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Abstract

The sum rule for charmless inclusive semileptonicB-meson decays allows a theoretically clean and experimentally efficient
determination of|Vub|. The leading twist contribution to the sum rule is known in QCD. We compute higher twist corrections
to the sum rule using the heavy-quark effective theory.

A new method to determine the Cabibbo–Kobaya-
shi–Maskawa (CKM) matrix element|Vub| has been
proposed [1] that takes advantage of the sum rule
for charmless inclusive semileptonicB-meson decays
�B → Xu�ν̄� (�= e or µ). The sum rule establishes a
clean relationship between|Vub| and the observable

(1)S ≡
1∫

0

dξu
1

ξ5
u

dΓ

dξu
(�B→Xu�ν̄�)

with the kinematic variableξu = (q0 + |q|)/MB in
the B-meson rest frame, whereq is the momentum
transfer to the lepton pair andMB denotes theB
meson mass. Moreover, this method of determining
|Vub| has experimental virtue too. The kinematic
variableξu is the most efficient discriminator between
�B → Xu�ν̄� signal and �B → Xc�ν̄� background.
A majority of �B → Xu�ν̄� events have a value ofξu
beyond the limit allowed for�B→Xc�ν̄� decays with
charm in the final state,ξu > 1−MD/MB = 0.65 with
MD being theD-meson mass. Therefore, only a small
extrapolation is needed to obtainS.
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The charmless inclusive semileptonic decay of the
B meson is a light-cone dominated process. The light-
cone expansion allows a rigorous and systematic or-
dering of nonperturbative QCD effects, providing an
effective technique for a separation and classification
of higher twist (HT) effects [2]. The leading term in
this expansion gives the leading twist contribution. HT
contributions are contained in the light-cone expan-
sion beyond the leading order. The sum rule at the
leading twist order measures the bottomness carried
by aB meson. There are no perturbative QCD correc-
tions to the sum rule. Thus the primary hadronic un-
certainty and the potential uncertainty of perturbative
QCD are eliminated, dramatically reducing the theo-
retical error on|Vub|. This inclusive method is to be
contrasted with the determination of|Vub| from the
charmless inclusive semileptonic branching fraction of
B mesons where the calculation of the total semilep-
tonic decay rate is model dependent or assumes quark–
hadron duality, there are uncertainties due to pertur-
bative QCD corrections and, in addition, a larger ex-
trapolation is necessary to extract the total rate if the
kinematic cut on a certain observable, such as the
charged-lepton energy or the invariant mass of the lep-
ton pair, is applied for the suppression ofb→ c back-
ground.
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Only uncertainties due to HT effects remain in the
sum rule. Including the HT contribution�HT , the
sum rule reads

S ≡
1∫

0

dξu
1

ξ5
u

dΓ

dξu
(�B→Xu�ν̄�)

(2)= |Vub|2G
2
FM

5
B

192π3 (1+�HT ).
Although HT contributions are expected to be sup-
pressed by powers ofΛ2

QCD/M
2
B (ΛQCD being the

QCD scale), a quantitative estimate of them is indis-
pensable for a complete understanding of remaining
theoretical uncertainties in this determination of|Vub|.
In this Letter, we investigate HT effects on the sum
rule for charmless inclusive semileptonicB decays us-
ing the heavy-quark effective theory (HQET) [3–5].

Charmless inclusive semileptonic decays of the
B meson are induced by the weak interactions. The
differential decay rate to lowest order in the weak
interactions is

(3)dΓ = G
2
F |Vub|2
(2π)5E

LµνWµν
d3k�

2E�

d3kν

2Eν
.

HereE (P ), E� (k�), andEν (kν) denote the ener-
gies (four-momentums) of theB meson, the charged
lepton, and the antineutrino, respectively. The leptonic
tensor for the lepton pair is completely determined by
the standard electroweak theory since leptons do not
have strong interactions:

(4)

Lµν = 2
(
k
µ
� k
ν
ν + kµν kν� − gµνk� · kν

+ iεµν αβkα� kβν
)
.

The hadronic tensor incorporates all nonperturbative
QCD physics for the inclusive semileptonicB decay.
It is summed over all hadronic final states and can
be expressed in terms of a current commutator taken
between theB meson states:

(5)Wµν = − 1

2π

∫
d4y eiq·y〈B|[jµ(y), j†

ν (0)
]|B〉,

where jµ(y) = ū(y)γµ(1 − γ5)b(y) is the charged
weak current for theb → u transition. We adopt a
covariant normalization for one-particle states, i.e.,
〈B(P)|B(P ′)〉 = (2π)32P 0δ(3)(P − P′).

The most general hadronic tensor form that can be
constructed is a linear combination ofPµPν , Pµqν ,
qµPν , qµqν , εµναβPαqβ and gµν , with coefficients

being scalar functionsWa(ν, q2) of the two inde-
pendent Lorentz invariants,ν ≡ q · P/MB and q2.
However, the combinationPµqν − qµPν does not
contribute sinceLµν(Pµqν − qµPν) = 0. Thus the
hadronic tensor must take the form

Wµν = −gµνW1 + PµPν
M2
B

W2 − iεµναβ P
αqβ

M2
B

W3

(6)+ qµqν
M2
B

W4 + Pµqν + qµPν
M2
B

W5.

Eq. (5) shows thatW∗
µν =Wνµ, soWa , a = 1, . . . ,5

are real. The interesting physics describing the hadron
structure and the strong interactions is wrapped up
in the five dimensionless real structure functions
Wa(ν, q

2), a = 1, . . . ,5 for the unpolarized processes.
In the following we will neglect the masses of the

charged lepton and theu-quark. From Eqs. (3) and
(6), we obtain the double differential decay rate for
�B→Xu�ν̄� in the rest frame of theB meson

(7)
d2Γ

dξu dq2
= G

2
F |Vub|2

48π3MB

|q|2
ξu

(
W13q2 +W2|q|2),

where

(8)|q| = 1

2
MBξu

(
1− q2

M2
Bξ

2
u

)
.

By integrating Eq. (7) overq2, one gets the decay
distribution of the kinematic variableξu

(9)
dΓ

dξu
=
M2
Bξ

2
u∫

0

dq2 d2Γ

dξu dq2
.

Computing the current commutator one obtains from
Eq. (5)

Wµν = − 1

π
(Sµανβ − iεµανβ)

(10)

×
∫
d4y eiq·y

[
∂α∆u(y)

]
× 〈B|b̄(0)γ βU(0, y)b(y)|B〉,

whereSµανβ = gµαgνβ + gµβgνα − gµνgαβ . In the
above we have used

(11)
{
u(x), ū(y)

} = i(γ · ∂)i∆u(x − y)U(x, y)
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with the Wilson link

(12)U(x, y)=P exp

[
igs

x∫
y

dzµ Aµ(z)

]
,

(13)∆u(y)= − i

(2π)3

∫
d4k e−ik·yε

(
k0)δ(k2),

whereAµ is the background gluon field andε(x)
satisfiesε(|x|)= 1 andε(−|x|)= −1.

The matrix element〈B|b̄(0)γ βU(0, y)b(y)|B〉 is
the basic building block of the description of inclu-
siveB decays in QCD. In general one can decompose
it in the following form:

〈B|b̄(0)γ βU(0, y)b(y)|B〉
(14)= 2

[
PβF

(
y2, y · P ) + yβG(

y2, y · P )]
,

whereF(y2, y · P) andG(y2, y · P) are functions of
the two independent Lorentz scalars,y2 and y · P .
The dominant part of the integrand in the hadronic
tensor (10) stems from the space–time region near
the light cone, with the deviation from the light cone
being of the order of the inverse large momentumy2 ∼
1/q2 ∼ 1/M2

B → 0 [2]. The light-cone expansion of
the functionsF(y2, y · P) andG(y2, y · P) in powers
of y2 leads to

〈B|b̄(0)γ βU(0, y)b(y)|B〉

= 2

[
Pβ

∞∑
n=0

(
y2)nF (2n+2)(y · P)

+ yβ
∞∑
n=0

(
y2)nG(2n+4)(y · P)

]

(15)

= 2
{
Pβ

[
F (2)(y · P)+ y2F (4)(y · P)+ · · ·]

+ yβ[G(4)(y · P)+ y2G(6)(y · P)+ · · ·]}.
The coefficientsF (2n+2)(y · P) andG(2n+4)(y · P) in
the light-cone expansion can be classified by twist.
Following the notion of twist introduced by Jaffe
and Ji [6], F (2n+2)(y · P) has twist 2n + 2 and
G(2n+4)(y · P) has twist 2n + 4, as from dimension
analysis we know that the contribution of the former is
suppressed by(ΛQCD/MB)

2n, and the contribution of
the latter is suppressed by(ΛQCD/MB)

2n+2. We will

further discuss the nonlocal light-cone expansion of
matrix elements below.

The twist decomposition for the decay rate thus
takes the form

(16)dΓ =
∞∑
n=0

dΓ (2n+2),

where

(17)dΓ (2n+2) = G
2
F |Vub|2
(2π)5E

LµνW(2n+2)
µν

d3k�

2E�

d3kν

2Eν

is the twist-(2n+2) contribution to the decay rate with

W(2n+2)
µν

= −gµνW(2n+2)
1 + PµPν

M2
B

W
(2n+2)
2

− iεµναβ P
αqβ

M2
B

W
(2n+2)
3 + qµqν

M2
B

W
(2n+2)
4

(18)+ Pµqν + qµPν
M2
B

W
(2n+2)
5

= − 2

π
(Sµανβ − iεµανβ)

∫
d4y eiq·y

[
∂α∆u(y)

]

(19)

×
[
Pβ

(
y2)nF (2n+2)(y · P)

+ yβ(y2)n−1G(2n+2)(y · P)
]
.

The leading twist contribution to the sum rule (2)
results fromF (2)(y · P) of twist 2 and is known in
QCD to be [1]

(20)

1∫
0

dξu
1

ξ5
u

dΓ (2)

dξu
(�B→Xu�ν̄�)= |Vub|2G

2
FM

5
B

192π3 ,

which is a consequence of the conservation of the
b-quark vector current by the strong interactions. The
next-to-leading twist contribution to the sum rule
arises fromF (4)(y · P) andG(4)(y · P) of twist 4. It
can be obtained by integrating Eq. (9) overξu with
the two relevant structure functionsW(4)1 (ν, q2) and

W
(4)
2 (ν, q

2) of twist 4.
We use the operator product expansion and the

heavy quark effective theory to compute the twist-4
structure functions. The Wilson link is a gauge de-
pendent operator. It is convenient to use the Fock–
Schwinger gauge such thatU(0, y) is unity. Since
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theb quark inside theB meson behaves as almost free
due to its large mass, relative to which its binding to
the light constituents is weak, one can extract the large
space–time dependence

(21)b(y)= e−imbv·ybv(y),
wheremb is theb-quark mass andv = P/MB is the
four-velocity of theB meson. This factorization makes
clear why the large scale in matrix elements does not
affect the relative size of terms in the light-cone expan-
sion (15). The large scale hidden in matrix elements
of b-quark operators is contained in an overall fac-
tor e−imbv·y , so reduced matrix elements of the oper-
ators containing the rescaled operatorbv involve only
momenta of orderΛQCD, which determine the rela-
tive size of terms in the light-cone expansion (15), i.e.,
schematically

〈B|b̄(0)γ βb(y)|B〉
= e−imbv·y〈B|b̄v(0)γ βbv(y)|B〉

(22)∼ e−imbv·y
∞∑
n=0

(
Λ2

QCD

M2
B

)n
.

The rescaled operator for a freeb-quark no longer
depends on the space–time, sob(y) = e−imbv·yb(0).
In this case all the coefficientsF (2n+2)(y · P) and
G(2n+4)(y · P) in the light-cone expansion (15) van-
ish except thatF (2)(y · P) = e−imbv·y , because the
conservation of theb-quark vector current implies that
〈B|b̄(0)γ βb(0)|B〉 = 2Pβ . The leading-twist sum rule
(20) is consistently reproduced in the free quark decay
b→ u�ν̄�. The conserved vector currentb̄γ βb is not
renormalized by the strong interactions. This explains
why there are no perturbative QCD corrections to the
sum rule.

A Taylor expansion of the field in a gauge-covariant
form relates the bilocal and local operators. This leads
to an operator product expansion

b̄(0)γ βb(y)

= e−imbv·yb̄v(0)γ βbv(y)

(23)

= e−imbv·y
∞∑
n=0

(−i)n
n! yµ1 · · ·yµn

× b̄v(0)γ βk{µ1 · · ·kµn}bv(0),
where kµ = iDµ = i(∂µ − igsAµ) and the symbol
{· · ·} means symmetrization with respect to the en-

closed indices. Because of the weak dependence of
the rescaled operatorbv(y) on y, we attempt to esti-
mate the matrix element of the bilocal operator sand-
wiched between theB meson states with the truncated
y-expansion in Eq. (23). To obtain a twist-4 accuracy
it suffices to keep only the first three terms

〈B|b̄(0)γ βb(y)|B〉

(24)

= e−imbv·y
[
〈B|b̄v(0)γ βbv(0)|B〉
+ (−i)yµ〈B|b̄v(0)γ βiDµbv(0)|B〉

+ (−i)
2

2
yµyν〈B|b̄v(0)γ β

× iD{µiDν}bv(0)|B〉
]
.

In the heavy quark effective theory the QCDb-quark
field b(y) is related to its HQET counterparth(y) by
means of an expansion in powers of 1/mb:

(25)b(y)= e−imbv·y
[
1+ i/D

2mb
+ O

(
Λ2

QCD

m2
b

)]
h(y).

The effective Lagrangian takes the form

LHQET = h̄iv ·Dh+ h̄ (iD)
2

2mb
h+ h̄ gsGµνσ

µν

4mb
h

(26)+ O

(
1

m2
b

)
,

wheregsGµν = i[Dµ,Dν ] is the gluon field-strength
tensor. At the level of accuracy of the present discus-
sion we take into account only the leading, 1/mb cor-
rection to the heavy quark limitmb → ∞. Relating the
matrix elements of the local operators in full QCD in
Eq. (24) to those in HQET, it follows that

〈B|b̄(0)γ βb(y)|B〉

(27)

= 2e−imbv·y
{
Pβ

[
1− y · Pi 5

3

mb

MB
Eb

− (y · P)2 1

3

m2
b

M2
B

Kb + y21

3
m2
bKb

]

+ yβi 2
3
mbMBEb

}
,

whereEb = Kb + Gb and Kb andGb are the di-
mensionless HQET parameters of order(ΛQCD/mb)

2,
which are often referred to by the alternate names
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λ1 = −2m2
bKb andλ2 = −2m2

bGb/3, defined as

(28)λ1 = 1

2MB
〈B|h̄(iD)2h|B〉,

(29)λ2 = 1

12MB
〈B|h̄gsGµνσµνh|B〉.

Comparing Eq. (27) with Eq. (15) yields

(30)F (4)(y · P)= 1

3
m2
bKbe

−imbv·y,

(31)G(4)(y · P)= i 2
3
mbMBEbe

−imbv·y.

We see that the coefficientsF (4)(y ·P) andG(4)(y ·P)
of the light-cone expansion (15) are indeed of order
Λ2

QCD as expected. Substituting Eqs. (30) and (31) in
Eq. (19) and integrating by parts, we arrive at

W(4)µν = 16mb
3MB

{
−gµνM2

B

[
1
4mb(mb − ν)KbX

+Ebε
(
q0 −mbv0)δ(q2 − 2mbν +m2

b

)
+mb(mb − ν)Kbε

(
q0 −mbv0)

× δ′(q2 − 2mbν +m2
b

)
+ (
q2 − 2mbν +m2

b

)
Eb

× ε(q0 −mbv0)δ′(q2 − 2mbν +m2
b

)]
+ PµPνm2

b

[
1
2KbX+ 2(Kb +Eb)

× ε(q0 −mbv0)δ′(q2 − 2mbν +m2
b

)]
+ iεµναβPαqβmbMBKb

×
[

1
4X+ ε(q0 −mbv0)

× δ′(q2 − 2mbν +m2
b

)]
+ qµqν2M2

BEbε
(
q0 −mbv0)

× δ′(q2 − 2mbν +m2
b

)
+ (Pµqν + qµPν)mbMB

[
−1

4KbX

−Kbε
(
q0 −mbv0)δ′(q2 − 2mbν +m2

b

)

(32)

− 2Ebε
(
q0 −mbv0)δ′(q2 − 2mbν +m2

b

)]}
,

whereδ′(x)= d
dx
δ(x) and

(33)

X = ∂2

∂qµ∂qµ

[
ε
(
q0 −mbv0)δ(q2 − 2mbν +m2

b

)]
.

Comparing Eq. (32) with Eq. (18), we find

W
(4)
1

(
ν, q2)

= 16
3 mbMB

{
1
4mb(mb − ν)KbX

+Ebε
(
q0 −mbv0)δ(q2 − 2mbν +m2

b

)
+

[
mb(mb − ν)Kb + (

q2 − 2mbν +m2
b

)
Eb

]
(34)× ε(q0 −mbv0)δ′(q2 − 2mbν +m2

b

)}
,

W
(4)
2

(
ν, q2)

= 16
3 m

3
bMB

[
1
2KbX+ 2(Kb +Eb)

(35)× ε(q0 −mbv0)δ′(q2 − 2mbν +m2
b

)]
,

W
(4)
3

(
ν, q2)

= −16
3 m

2
bM

2
BKb

[
1
4X+ ε(q0 −mbv0)

(36)× δ′(q2 − 2mbν +m2
b

)]
,

W
(4)
4

(
ν, q2)

(37)

= 32
3 mbM

3
BEbε

(
q0 −mbv0)δ′(q2 − 2mbν +m2

b

)
,

W
(4)
5

(
ν, q2)

= −16
3 m

2
bM

2
B

[
1
4KbX+ (Kb + 2Eb)

(38)× ε(q0 −mbv0)δ′(q2 − 2mbν +m2
b

)]
.

The twist-4 contribution to the sum rule can be
obtained from Eqs. (9), (7), (34) and (35). The result
is

1∫
0

d ξu
1

ξ5
u

dΓ (4)

dξu
(�B→Xu�ν̄�)

= |Vub|2G
2
FM

5
B

192π3

[
304

45
Kb + 76

45
Eb + 2

m2
b

M2
B

Kb

− 68

9

m3
b

M3
B

Kb − 80

9

m3
b

M3
B

Eb − 26

3

m4
b

M4
B

Kb

(39)+ 28

3

m4
b

M4
B

Eb + 112

15

m5
b

M5
B

Kb − 32

15

m5
b

M5
B

Eb

]
.

This can serve as an estimate of HT contributions to
the sum rule (2).
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For the numerical analysis, we need to know the
values for the parameters involved. The HQET para-
meterλ2 can be extracted from theB∗ −B mass split-
ting: λ2 = (M2

B∗ −M2
B)/4� 0.12 GeV2, whileλ1 and

mb are less determined. For the purpose of estimation,
we takeλ1 = −0.5 GeV2 [7,8] andmb = 4.9 GeV [9].
From Eq. (39), the HT correction to the sum rule (2) is
then estimated to be�HT = 0.012. This quantitative
study shows that HT corrections are at the expected
level of∼Λ2

QCD/M
2
B .

The sum rule (2) requires measuring theξu spec-
trum dividing by ξ5

u , which emphasizes the contri-
bution from very smallξu. In the free quark decay
b→ u�ν̄�, the weightedξu spectrum at tree level is

(40)

1

ξ5
u

dΓ

dξu
(b→ u�ν̄�)= |Vub|2G

2
FM

5
B

192π3 δ

(
ξu − mb

MB

)
,

becauseξu is fixed by kinematics to beξu =mb/MB .
We see that in the free quark decay theξu spectrum
weighted with ξ−5

u is just a discrete line atξu =
mb/MB , which is well above the charm threshold,
and there are no contributions from smallξu. This is
the reason why the kinematic variableξu is the most
efficient discriminator between�B → Xu�ν̄� signal
and �B → Xc�ν̄� background. The inclusion of strong
interactions amounts to a smearing of the spectrum.
However, since in reality theb quark in theB meson
is nearly free, we would expect the actual weighted
ξu spectrum to remain small in the smallξu region
from a general point of view independent of light-cone
dominance.

Let us examine how strong interactions affect the
weightedξu spectrum at small values ofξu. The above
calculation in the framework of HQET suggests that
HT contributions toS in this region may be neglected.
The weightedξu spectrum to leading twist is given
by [1]

(41)

1

ξ5
u

dΓ (2)

dξu
(�B→Xu�ν̄�)= |Vub|2G

2
FM

5
B

192π3
f (ξu),

where the distribution functionf (ξ) is the Fourier
transformation ofF (2)(y · P) [2]. The distribution
function f (ξ) is known [2] in QCD to be sharply
peaked aroundξ = mb/MB and vanish atξ = 0.
This result is consistent with the physical picture
that the b quark in theB meson is nearly free.

Eq. (41) shows that the weightedξu spectrum has
the same sharp shape as the distribution function,
in particular, vanishing atξu = 0. We also note
that perturbative QCD corrections to the weighted
spectrum are fairly small in the smallξu region and
tend to vanish asξu → 0. The small correction is from
the bremsstrahlung process of hard gluons. Together,
these imply a small contribution to the sum rule value
S from small ξu, despite the presence of theξ−5

u

weighting. A detailed numerical study of the weighted
spectrum has been presented in the second reference
in [1], including both perturbative and nonperturbative
QCD effects. It turns out that about 80% of the
weighted spectrum,ξ−5

u dΓ/dξu, would lie above the
charm threshold,ξu > 1 − MD/MB , as opposed to
about 10% of the charged-lepton energy spectrum
above the charm threshold,E� > (M2

B−M2
D)/(2MB).

Thus a smaller extrapolation into an unmeasured
ξu region is needed to obtain the integralS. Since
the distribution function is universal, one can use
the distribution functionf (ξ) measured from other
observables, such as the photon energy spectrum in
B→Xsγ (see the last reference in [2]), to extrapolate
the weightedξu spectrum, without making any model
dependent assumptions. In practice, the sum rule (2)
requires precision measurements over a wide range of
ξu. It is important to have data with good accuracy
down toξu as small as possible.

In summary, we have elaborated a quantitative
way of estimating HT contributions in inclusiveB
decays, which is based on the heavy quark effective
theory. As an application we have calculated the
twist-4 correction to the sum rule (2) for charmless
inclusive semileptonicB decays. Using the sum rule,
|Vub| can be determined from a measurement of the
weighted integralS. The error on|Vub| due to HT
corrections to the sum rule is estimated to be 1%.
Combining theoretical cleanliness and experimental
efficiency, together with the better understanding of
remaining theoretical uncertainties, the sum rule holds
high promise of a precise and model-independent
determination of|Vub|.
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