 million patients in Latin America. The lack of proven effi- cacious therapy is associated with chronic progressive course of the disease, associat- ed to increased production of proinflammatory cytokines such as TNF-alpha. The aim of this work was to evaluate Etanercept, a TNF-blocking agent, as a potential therapeutic approach in the control of CCD development. For that matter, we used as a model the