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ABSTRACT 

This paper discusses the class of isospectral flows d = [X, A o x], where o denotes 
the Hadamard product and [., .] is the Lie bracket. The presence of A allows arbitrary and 
independent scaling for each element in the matrix X. The time-l mapping of the scaled 
Toda-like flow still enjoys a QR-like iteration. The scaled structure includes the classical 
Toda flow, Brockett’s double bracket flow, and other interesting flows as special cases. 
Convergence proof is thus unified and simplified. The effect of scaling on a variety of 
applications is demonstrated by examples. 

1. INTRODUCTION 

For simplicity, we will confine our discussion in this paper to the real case 
only. It is convenient to introduce two special subsets in Px”: 

S(n) := {X E Fx” 1 XT =x}, 
0 := {Q E R”‘” 1 QTQ = I}. 

Recent research has revealed a number of remarkable connections between 
smooth flows and discrete numerical algorithms [2, 11, 9, 10, 15, 161. Among 
these, a by now classic result is the relationship between the Toda lattice and the 
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QR algorithm. That is, the time-l mapping {X(k)} of the solution X(t) to the initial 
value problem 

X = [Xx, Eo(X)l, 

X(0) = x0 
(1) 

corresponds exactly to the sequence obtained by applying the QZ? algorithm to the 
matrix exco) [ 11, 15,5 1. In (1) I&(X) := X- -X-r, where X- denotes the strictly 
lower triangular matrix of X. 

The Toda flow (1) later was generalized to the class [8] 

x = [X, PL(X)I, 
.w = x0, 

(2) 

where PL(X) denotes the projection of X onto a certain specified linear subspace 
L of Rnx”. On specifying different ,C, (2) gives rise to different types of matrix 
factorizations, many of which are in abstract forms. For example, the following 
theorem, which includes the well-known Schur decomposition theorem as a special 
case, has been proved in [8] by using (2). 

THEOREM 1.1. Given a symmetric matrix A E R”‘“, there exists a real and 
orthogonal matrix Q such that the symmetric matrix T = QTAQ has zero entries 
in any prescribed positions of T except possibly along the diagonal. 

Another interesting isospectral flow is the so-called Brockett’s double bracket 
flow [3,4] 

X = [X, [X, 41, 
X(O) = x0, 

(3) 

where X and D are matrices in S(n) and D is fixed. The flow originally arises as a 
gradient flow. Remarkably, it is noticed in [2] that if X is tridiagonal and 

D = diag{n, . . . , 2, l}, (4) 

then (3) coincides precisely with (1). A gradient flow hence becomes Hamiltonian 

ill. 
Equation (3) is a special case of a more general projected gradient flows [9]: 

x = ix, tx, P.Av411, 
X(O) = x0, 

(5) 

where PA(X) denotes the projection of X E S(n) onto an afine subspace A of 
S(n). The vector field in (5) represents the projection of the negative gradient of 
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the objective function 
F(X) := ; [IX - P_4(X>]12 

onto the isospectral feasible set 

(6) 

M(XO) := {QTXoQ I Q E U(n)}. (7) 

The object is to minimize the distance between the sets M(Xo) and A. Taking 
A = {D}, we have (3). Thus the Brockett double bracket flow gives the least 
squares approximation of D subject to the spectral constraint. Such a solution, 
which itself has many interesting applications, can be characterized in terms of the 
spectral decomposition [4,9]. 

THEOREM 1.2. Suppose both D and X0 are in S(n) and have distinct eigen- 
values. Let the eigenvalues of D and X0 be ordered as ~1 < ‘. . < p,, and 
x, < ... < X,, respectively. Then the unique asymptotically stable equilibrium 
point of (3) is given by 

2 = x1q1q; + . . . + x,qnq,T, (8) 

whereqt,. . . , q,, are the normalized eigenvectors of D corresponding respectively 
to PI?;. ., PIP In particular, if D is a diagonal matrix with distinct eigenvalues, 
then X must be a diagonal matrix whose elements are ordered like those in D. 

One common characteristic of all the flows discussed above is that they are 
always described by the so-called Lax pair 

-2 = F, KVI, (9) 

where k(X) is matrix-valued function of X. Of particular interest is the case when 
X E S(n) and k(X) is skew-symmetric. In this paper, we propose another Toda-like 
flow by taking k(X) = A o X, where A is a constant matrix and o represents the 
Hadamard product. In the context that X is being scaled componentwise by A, we 
call the flow associated with the differential equation 

i = [X,AoX], 

X(0) = x0 
(10) 

a scaled Too%like flow. 
We shall show that different choices of the scaling matrix A result in (I), (2), 

and (3) as special cases. At least in theory, the time- 1 mapping of the scaled Toda- 
like flow enjoys a QR-like iteration. For symmetric cases, we provide a simple 
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proof on the global convergence of the scaled Toda-like flow. Finally the effect of 
scaling is discussed. 

2. Q&LIKE ITERATION 

In this section we explain why the flow X(t) of (10) evaluated at integer times 
still enjoys a QR-like iteration. The notion of the Q and R matrices in the QR 
decomposition will be replaced by the L and R matrices defined in the sequel. We 
shall state the results without proofs, since they are very similar to those already 
done in [8], only keeping in mind that the matrix A allows arbitrary scaling. 

Given any square matrix A = [ag], let A = [ &] denote the “complementary” 
matrix where ?;ii := 1 - au. Associated with (10) are the two differential systems 

i = L(AoX), 

L(0) = I 
(11) 

and 
l? = (ioX)R, 

R(0) = I. 
(12) 

Here we adopt the notation L and R only as a reminder of how the multiplication 
is involved in (11) and (12), respectively. Let X(t), L(t), and R(t) represent the 
solution to the initial value problems (lo), (1 l), and (12), respectively, over an 

or some T > 0. Then we have interval [0, T] fc 

l-HEOREM 2. 1. 

THEOREM 2.2. 

THEOREM 2.3. 

X(t) = L(t)-‘X,,L(t) = R(t)XoR(t)-‘. 

8’ = L(t)R(f). 

c?)’ = R(t)L(t). 

Because of (13), we may rewrite (11) as 

(13) 

(14) 

(15) 

i = L(Ao L-‘XoL) 

L(0) = I. 
(16) 
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So the differential system becomes autonomous. In a similar way we may rewrite 
(12). To emphasize the dependence on the initial matrix X0, we now denote the 
solutions of (10) and the associated (11) and (12) by X(t; Xa), L(t; Xa), and R(t; X0), 
respectively. By setting t = 1 in (14) and (15), it becomes clear that for positive 
integer k in the domain of existence we have 

8(k;Xo) = 8(“;X(k;G)) = L(1; X(k; Xo))R(l; X(k; X0)), (17) 

ex(k+i;xo) = ex(i;X(~~)) ZZ R(l; X(k; Xo))L(l; X(k; X0)). (18) 

That is, if LR is an abstract LR decomposition of exck), then RL is one for exck+‘). 
Such a property as in (17) and (18) is referred to a QR-like iteration. 

3. CONVERGENCE 

Henceforth we shall consider only flows in S(n). In order that X(t) = [xii(t)] E 
S(n) for all t, the scaling matrix A in (10) is necessarily skew-symmetric. In this 
case, it follows from (11) that L(t) is orthogonal. 

We now prove a very useful convergence property for the scaled Toda-like 
flow. Our major result is as follows. 

THEOREM 3.1. Suppose the strictly lower triangular part of A = [au] is 
nonnegative. Then 

lim A o X(t) = 0. 
t+ca (19) 

More precisely, whenever au > 0, the corresponding entry xv(t) (and xji(t)) con- 
verges to 0 as t goes to in.nity. 

PROOF. Consider the partial sums (01, . . . , on} of the diagonal entries of X, 
i.e., 

k 

(Tk := 
c 

Xii. (20) 
i=l 

Since L(f) is orthogonal, we have from (13) that IlX(t)ll~ = I\Xoll~, where ll.ll~ 
denotes the Frobenius matrix norm, and hence flk(f) is bounded for all t. 

It is not difficult to see from the equation (10) that 

kn = 0 (21) 
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and that 

(22) 
i=k+l j=l 

for 1 _< k < n. Since a~ _> 0 for all i > j, (22) implies that each q(t) is a 
nondecreasing function in f. It follows that both lim,,, ok(f) and limt_,oo ck(t) 
exist. Using (22), we find 

a&(t) dt 

is integrable. In particular, so long as au > 0, we find that each xii(t) is L2 integrable 
over (-co, co). Together with the fact that (a$ is uniformly bounded, it follows 
that lim,,, xv(t) = 0 (see [S]). ??

In the next section we shall see how different choices of A lead to a variety of 
interesting flows, including (I), (2), and (3). Thus we think the above theorem, 
unifying the proof of convergence, is of interest in its own right. 

4. CHOICES OF A 

We now demonstrate how different choices of A result in some classical flows. 
More exotic applications will be discussed in the next section. 

EXAMPLE 1. Choose A = [q] such that 

1 if j=landi>j, 
aij := -1 if i=landj>i, (23) 

0 otherwise. 

Let the columns of L(t) be denoted as L(t) = [/l(t), . . . , Z,(t)]. The first column of 
L(t) is of particular interest. From (1 l), we have 

dl, ,a -_= 
dt c Xi] li. 

i=2 

On the other hand, from (13), we have 

(24) 

(25) 
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From these, we find that 

- = x011 - (z;xol,) II, 
dt 

since xii = l:Xoli . It is easy to see that the right hand side of (26) is precisely the 
projected gradient for the problem 

maximize F(x) := xrxex (27) 
subject to nrx = 1, (28) 

and hence the flow 11(t) converges to the eigenvector associated with the most 
dominant eigenvalue. Indeed, the exact solution of (26) is given by 

e‘w, (0) 
‘l(‘) = IlexorZl(0)ll (29) 

which is related to the Toda flow [ 11,131 and has been studied as the continuous 
power method [7]. From (13) and Theorem 3.1, it is obvious that xi 1 (t) converges 
to the most dominant eigenvalue of X0. 

EXAMPLE 2. Choose A = [au] such that 

1 if i >j, 
aij := -1 if j > 1, (30) 

0 otherwise 

Obviously the resulting (10) is the classical Toda lattice equation [see (l)]. The 
convergence of the classical Toda lattice and hence of the QR algorithm to a 
diagonal matrix follows from Theorem 3.1 [ 11, 151 immediately. 

EXAMPLE 3. Let A be an arbitrary subset of ordered integer pairs {(i, j) 1 
1 5 j < i 5 n}. Choose A = [au] such that 

1 if (i, j) E A, 
aij := -1 if (j, i) E A, (31) 

0 otherwise 

Theorem 3.1 implies that x0(t) of the corresponding (10) converges to zero when- 
ever (i, j) E A [see (2)]. This re-proves Theorem 1.1. 

In all the examples above, the values f 1 can be replaced by arbitrary numbers 
(except that au 2 0 for i > j and A skew-symmetric) and by Theorem 3.1 we shall 
have similar convergence results. The following is one particular example. 
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EXAMPLE 4. Let D = diag{di , . . . , d,,} be an arbitrary diagonal matrix with 
di > dj if i 5 j. Choose A = [au] such that 

au Z= di - dj. (32) 

Then (10) becomes a Brockett double bracket equation [see (3) and (4)]. Theorem 
3.1 can now be used to show that the Bracket flow (3) and (4) converges to one of 
n! possible diagonal matrices (see Theorem 1.2), but it says nothing about which 
one is the stable equilibrium point. 

5. EFFECT OF SCALING 

In addition to generating different flows, the scaling introduced by the matrix A 
has several other interesting effects from computational point of view. To illustrate 
the idea, we shall assume that the initial value X0 is generic, i.e., Xc is not an 
equilibrium point of (10); such points, being on algebraic curves, form a nowhere 
dense set of measure zero. 

The most obvious effect can be seen by comparing the “uniformly” scaled 
Toda flow where au = fc, c > 1, with the classical Toda flow where ad = f 1 
[see (30)]. The differential system being autonomous, it is clear that 

Xc-scaledToda(t;XO) = XToda(ct;XO). 

That is, the scaled Toda flow is expected to reach convergence c times faster than 
the classical Toda flow. 

A more subtle comparison is to consider a partial ordering k on skew- 
symmetric matrices defined by 

A? 0 if aij>O foralli>j, (33) 

A? B if A - B t 0. (34) 

Given the same X, it can be seen from (22) that if A k B, then the ak corresponding 
to A “grows” infinitesimally faster then that corresponding to B. Thus, for example, 
to Brockett flow Xn&&(t;Xc) [see (32) with D defined by (4)] grows faster in the 
sense of majorization [12, p. 1661 than the classical Toda flow Xrda(t;Xa) [see 
(30)], at least for sufficiently small r > 0. Figure 1 illustrates this majorization 
property of 
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o=Brockett flow 
*=Toda flow 

0 

0 0.2 0.4 0.6 0.8 1 

t 

FIG. 1. Majorization of Brockett flow versus Toda flow. 

Brockett flow versus Toda flow for the matrix 

x, = 

0.6489 0.3286 -0.1870 0.4121 -1.3056 

0.3286 2.0112 -0.4956 3.4960 0.4198 

-0.1870 -0.4956 2.1534 -0.1380 -1.8459 

0.4121 3.4960 -0.1380 0.5415 -0.5440 

-1.3056 0.4198 -1.8459 -0.5440 -1.3550 

1.2 

We note, as is demonstrated in Figure 1, that at some latter stage of integration it 
is possible that 

gi, Toda(t) 2 bi, Brockett(t) for some i. 

The choice of A in the form (32) is of particular interest. Apparently what is 
important in the diagonal matrix D is not the values of di, i = 1, . . . , n, but rather 
the relative spacing of these elements. Diagonal matrices with elements either 

{dr,..., d,} or {dl + c, . . . , d, + c} generate the same flow. We note then that 
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the choice 
D = diag{l, 0,. . . , 0) (35) 

gives rise to the matrix (23) which leads to the continuous power method. The 
choice 

D = diag(2, 1, 0, . . . , 0}, (36) 

on the other hand, will cause the corresponding flow X(t) to converge, according 
to Theorem 3.1, to a limit point of the form 

x 0 0 ... 0 

0 x 0 1.. 0 

x(00) = oox...x ) 

. . . . . . . . . 

0 0 x ..* x 

where x indicates some nonzero values. Furthermore, since x(00) is the least 
squares approximation ‘to D, the sorting property guarantees that x11(00) and 
xZ2(co) are the two largest eigenvalues of Xu. This is a continuous version of 
the so-called simultaneous iteration [ 14, Chapter 141. 

Motivated by the above observation, we find another application of the Brockett 
flow, which is aimed at aggregating eigenvalues into blocks. For example, the limit 
point x(00) of the flow corresponding to the choice 

D=diag{?, .._.,?,$ .._.,2/,!, .,., !} 

nl many n2 many w my 

(37) 

will be a block diagonal matrix with three blocks. The eigenvalues of the (1, 
1) block of x(00) are the ni most dominant eigenvalues of Xa; the eigenvalues 
of the (3, 3) block are the rr3 least dominant eigenvalues of Xa; and the (2, 2) 
block contains the remaining eigenvalues. In this way the eigenvalues of Xc are 
aggregated into three groups according to their ordering. In the special case when 
n2 = 1, we are able to single out the (ni + 1)th largest eigenvalue of Xu by solving 
the differential equation. We think this feature is very interesting and useful. 

Of course, the choice of values 0, 1, 2, or 3 for diagonal matrices D in (359, 
(36), or (37) is for the purpose of demonstration only. One may certainly choose 
different values and consider the possible speedup in convergence as we have done 
earlier. 

Given any diagonal matrix D = diag{di , . . . , d,}, let a(D)den the polytope 
in R" whose vertices are exactly the columns of D. Given Xa E S(n), let its 
eigenvalues be written into the diagonal matrix A = diag{Xi , . . . , A,}. Consider 
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FIG. 2. Majorization of standard Brockett flow versus modified Brockett flow. 

the two polytopes n(D) and Q(h). Our theory suggests that the least squares 
approximation to D subject to the spectral constraint Xi, . . . , A, is the diagonal 
matrix A such that the polytope n(A) is as similar to a(D) as possible in the sense of 
Theorem 1.2. This feature should find applications in geometric design. Suppose 
we make one or more vertices of D more distinguishable than other vertices; then 
the corresponding Brockett flow (3) should show up the corresponding eigenvalues 
earlier than other eigenvalues. This is like rattling a long and narrow polytope R(A) 
inside a long and narrow polytope Q(D). It is expected that the longer edges of 
R(h) will align with those of R(D) first while the shorter edges of a(A) are yet to 
be settled. Our numerical experiment seems to confirm this intuition. In Figure 2, 
we compare the standard Brockett flow where D is defined by (4) with the modified 
Brockett flow where 

D = diag{ lOn, n - 1, . . . , 2, 1). (38) 

Clearly, gi, Modified(f) converges significantly faster than 01, Saved, while the 
rest are converging at almost the same rate. 
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6. CONCLUSION 

The structure of Toda lattice has been modified to allow scaling in the second 
component of the Lax pair. A number of interesting facts concerning the scaled 
Toda-like flow (10) have been studied in this paper. 

With specially selected scaling matrix A, the scaled Toda-like flow includes 
as special cases several well-known flows that are related to important numerical 
linear algebra algorithms. We have shown that the time-l mapping of the scaled 
Toda-like flow still enjoy a QR-like iteration except that the corresponding QR-like 
decomposition now becomes metaphysical. We restricted to symmetric matrices, 
a unified proof of global convergence is given in Theorem 3.1. The effect of 
scaling is demonstrated through numerical examples. It seems that by increasing 
the scaling factor one might cut short the interval of integration for reaching the 
equilibrium. Of particular interest is that by maneuvering the diagonal matrix D 
one can locate intermediate eigenvalues of matrix Xa according to their ordering. 
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