
Access-Based Localization for Octagons

Eva Beckschulze, Stefan Kowalewski,1,2

Embedded Software Laboratory
RWTH Aachen University

Aachen, Germany

Jörg Brauer3

Verified Systems International GmbH
Bremen, Germany

Abstract

Access-based localization is a two-step process. First, the set of abstract memory locations that are accessed
in a procedure are determined. Then, in a subsequent fixed point iteration, the input to the respective
procedure is reduced to those variables that are indeed accessed, thereby saving time and memory. The
topic of this paper is access-based localization for the octagon abstract domain. For the frequently occurring
scenario that only one out of two variables in some octagonal constraint is contained in the access-set of a
procedure, there is a variety of opportunities how localization could be implemented. This paper presents
three different approaches on how to deal with such constraints. Albeit applied to a subset of the abstract
state space, two of these approaches preserve precision, i.e., the abstract state space is as precise as in the
case that no localization is performed.

Keywords: Access-based localization, octagon domain, interprocedural analysis

1 Introduction
The key idea in abstract interpretation [4] is to systematically abstract away from
the complex, concrete semantics of a program. Given concrete and abstract domains
C and D that describe concrete values and abstract descriptions, respectively, the
key idea in abstract interpretation is to simulate the execution of each concrete
operation f : C → C in a program using an abstract analogue g : D → D. Since
the concrete semantics can be expressed as a system of equations, computing the
corresponding abstract semantics amounts to fixed-point iteration until the results
stabilize.
1 Supported by DFG EXC 89.
2 Email: beckschulze, kowalewski@embedded.rwth-aachen.de
3 Email: brauer@verified.de

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 287 (2012) 29–40

1571-0661 © 2012 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2012.09.004
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82503681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:brauer@verified.de
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2012.09.004
http://dx.doi.org/10.1016/j.entcs.2012.09.004
http://www.sciencedirect.com
mailto:beckschulze@embedded.rwth-aachen.de
mailto:kowalewski@embedded.rwth-aachen.de
http://creativecommons.org/licenses/by-nc-nd/3.0/

1.1 Efficiency Issues in Fixed-Point Iteration

Efficiency is a great concern when designing fixed point computations in abstract
interpretation. Of course, the chosen abstract domain strongly influences the number
of iterations required to converge onto a fixed point. Yet, independently of the
chosen abstract domain, poor efficiency often originates from two other factors:
• Since abstract operation g transforms an abstract state d ∈ D on input into an

abstract output d′ ∈ D, each d′ (or variations thereof) is propagated from each
location in a program to its successors. If a program constitutes a large number
of variables, each state is of considerable size, requiring large amounts of memory.

• To detect a fixed point, it is necessary to compare a newly computed state to the
state obtained in the previous iteration. In the worst case, fixed-point detection
thus amounts to comparing two entire states, which may be of significant size.

Recently, there has thus been increasing interest in localizing abstract interpretations,
a technique that is based on the idea of restricting states to a subset that is sufficient
to compute sound abstractions in a given context, based on the subset of states that
is required locally in the respective context.

1.2 Improving Performance by Localization

Access-based localization [8] is a two step procedure: First, memory locations
accessed in code blocks are estimated conservatively using an efficient flow-insensitive
preanalysis. Second, the actual analysis is run restricting input states of code blocks
to the determined sets of accessed memory locations. Propagating smaller states
improves performance of fixed-point computation w.r.t. the issuses discussed above.
Additionally, smaller input states lower the number of necessary iterations as a
reanalysis of a procedure is unnecessary if only those parts of the abstract state were
changed that are not accessed in the procedure.

In [8], access-based localization was applied to the non-relational interval domain.
With quadratic memory cost per abstract element and cubic time cost for some
operations efficency is also a great concern in the octagon domain [7]. Compared
to intervals, however, the relational nature of octagons require different techniques
to avoid a loss of precision. In this paper, we discuss three different approaches to
access-based localization for octagons, two of which do not incur a loss in precision.

1.3 Contributions & Outline

This paper specifically provides the following contributions to access-based localiza-
tion for the octagon abstract domain:
• We discuss three different strategies to determine those constraints that may be

relevant within a context.
• We formalize these strategies within a single framework and provide an optimality

criterion.
• We present an experimental evaluation that compares both, the runtime and the

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–4030

1 int f(void){
2 if (. . .){
3 . . .
4 g();
5 }
6 else{
7 . . .
8 h();
9 }

10 }
11 void g(){
12 x++;
13 }
14
15
16 void h(){
17 x = 0;
18 }

Fig. 1. Example C program

precision of these approaches for a set of benchmarks written in C.

The presentation of these contributions is structured as follows. First, Sect. 2 intro-
duces the different localization strategies by means of a worked example. Afterwards,
in Sect. 3, we introduce the formal notion of significance for constraints in local-
ization. This notion refines the classical access-based view on dependencies. The
different localization strategies are then formalized in Sect. 4, before experimental
evidence is presented in Sect. 5. Finally, the paper concludes with a survey of related
work in Sect. 6 and a conclusion in Sect. 7.

2 Worked Example
The crucial difference between interval analysis compared to octagon analysis w.r.t. lo-
calization is the fact that the former propagates non-relational intervals, whereas the
latter propagates constraints that relate a variable to another variable. To illustrate
this important difference and its implications on localization, we discuss the example
in Fig. 1. We assume a pre-analysis determines the sets of variables accessed in
functions, denote Acc. Suppose this step yields the following sets:

Acc(f) = {x, y}, Acc(g) = Acc(h) = {x}

It has been shown that an interval-based analysis of function g taking into account
this form of access-information [8] needs to consider only x to converge onto a
sound over-approximation. Likewise, it is sufficient to restrict the input state of h
to the interval that describes x. Variable y is not accessed in these functions; its
corresponding interval prior to g (resp. f) is thus identical to the intervals after
analyzing g (resp. h).

2.1 Access-Sets and Octagons

Using octagons, states consists of conjunctions of constraints of the form ±v1±v2 ≤ c,
where v1 and v2 are program variables and c ∈ Z is a constant value. In the remainder,
we assume all variables to be integral, though our results are likewise applicable to
real-valued or rational octagons. To make the presentation accessible, we restrict the
example to few constraints and assume ±v1 ± v2 = ∞ for all unspecified constraints.
Especially, we do not derive all implicit constraints but deal with them separately in
Sect. 3. Assume the input state of call site g (line 4 in Fig. 1) is represented by the

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–40 31

following octagon:

(x ≤ 4) ∧ (y ≤ 0) ∧(x + y ≤ 2)

Clearly, there is no need to transfer the bounds of y for the constraint (y ≤ 0) to g
as y is not accessed within g. By way of contrast, since x ∈ Acc(g), we propagate
(x ≤ 4) into g. Hence, for the constraint (x ≤ 4), the situation is no different from
the interval-case since the octagon prescribes no relation between x and y. However,
with x ∈ Acc(g) and y �∈ Acc(g), it is unclear how to proceed for constraints that
involve both, x and y. Of course, there are different possible strategies to approach
this situation, three of which we sketch in what follows.

2.2 Projecting Octagons onto Access-Sets

Using this strategy, only those octagonal constraints ±v1 ± v2 ≤ c that satisfy
{v1, v2} ⊆ Acc(g) are propagated into g. Hence, since y �∈ Acc(g), the constraint
(x + y ≤ 2) is dismissed. However, incrementing x in g necessitates updating all
constraints that involve x. Yet, without the constraint (x + y ≤ 2) present at that
position, the update of the relation between x and y is lost. The drive for soundness
thus forces us to delete the constraint (x + y ≤ 2) after g has been analyzed, causing
loss of information. Assuming the same input state for call site h, deleting the
constraint would not result in loss of information since (x + y ≤ 2) is invalidated by
the assignment x = 0. For g, the approach is exemplified in Fig. 2(a).

2.3 Passing Dependent Constraints

Now suppose all constraints that involve x — here (x + y ≤ 2) — are also transferred
into g (cp. Fig. 2(b)). In this case, precision is maintained at the expense of a larger
input state, and the analysis proceeds as if it were performed without localization.
Indeed, both strategies discussed so far highlight unsatisfactory aspects of access-
based localization for relational domains. With the first approach, all relational
constraints that involve variables not contained in the access-sets of the respective
function are dismissed, thereby reducing the precision of octagonal analysis to that of
intervals. In contrast, transferring constraints that exhibit dependencies to accessed
variables yields only minor reductions of the size of the input space, provided there
are many such dependencies. A practical middle ground between both approaches
can be found by introducing slack variables, which we discuss in what follows.

2.4 Introducing Slack Variables

In the following, assume that the octagonal state on input to g consists of (x ≤ 4)
paired with n additional constraints x + yi ≤ ci for i ≤ n ∈ N. Denote this octagon
o. Observe that we still have Acc(g) = {x}. For each v ∈ Acc(g), we introduce a
fresh slack variable vslack, replace v in o by vslack, and augment the octagon with
(vslack − v ≤ 0) ∧ (v − vslack ≤ 0), being equivalent to v = vslack. We thus obtain a

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–4032

transformed octagon oslack defined as:

oslack = (xslack ≤ 4) ∧ ∧n
i=1(xslack + yi ≤ ci) ∧ (x − xslack ≤ 0) ∧ (xslack − x ≤ 0)

At this point, we propagate oslack reduced onto constraints that involve Acc(g) and
the corresponding slack variables into g. The key idea of this construction is to
propagate only those variables into a function that are included in its access set, but
use slack variable to keep track of changes to these variables. Hence, the octagon
propagated into g ranges over 2 · |Acc(g)| variables. Since |Acc(g)| is typically small
compared to the overall number of variables (and can be reduced further using
techniques such as bypassing [10]), this approach reduces the size of the octagon
significantly. Incrementing x in g then yields the modified octagon:

(x ≤ 5) ∧ (x − xslack ≤ 1) ∧ (xslack − x ≤ −1)

This octagon is the output of the analysis after g (cp. Fig 2(c)). Conjoining
this result with o yields an octagon that implicitly relates x on output of g with
y1, . . . , yn through xslack. The remaining step is thus to eliminate xslack from the
conjoined octagon using existential quantification, thereby making the implicit
relations between x and y1, . . . , yn explicit, to give:

(x ≤ 5) ∧
n∧

i=1
(x + yi ≤ ci + 1)

Elimination can be implemented as closure [3]. It is important to appreciate that
this method also works if x is assigned a completely unrelated value, as in h from
Fig. 1.

We call the approach presented first the access-based approach as the transferred
input state is derived directly from access-information. Taking into account depen-
dencies, we name the approach presented secondly the dependency-based approach.
In the last approach, xslack is used as an anchor that relates x to its input value.
Therefore, we shall refer to this approach as anchoring.

3 Dependency and Significance
In the last section, we assumed ±vi ± vj = ∞ for unspecified constraints. In practice,
however, usually few constraints are unbounded as transfer functions require that
all implicit constraints have been made explicit by closing the respective octagon.
This is done using a modified Floyd-Warshall algorithm that checks iteratively for
all constraints vj − vk ≤ c and vk − vi ≤ d whether c + d is smaller than the upper
bound previously computed for vj − vi [7]. Indeed, it is well-known that closed
octagons often contain significant amounts of redundant constraints (cp. Fig. 3(a)).
Using dependency-based localization, all constraints that depend on a variable in
the access-set of a called function are passed to the callee. Redundant constraints in
the base octagon thus manifest themselves in redundant dependent constraints that

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–40 33

call g

x ≤ 4,
y ≤ 0,

x + y ≤ 2

x ≤ 4
g

return

y ≤ 0 x++;

x ≤ 5

x ≤ 5
y ≤ 0

(a)

call g

x ≤ 4,
y ≤ 0,

x + y ≤ 2

x ≤ 4
x + y ≤ 2

g

return

y ≤ 0 x++;

x ≤ 5
x + y ≤ 3x ≤ 5

y ≤ 0
x + y ≤ 3

(b)

call g

x ≤ 4,
x + yi ≤ ci

x ≤ 4
x − xslack ≤ 0
xslack − x ≤ 0

g

return

xslack + yi ≤ ci x++;

x ≤ 5
x − xslack ≤ 1

xslack − x ≤ −1x ≤ 5
x + yi ≤ ci + 1

(c)

Fig. 2. Transferred constraints when calling g: (a) considering the accessed set only, (b) transferring also
dependent constraints, (c) introducing a slack variable.

are passed to the callee, too, even though they may be insignificant for the output
of the analysis. We thus refine the notion of dependency by means of significance so
as to obtain reductions in the number of involved constraints.

An algorithm that removes redundancy in difference bound matrices (DBMs) was
presented in [6] and adapted in [1] to coherent DBMs as used in the octagon domain.
However, in our case redundancy is obstructive only with respect to accessed variables.
In order to determine whether a constraint is significant, it suffices to determine if a
constraint is tighter than the constraint obtained by combining intervals. Intuitively,
a constraint is significant if it cuts the rectangle defined by the intervals as shown
in Fig. 3(b); here, x + y is smaller than the sum of the upper bounds of x and
y. In the following, let V = {v1, . . . , vn} denote the set of program variables. We
interpret an octagon o = {σ1, . . . , σm} as a collection of m linear constraints of the
form σi = (λi,1 · vi,1 + λi,2 · vi,2 ≤ ci), where vi,1, vi,2 ∈ V , λi,1, λi,2 ∈ {0, −1, 1}, and
ci ∈ Z. Further, we assume o to be closed, and define:

Definition 3.1 (Dependent Constraint) Let Acc(g) denote the access-set of a
callee g. Let o denote the octagon on input. Then, g depends on a constraint σi ∈ o

iff {vi,1, vi,2} ∩ Acc(g) �= ∅.

Definition 3.2 (Significant Constraint) For each v ∈ V , let vl and vu denote
the boundaries of v as characterized by o. A constraint σi ∈ o is called significant iff
λi,1 · β(vi,1, λi,1) + λi,2 · β(vi,2, λi,2) > ci. The map β : (V × Z) → Z is defined as:

β(v, λ) =

⎧⎪⎨
⎪⎩

vl : λ = −1

vu : λ = 1

From now on, we refer to the set of constraints in o that are significant for f as
Sigf (o). Without taking significance into account, dependency is a purely syntactic
criterion to determine whether an octagonal constraint may be relevant in a callee.
By considering significance as well, the constraints passed to a callee depend on the
state of the octagonal abstraction. Intuitively, an octagonal constraint is propagated
into a callee using the dependency-based strategy iff it is dependent and significant.

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–4034

Y

X

(a)

Y

X

(b)

Fig. 3. (a) Diagonal constraints do not offer more precision than the interval bounds. (b) The constraint
X + Y ≤ c reduces solution space by the gray triangle.

4 Formal Model
In principle, analyzing a concrete procedure f subject to an octagonal input state
o amounts to applying the abstract counterpart f# of f to o. The output of the
analysis is thus f#(o) = oout. Clearly, f# can be designed as the composition of
the abstract counterparts of all operations that constitute f . Localization refines
this approach by applying f# to a sub-state of o that is (often) strictly smaller
than o. This section formally discusses our approaches to localization and provides
arguments for correctness and optimality criteria in terms of maintaining precision.

4.1 Classifying Constraints

To detect all dependencies, we require that the octagonal input o to f is closed.
As before, let Acc(f) be the set of variables directly or transitively accessed in f .
Based on Acc(f), the input o = {σ1, . . . , σm} to f is partitioned into three disjoint
sets, depending on whether a constraint is relevant, unaffected, or can be discarded.
Whereas the latter two sets are independent of the localization strategy, the definition
of relevant constraints distinguishes the different methods of localization.
• Relevantf (o) denotes the set of constraints in o relevant when evaluating f . Formal

definitions for each method are given in subsequent paragraphs.
• Unaffectedf (o) consists of constraints in o = {σ1, . . . , σm} that are unaffected

by the call to f , and are therefore still valid at return from the callee, i.e.,
Unaffectedf (o) = {σ ∈ o | vars(σ) ∩ Acc(f) = ∅}.

• Discardf (o) describes the remaining constraints in o that can be discarded as they
are either redundant or will be outdated after return. Put formally, we thus obtain
Discardf (o) = {σ ∈ o \ (Relevantf (o) ∪ Unaffectedf (o))}.

These sets of constraints partition o with respect to f , i.e., o = Unaffectedf (o) ∪
Relevantf (o) ∪ Discardf (o). Further, if f# denotes the abstract transformer of f ,
then the output oout of f# subject to o is defined as (cp. Fig 4):

oout = Unaffectedf (o) ∪ f#(Relevantf (o))

We state the following result with respect to precision of localized analysis:

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–40 35

call fDiscard constraints
Discardf (o)

o

Relevantf (o)
f

return

Unaffectedf (o)

f#(Relevantf (o))
oout = Unaffectedf (o) ∪ f#(Relevantf (o))

Fig. 4. Schematic illustration of localization applied to a call site given the octagon o on input

Proposition 4.1 Whenever the closed forms of Unaffectedf (o) ∪ f#(Relevantf (o))
and f#(o) coincide, localization maintains the precision of the original analysis.

Within this setting, we now study the different localization methods formally,
especially the definition of relevance.

4.2 Access-based Localization

Analyzing f using access-based localization requires all octagonal constraints that
relate variables accessed in f to be propagated into f . We therefore define the set of
relevant constraints as RelevantAcc

f (o) = {σ ∈ o | vars(σ) ⊆ Acc(f)} and obtain an
immediate consequence regarding precision:

Corollary 4.2 Assume Discardf (o) ∩ Sigf (o) = ∅. Then:

f#(o) = Unaffectedf (o) ∪ f#(RelevantAcc
f (o))

Intuitively, access-based localization for octagons is optimal iff all variables having
significant dependencies are redefined in f .

4.3 Dependency-based Localization

In order to avoid precision loss inherent to access-based localization, we consider
significant constraints in the definition of relevance:

RelevantDep
f (o) = {σ ∈ o | vars(σ) ∩ Acc(f) �= ∅ ∧ σ ∈ Sigf (o)}

This construction entails that only redundant constraints are discarded. Yet, these
constraints can be re-established and updated respectively by closing the output of
the analysis of f , and thus, precision is maintained.

Proposition 4.3 Dependency-based localization is optimal.

4.4 Localization using Anchors

For this approach, we first determine the set of variables for which copies (anchors)
are introduced. To do so, define the set sigVarsf (o) of variables that appear in

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–4036

significant constraints as follows:

sigVarsf (o) =
⋃

σ∈Sigf (o) vars(σ)

Using the above set, we obtain the set of variables to be anchored by restricting
sigVarsf (o) to those variables that are found in the access-set of f . For each variable
v ∈ sigVarsf (o) ∩ Acc(f), we thus introduce a slack (or anchor) variable vslack and
an auxiliary constraint vslack = v to give:

oslack = o ∧ ∧
v∈sigVarsf (o)∩Acc(f)((v − vslack ≤ 0) ∧ (vslack − v ≤ 0))

To ensure that the same constraints are valid for vslack and v, we compute the strong
closure of the augmented system. Partitioning is applied to the enhanced input
state:

RelevantAnc
f (oslack) =

⎧⎪⎨
⎪⎩

σ ∈ oslack

∣∣∣∣∣∣∣
vi, vj ∈ vars(σ) : vi, vj ∈ Acc(f)∨
(vi ∈ Acc(f) ∧ vj �∈ ⋃

σ∈o vars(σ))

⎫⎪⎬
⎪⎭

We conclude the elaborations on different localization strategies by observing that the
precision of anchor-based localization is identical to the precision of the dependency-
based approach.

Proposition 4.4 Anchor-based localization is optimal.

5 Experiments
We have implemented the different localization strategies for octagons in Java.
Our framework provides a flow- and context-sensitive abstract interpretation in the
octagon domain. The benchmarks we analyzed consist of a number of programs
which, e.g., implement sorting algorithms or perform integer arithmetic. Without
localization, i.e., considering all variables at all points in program, our analyzer runs
out of memory after a few minutes, consuming approximately 1GB of RAM.

The overall results with localization are given in Tab. 1. There, Acc refers to
the access-based approach, Dep to the dependency-based approach, and Anc to
anchoring. Beside runtime, we determined the number of different procedure contexts
found during the analysis, the average sizes of DBMs used to represent octagonal
constraints, the total number of constraints, and also the portion of significant
constraints. Interestingly, the numbers of variables traced along procedure calls
using Dep and Anc is only slightly larger compared to Acc. Yet, interprocedural
analyses using Dep and Anc are more precise.

Analogously to results reported by Oh et al. [8], we observe that localization
decreases the number of necessary re-analyses of procedures. This is because it
is often the case that only constraints in the octagon change that are irrelevant
for the analysis of the callee. The smaller number of different contexts analyzed

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–40 37

Method Runtime # contexts ∅ matrix size #constraints sign. constraints

Acc 26 s 137 18.71 567898 0.63 %
Dep 36 s 211 23,55 1031211 1.21 %
Anc 34 s 132 20.61 625459 0.67 %

Table 1
Results for localization

shows that the access-based localization and anchoring benefit from localized input
states. By way of comparison, the dependency-based approach on top of dependent
variables has larger input states, and procedures need to be traced significantly
more often than using one of the other strategies. A noteworthy byproduct of our
experiments is the overall small number of semantically significant constraints. This
result confirms the observation of Bagnara et al. [1], who noted that large parts of
(closed) octagonal systems are often redundant. Consequently, localization based on
semantic dependencies leads to fewer constraints than a criterion that determines
dependencies on a syntactic basis.

6 Related Work
Early approaches to localization mainly focused on reachability, which is a criterion
much coarser than considering access-sets, with the expected drawbacks in terms
of effectiveness. For a survey of related work in this field, we refer to [8] who
give a thorough discussion in the context of introducing access-based localization.
The authors [8] also extend localization for intervals from procedure boundaries
to arbitrary code blocks. Adapting this approach is also possible for the octagon
domain, using merely identical techniques.

Independently of the chosen numeric domain, the efficiency of access-based
localization suffers from the fact that often global variables are carried along many
nodes unnecessarily until they are finally accessed in a sub-routine, deep down in
the call-tree. Most importantly, all global variables accessed in the program are
considered in the input state of the main function. In [10], the notion of bypassing
is introduced to mitigate this effect. The idea is to bypass the abstract values of
variables to transitively called procedures instead of propagating them through
the procedure bodies. This idea implemented for the interval domain can also be
transferred to the octagon domain. However, due to the relational nature of octagons,
this is technically more involved. At each call site, all implicit constraints need to
be derived in order to propagate updated constraints and dependencies to callees.

Other related work can be found in work handling the large abstract states of
complex abstract domains. Variable packing where only few variables can be related
to each other is a way to make relational domains feasible with respect to memory
consumption and analysis time [5]. For the octagon abstract domain an octagon
packing [7], i.e., a collection of small packs of variables, is determined based on
observable dependencies in the program. For example, the control variable in an if
statement will be assigned to the pack that includes a variable accessed in the corre-
sponding then block (and else block, respectively) as there is a direct dependency

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–4038

between these variables. Octagon packing has been successfully integrated into static
analyzers, thereby reducing memory consumption to a reasonable amount while still
achieving satisfying precision [2]. Using localization to reduce the size of abstract
states can be seen as a method orthogonal to octagon packing. Both approaches
reduce memory consumption and computational cost. By way of comparison, our
approach guarantees maximal precision, whereas octagon packing does not as not
all constraints are derived.

In [11], Venet and Brat report that packs of variables determined statically based
on syntactic criterion do no always provided satisfactory precision. They consider
the problem of using DBMs for the analysis that involves pointer variables and
array indices. The evaluation of a dereference is then based on a base address and
an offset, the values of both of which are extracted from the abstract state. Their
solution is to create and merge DBMs dynamically, during the analysis, whenever
an operation causes new relations between variables associated with different DBMs.
This way all relations are derived at the cost of reorganizing DBMs perpetually.
Furthermore, the procedure does not include localization so that many constraints
are unnecessarily propagated along many paths.

The sparse analysis framework presented in [9] applies a stricter form of localiza-
tion that is based on (approximate) data dependencies (similar to def-use-chains)
instead of control flow. The key to designing a sparse analysis lies in the appropriate
choice of approximate definition- and use-sets for the particular abstract domain.
For sparse relational analysis, definition- and use-sets consist of packs determined
by a pre-analysis as described above. Identifying the two steps localization and
size reduction, their procedure differs in the order of execution from our approach:
Sparse relational analysis in [9] starts with determining an octagon packing that
provides small octagons. Subsequently, localization in terms of data dependency is
applied to packs. By way of contrast, we start with localizing variables and then
reduce the size of the octagon on-the-fly, based on data dependencies. Although both
approaches are heading for more efficiency they differ with respect to the acceptance
of loss of information.

7 Conclusion

In this paper, we have revisited access-based localization and identified drawbacks
of approaches that use either only access-sets or syntactic dependencies between
variables. Even though access-based localization has proven precise for intervals,
(weakly-) relational domains such as octagons impose different needs on the local-
ization strategy to capture the exposed relations without propagating too many
redundant constraints. We have thus provided a dependency-based technique, which
is based on the notion of significant constraints. The anchoring approach is, in turn,
based on the idea of augmenting the input state with auxiliary (slack or anchor)
variables to track the differences between values on input and output of a procedure.

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–40 39

References
[1] Bagnara, R., P. Hill and E. Zaffanella, Weakly-Relational Shapes for Numeric Abstractions: Improved

Algorithms and Proofs of Correctness, Formal Methods in System Design 35 (2009), pp. 279–323.

[2] Blanchet, B., P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux and X. Rival, A
Static Analyzer for Large Safety-Critical Software, in: PLDI (2003), pp. 196–207.

[3] Bozga, M., C. Gı̂rlea and R. Iosif, Iterating Octagons, in: TACAS, LNCS 5505 (2009), pp. 337–351.

[4] Cousot, P. and R. Cousot, Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints, in: POPL (1977), pp. 238–252.

[5] Cousot, P., R. Cousot and L. Mauborgne, A Scalable Segmented Decision Tree Abstract Domain, in:
Time for Verification, Essays in Memory of Amir Pnueli (2010), pp. 72–95.

[6] Larsen, K., F. Larsson, P. Pettersson and W. Yi, Efficient Verification of Real-Time Systems: Compact
Data Structure and State-Space Reduction, in: RTSS (1997), pp. 14–24.

[7] Miné, A., The Octagon Abstract Domain, Higher-Order and Symbolic Computation 19 (2006), pp. 31–
100.

[8] Oh, H., L. Brutschy and K. Yi, Access Analysis-based Tight Localization of Abstract Memories, in:
VMCAI, LNCS 6538 (2011), pp. 356–370.

[9] Oh, H., K. Heo, W. Lee, W. Lee and K. Yi, Design and Implementation of Sparse Global Analyses for
C-like Languages, in: PLDI (2012), to appear.

[10] Oh, H. and K. Yi, Access-based Localization with Bypassing, in: APLAS, LNCS 7078 (2011), pp. 50–65.

[11] Venet, A. and G. Brat, Precise and efficient static array bound checking for large embedded C programs,
in: PLDI (2004), pp. 231–242.

E. Beckschulze et al. / Electronic Notes in Theoretical Computer Science 287 (2012) 29–4040

	Introduction
	Efficiency Issues in Fixed-Point Iteration
	Improving Performance by Localization
	Contributions & Outline

	Worked Example
	Access-Sets and Octagons
	Projecting Octagons onto Access-Sets
	Passing Dependent Constraints
	Introducing Slack Variables

	Dependency and Significance
	Formal Model
	Classifying Constraints
	Access-based Localization
	Dependency-based Localization
	Localization using Anchors

	Experiments
	Related Work
	Conclusion
	References

