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a b s t r a c t

This paper reviews recent progress towards understanding 3D shape perception made possible by appre-
ciating the significant role that veridicality and complexity play in the natural visual environment. The
ability to see objects as they really are ‘‘out there” is derived from the complexity inherent in the 3D
object’s shape. The importance of both veridicality and complexity was ignored in most prior research.
Appreciating their importance made it possible to devise a computational model that recovers the 3D
shape of an object from only one of its 2D images. This model uses a simplicity principle consisting of
only four a priori constraints representing properties of 3D shapes, primarily their symmetry and volume.
The model recovers 3D shapes from a single 2D image as well, and sometimes even better, than a human
being. In the rare recoveries in which errors are observed, the errors made by the model and human sub-
jects are very similar. The model makes no use of depth, surfaces or learning. Recent elaborations of this
model include: (i) the recovery of the shapes of natural objects, including human and animal bodies with
limbs in varying positions (ii) providing the model with two input images that allowed it to achieve vir-
tually perfect shape constancy from almost all viewing directions. The review concludes with a compar-
ison of some of the highlights of our novel, successful approach to the recovery of 3D shape from a 2D
image with prior, less successful approaches.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Conventional wisdom holds that the perception of a real object
is based exclusively on sensory data representing the physical
properties of the object such as its weight, reflectance, rigidity,
stiffness and texture. This view has dominated the field called ‘‘hu-
man perception” for centuries and has influenced the field called
‘‘machine vision” since it began a half century ago. This conven-
tional wisdom ignored, or deemed unimportant, the critical ab-
stract property of a real object, called its ‘‘shape”. The distinction
between the abstract shape of a real object and the object itself
was made by Plato about 2500 years ago. Plato not only recognized
the importance of the abstract property, shape, he also realized
that the symmetry of a volumetric shape is its defining characteris-
tic. He made this clear by describing what subsequent authors have
called ‘‘Platonic solids”. Beginning with Plato’s student, Aristotle,
the distinction Plato made between the abstract shape of an object
and the object, itself, has made trouble for philosophers, as well as
for scientists when they took over the study of perception. Plato’s
distinction between a ‘‘real”, or ‘‘physical”, object and its abstract,
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non-physical, shape played an important role in the philosophical
controversies called materialism vs. idealism and empiricism vs.
nativism. Why did Plato’s distinction lead to so much confusion
about the meaning of shape for hundreds of years? The answer
to this question can be traced to Aristotle’s claim that there is noth-
ing in the mind that was not first in the senses. This claim was ta-
ken very seriously by modern empiricists, starting with John Locke
and the Bishop Berkeley in the 17th and 18th C., and by most per-
ceptionists ever since. It seemed obvious to almost everyone inter-
ested in perception that knowledge about real objects ‘‘out there”
must be based on obtaining sensory data about the physical prop-
erties of the objects. The shapes of these objects, by being abstract,
obviously provided less reliable knowledge about them than their
concrete sensory properties. At present, no one questions the fact
that shape is an important property of an object despite its abstract
nature. Today philosophers, artists, architects, film directors and
even perceptionists accept the ‘‘reality” of shape, but the nature
of shape remained, until very recently, an elusive characteristic
that could only be loosely related to real objects (see Pizlo, 2008,
for a detailed historical treatment of 3D shape). Does shape refer
to geometrical properties of an object such as its angles, or only
to topological properties such as its parts? Is shape characterized
by the object’s surfaces, or by its contours? Does shape refer to spa-
tially global characteristics, and if it does, what does ‘‘global” really

http://dx.doi.org/10.1016/j.visres.2009.09.024
mailto:pizlo@psych.purdue.edu
http://www.sciencedirect.com/science/journal/00426989
http://www.elsevier.com/locate/visres


2 Z. Pizlo et al. / Vision Research 50 (2010) 1–11
mean? These are but a few of the remaining questions perception-
ists have in mind when they think of and talk about shape.

Our recent work has made it clear that the shape of a symmet-
rical 3D object is the property responsible for its being perceived
veridically. Technically, a priori knowledge about: (i) the symme-
tries of 3D shapes, (ii) the nature of these symmetries’ interac-
tions with the geometrical complexity of these shapes, as well as
(iii) their interactions with probabilistic properties associated
with different 3D viewing directions, are more important for
the veridical perception of the shapes of real 3D objects, than
the sensory data obtained from the objects, themselves. How
could a priori knowledge be more important than ‘‘direct” sensory
experience? This claim seems implausible. It is surely anathema
for any empricistically-minded scientist or philosopher. It is true
nonetheless. Appreciation of this fact encouraged us to develop a
new theory of 3D shape perception, a theory that should, once it
is established, lead to change within broad areas of visual percep-
tion because it can be extended from the perception of 3D shape
to figure-ground organization and to the perception of 3D scenes,
as well as to visual navigation within these scenes. Our review
will: (i) describe the theoretical and empirical developments that
led to the formulation of our new theory of 3D shape perception
and (ii) include demonstrations that show how well a computa-
tional model, based on our novel approach, works. It will begin
with explaining how a failure to appreciate the significance of
veridicality and complexity in perception research prevented pro-
gress in the study of shape. This section will be followed by a
description of the progress we have made towards understanding
3D shape perception during the last 10 years. This progress de-
pended primarily on our development of an understanding of
how critical symmetry and volume were in the perception of 3D
shape. This section of our review contains demos illustrating
the scope and capability of our current computational model.
These demos will make it clear that our model can recover the
3D shape of a complex abstract object from a single 2D image
and also recover the 3D shapes of a wide variety of natural ob-
jects from a single 2D image, including the human body as its
posture changes. Our model’s recovery of 3D shape is accom-
plished without using any information about depth, surfaces, or
learning. This review concludes with a comparative summary of
our novel approach. It highlights how our approach differs from
other approaches to the study of shape.
1 Obviously, a triangle is never confused with an ellipse. Our claim that shape is
confounded with orientation refers to the shape of a particular ellipse when
compared to any other ellipse, and the shape of a particular triangle when compared
to any other triangle.
2. Veridicality and complexity

For more than a century scientists engaged in perceptual re-
search have concentrated on studying failures of veridicality
rather than on how this important, ubiquitous perceptual prop-
erty is achieved. This emphasis goes counter to our ‘‘common
sense”. Everyday life experience tells us that we almost always
see things as they actually are ‘‘out there” when it comes to the
perception of 3D shape, arguably the most important visual char-
acteristic within our physical environment. 3D shape is unique in
perception, because 3D shape is the only visual property that has
sufficient complexity to guarantee accurate identification of ob-
jects. Furthermore, 3D shape perception, when shape is properly
defined, is almost always veridical. In our everyday life, we can
easily recognize important objects such as a car, chair, or dog
on the basis of their shapes alone. The shapes of most real objects
are perceived veridically, but, despite what ‘‘common sense” tells
us, most of the contemporary ‘‘scientific wisdom” tells us other-
wise. The reason for this discrepancy between the commonsensi-
cal and scientific understanding of our perceptions of 3D shape is
based upon the fact that contemporary wisdom about 3D shape
perception is not actually built on studying shape. It is built on
studies of perceptual illusions of depth and on the perception of
surfaces. This approach assumes that depth and surfaces are the
appropriate building blocks for 3D shape perception. This is an
unnecessary, as well as an unfortunate, assumption. It is plausible
geometrically, but not perceptually. Depth and surface orientation
are not sufficiently complex to support the perception of 3D
shape. Also, neither the depth nor the visible surfaces of objects
posses the essential characteristics of 3D shape called ‘‘symme-
try” and ‘‘volume”. Studying depth and surfaces could tell us
about the perception of shape if, but only if, shape perception
were actually based exclusively on information contained in the
2D retinal image. The 2D retinal image, itself, does not have
any volume and is almost never symmetrical, so, it is not surpris-
ing that those students of vision, who assumed that ‘‘there is
nothing in the mind that was not in the senses, first”, completely
overlooked the concepts underlying shape called ‘‘symmetry” and
‘‘volume”: these concepts are critical when it comes to studying
and understanding 3D shape perception. But, note that trying to
derive the perception of 3D shape directly from the 2D retinal im-
age has not, despite its prevalence, been a plausible assumption
for almost a 100 years, not since the Gestalt psychologists showed
that all percepts, and especially the perception of 3D shape, re-
quire the operation of a simplicity principle, which is much more
important than the actual elements contained in the 2D retinal
image. Before the Gestalt contribution, it had been commonly-as-
sumed that studying the elements contained in any complex per-
cept could tell us something important about the complex
percept, itself. This time-honored, but dangerous, assumption
puts one at the top of a slippery slope. For example, once it had
been demonstrated that the human’s perception of 3D distance
was not veridical, one could go onto assume that a human’s 3D
shape perception will always be distorted because shape percep-
tion was assumed to be built on distance perception. Further-
more, one could also assume that the distortions of 3D shape
observed can be predicted from the perceptual errors observed
when the 3D distances of the test stimuli were judged.

This way of thinking has a long history. It started at least a
1000 years ago when Alhazen (1083/1989) described shape and
size constancy and suggested that they could be explained by
‘‘taking slant and distance into account”. Alhazen’s approach
was almost universally accepted by philosophers and perception-
ists throughout the 17th–19th centuries. It was also used when
the first modern experiments on shape constancy were performed
by Thouless (1931a, 1931b). Thouless used only ellipses and tri-
angles to study shape constancy, not knowing that ellipses and
triangles are completely unsuitable for studying shape constancy
because they are too simple. When an observer is asked to recog-
nize or reconstruct the shape of an ellipse or a triangle, he must
reconstruct the orientation of the surface first and then must take
it into account when he judges the shape of ellipses and triangles.
Surface orientation must be established first because the shape of
an ellipse or triangle is completely ambiguous under perspective
projection. Perspective projection eliminates all information
about the shape of an ellipse and of a triangle. In other words,
the shape of both ellipses and triangles and their orientation
are confounded in the retinal image, so one cannot judge their
shapes without knowing their orientation.1 The fact that an obser-
ver can take orientation into account when judging the shapes of
ellipses and triangles does not mean that taking orientation into ac-
count is the only, or even the main, mechanism for perceiving the
shapes of other more complex objects. With more complex objects
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other mechanisms are more likely to be used because with more
complex shapes than ellipses and triangles, the shape of a single
2D retinal image actually can provide a lot of useful information
about a 3D shape ‘‘out there”, considerably more than most people
realize.

Consider the image of the opaque cube shown in Fig. 1. Marr
(1982) pointed out that you can only see half of the six surfaces
of this opaque cube (only 50%), but note that you can easily see se-
ven of its eight vertices, and nine of its 12 edges. So, if shape is rep-
resented by vertices and edges, rather than by (or in addition to)
surfaces, we often see 70% or even 87% of the shape, appreciably
more than 50%, as Marr claimed. So, the perception of a 3D shape
from its single 2D image would be much easier than Marr claimed
once shape is defined and represented by points, contours and sur-
faces, rather than by surfaces alone. In fact, Marr’s, as well as those
who followed his lead, choice of surfaces for the representation of
3D shape seems to have been the worst possible choice. Simply
put, relying exclusively on surfaces to represent shape, as most
modelers have for more than 20 years, has guaranteed that most
of the useful shape information contained in the 2D image would
be ignored.

Unfortunately, ellipses and triangles were by far the most pop-
ular stimuli used in studies of shape perception for many years
after Thouless published his frequently-cited, but misguided,
work. Fortunately, not everyone insisted on studying only these
simplest of all possible shapes. Gibson (1950) was probably the
first to be concerned about the obvious discrepancy between
the results of laboratory studies of shape and common sense (de-
scribed above). Gibson, unlike most of his contemporary percep-
tionists, accepted the commonsensical fact that human beings
perceive 3D shapes and 3D scenes veridically. He recognized that
the failure to observe this in the laboratory was a problem for the
laboratory scientists not for ordinary people going about their
activities in the real world. He went onto suggest that complex
3D shapes, resembling natural objects, should be used to study
human shape perception. Unfortunately, Gibson, like Marr, was
committed to surfaces being the appropriate building blocks for
3D shapes and Gibson and his intellectual heirs’ commitment to
this idea probably contributed a lot to the fact that so few
actually complex 3D shapes have been used to study shape per-
ception during the 30 years since Gibson’s death, and even these
shapes have tended to be too simple, e.g., elliptical cylinders and
rectangular pyramids. Furthermore, these 3D shapes were not
only too simple to be used in studies of shape, they were almost
always presented from very special viewing directions, called
‘‘degenerate views”, that is, views specifically chosen to remove
all 3D shape information. Here, as was the case in Thouless’ and
derivative experiments, the observer must use information about
the depth and orientation of surfaces to make judgments about
Fig. 1. The image of an opaque cube. Only half of its six faces can be seen. This fact
is the main idea underlying Marr’s emphasis on what he called the ‘‘2.5D sketch”,
but note that you can see seven of the eight vertices and nine of the 12 edges of this
cube. So, once 3D shape is represented by contours or vertices, much more than one
half of the 3D shape can be seen.
3D shape because the shape of these stimuli is completely ambig-
uous in their 2D retinal images when they are presented in
degenerate views. It is not surprising, then, that the shape judg-
ments in these experiments were very variable, as well as biased.
They could not be, and hence were not, better than depth judg-
ments made under similar conditions (Johnston, 1991; Norman,
Todd, Perotti, & Tittle, 1996; Todd & Norman, 2003). There was
no way the results could have come out otherwise.

Eventually, a few more complex 3D shapes were actually used
in the laboratory, but here, the researchers put considerable effort
into producing what can best be called 3D ‘‘degenerate” shapes,
specifically, 3D polygonal lines, potatoes, amoebas and crumpled
newspapers (e.g., Edelman & Bülthoff, 1992; Rock & DiVita, 1987).
These objects are actually amorphous objects because the percep-
tion of their shape can never be veridical. Shape constancy must
fail when they are used, because their retinal images do not con-
tain any information about 3D shape. Each of them is amorphous
for at least one reason, namely: (i) it is asymmetrical, (ii) it does
not have any volume, or (iii) it does not have useful contours.
Symmetry, volume and contour are essential characteristics of
3D shape. These are the characteristics that allow the application
of the effective a priori constraints (aka ‘‘priors”) we use to re-
cover the 3D shape of an object from one of its 2D retinal images.
The absence of one or more of these properties has fatal conse-
quences for the study of shape. Without all three there is no 3D
shape.

Biederman and Gerhardstein (1993) were the first to demon-
strate that 3D shape constancy can be achieved reliably. They
used 3D shapes composed of symmetrical 3D parts. Different
shapes either had different parts, or had the same parts, arranged
differently. So, we have only known for slightly less than 20 years
that it is critical to actually use stimuli that have 3D shape to
study 3D shape, and that once we do, shape constancy will be ob-
served in the laboratory as well as in everyday life. Once this was
appreciated, it became clear that a meaningful definition of shape
was needed. Until now, all individuals working on shape percep-
tion have implicitly assumed that all 3D objects possess the ab-
stract property called ‘‘shape”, but this assumption, as
implemented by almost all shape researchers has, more often
than not, had undesirable experimental consequences. Recently,
Pizlo (2008) reviewed the long, confusing history of research on
shape and proposed an empirical definition of shape intended
to prevent, or at least reduce, the prevailing confusion. His defini-
tion is based on the assumption that shape constancy is the sine
qua non of shape. This makes sense because shape, unlike the
slant or the depth of a surface, does not depend on viewing direc-
tion. One can only be certain that the abstract property called
‘‘shape”, rather than surfaces, is being studied when it can be
shown that shape constancy was actually achieved with the stim-
uli used. Employing this empirical definition will not be expen-
sive because it only requires that an experimenter present his
3D shapes from more than one viewing direction. If the chosen
stimulus actually has 3D shape, its presence will be manifested
from more than one viewing direction. An analytical definition,
based on geometrical and topological properties of objects, may
also be possible now that we have developed a computational
model that recovers 3D shape from a single 2D image. The a priori
constraints used successfully by this model suggested a basis for
an analytical definition.
3. Towards an analytical definition of 3D shape

The success of our computational 3D shape recovery model
rests on only four a priori constraints, namely, maximal 3D sym-
metry, maximal planarity of contours, maximal 3D compactness
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and minimal surface area.2 These four constraints operate on the
three properties that contribute to shape, namely, volume (maxi-
mal 3D compactness), surface (minimal surface area) and contours
(maximal 3D symmetry and maximal planarity of contours). These
three properties can be used to predict whether an object actually
has 3D shape, or whether it is what we will call an ‘‘amorphous
object”. Without volume, surfaces or contours, our constraints can-
not be applied and when they cannot be applied, 3D shape cannot
be recovered. These three properties, viz., volume, surfaces and
contours, form the basis of a concept called a ‘‘combinatorial map”
in topology (Alexandrov, 1947/1998; Brun & Kropatsch, 2003). A
combinatorial map describes how the space, containing the shape,
is partitioned, that is, which volumes fill the 3D space, which 2D
surfaces bound these volumes, and which 1D contours bound these
surfaces. In a simple case, such as a cube residing in an empty 3D
space, a combinatorial map represents; (i) a single volumetric ob-
ject and its background (the rest of the 3D space), (ii) the decom-
position of the bounding surface into six sides of the cube, (iii) the
decomposition of the contours, bounding each side, into four edges,
and (iv) eight corners, each corner bounding three edges.3 A geo-
metrical interpretation of such a cube is produced from the topolog-
ical partition, represented in the combinatorial map, by adding
information about the planarity of the surfaces, the straightness
of the contours, the equality of the angles and the line segments,
and the positions of the endpoints of the line segments. Combina-
torial map descriptions of 3D shapes can range from very simple
(the cube described just above) to very complex, where many (in
principle, an infinite number of) tiny elements of volume, surface
and contour are present. We propose that a 3D object can be said
to possess the abstract property called ‘‘shape” only when its geometry
can be represented by a combinatorial map of bounded complexity,
providing that the object and/or its combinatorial map is symmetrical.
If the 3D object cannot be represented this way, this object is, and
should be called, ‘‘amorphous”. The requirement in this analytical
definition called ‘‘bounded complexity” guarantees that spatial de-
tails, which do not contribute to shape, are excluded.4

The combinatorial map representation is obvious with polyhe-
dral shapes like the one shown in Fig. 2b. The reader always sees
a 3D symmetrical shape when he views the 2D image in Fig. 2b, de-
spite the fact that this particular 3D shape is both abstract and
unfamiliar. One can easily see in this single 2D image, which sur-
2 ‘‘Symmetry”, as used here, means mirror symmetry or translational symmetry.
Mirror symmetry is present when one half of an object (e.g., one half of a human
head) is a mirror image of the other half. Translational symmetry is defined and
illustrated in Fig. 4. Topological mirror symmetry is present when a graph
representing an object is mirror symmetric. Consider a human body. Let each
important feature of a human body (the head, joints etc.) be represented by a node of
a graph. Let two nodes be connected by an edge when the corresponding features are
physically connected. The positions of the nodes and the orientations of the edges in
the graph should be ignored. Only the relations among nodes and edges are
important, which means that changing the articulation of arms and legs of a human
body does not change anything in the graph of the body. Once this is appreciated, it
becomes clear that the graph representation of a human body will always be
symmetrical regardless of postural changes.

3 There are several equivalent combinatorial data structures, e.g., abstract cellular
complexes, plane graphs in 2D, hypergraphs in higher dimensions, generalized maps,
descriptions used in algebraic topology, i.e., homology and co-homology groups, etc. A
combinatorial map is a formalism expressing all the important topological relations
explicitly.

4 The volume, surfaces and contours of the 3D shape of a stimulus should all have
spatial scales similar to the scale of the entire 3D shape. This has not always been the
case in modern experiments purporting to be on shape. For example, the surface and
volume of the thin wire from which Rock and DiVita (1987) made their wire objects
had a much smaller spatial scale than the length of the wire they used to make their
stimulus. This meant that the volume and surface of the wire could contribute little, if
anything, to the 3D geometry of their wire object, and could, therefore, have been left
out of the wire object’s representation. With the volume and surface greatly
minimized, or even removed, from the wire’s representation, a combinatorial map
cannot be constructed and the wire object will be amorphous, i.e., have no 3D shape.
faces (faces) encompass the volume, which contours encompass
the faces and where the symmetry is located. Note that in this case,
both the object, itself, as well as its combinatorial map, are sym-
metrical. The reader never sees a 3D symmetrical shape if the con-
tours are left out as they are in Fig. 2a. N.B. that eliminating only
one of the four levels of representation in this combinatorial map
completely eliminated the perception of 3D shape in Fig. 2a. If
the analytical definition we are proposing were to be adopted,
one would not expect a 3D shape to be perceived with the kind
of stimulus shown in Fig. 2a. Note that even adding short edges
around all of the vertices of the polyhedron, as was done in
Fig. 2c, does not make it easy to see the polygonal 3D shape. The
3D shape is only likely to be perceived when the observer can
interpolate the polyhedron’s edges perceptually to form closed
contours encompassing its faces (see Pizlo, Li, & Francis (2005),
for a direct test of the interaction between this kind of interpola-
tion and a 3D symmetry constraint).

Now, we can ask whether adopting our empirical and analytical
definitions of 3D shape will provide classifications of natural 3D
objects that are consistent with our common sense? Animal and
human bodies are arguably the most important 3D shapes humans
deal with in everyday life. We recognize them reliably from almost
any viewing direction. Shape constancy is achieved very easily
with such objects. This satisfies our empirical definition of 3D
shape, but can such important objects also be handled by our ana-
lytical definition? Can these objects be represented by a combina-
torial map? Natural objects like these have clearly visible surfaces
and volumes, but how about their contours? Animal and human
bodies can always be represented faithfully by simple line-draw-
ings. This fact, which has been known to human beings for quite
a while, is illustrated in Fig. 3. The line-drawing of the young ele-
phant, which was produced with a modern computer graphics’
technique called ‘‘suggestive contours”, is shown on the left (DeCa-
rlo, Finkelstein, Rusinkiewicz, & Santella, 2003). The line-drawing
of the horse shown on the right was found on the wall of a cave
near Lascaux in France. This line-drawing was made by visually-
guided human hands more than 10,000 years ago. The 2D contours
Fig. 2. You will never see the 3D symmetrical shape seen in (b) when only the dots
representing the vertices of the polyhedron in (b) are provided as they are in (a).
Note that even adding short edges around all of the vertices of the polyhedron, as
was done in (c) does not make it easy to see the polygonal 3D shape. The 3D shape is
only likely to be perceived when the observer can interpolate the polyhedron’s
edges perceptually to form closed contours encompassing its faces.



Fig. 3. Line-drawings of animals. (a) Young elephant (from DeCarlo:http://www.cs.princeton.edu/gfx/proj/sugcon/models/ with kind permission of the author). (b) The line
drawing of a horse found on the wall of a cave near Lascaux in France .
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of both animals, new and not so new, are sufficient to produce the
perception of opaque, clearly recognizable 3D objects with clearly-
defined surfaces and volume. The surfaces and volumes of their
bodies are perceived as clearly as the surfaces and volumes of
the polyhedron in Fig. 2b. What makes this possible? The simplest
explanation seems to be that the lines in both drawings provide
enough visual information to allow a priori 3D shape constraints
to operate, and when they do, they produce a 3D shape percept
that includes not only the 3D contours, but also the surfaces and
volume of the 3D object represented in the drawing. We are not
the first to call attention to this possibility. Recall that Biederman
(1987) proposed that animal and human bodies can be represented
by simple volumetric objects he called ‘‘geons” (basically, general-
ized cones; Binford, 1971; Marr & Nishihara, 1978). An important
characteristic of such objects is their special kind of symmetry
called ‘‘translational symmetry”. The term ‘‘translational” refers
to the process by which these generalized cones are constructed.
Consider the triangular top face of the generalized cone shown
on the bottom left of Fig. 4. This triangle has been ‘‘swept” down-
wards in 3D space along a curve called the object’s ‘‘axis”. This
sweeping process consist of nothing more than taking a copy of
the triangle and pasting it infinitely many times along this axis.
This operation is called ‘‘translational symmetry” (Weyl, 1952).
The size of the ‘‘cross section” of the generalized cone (the triangle
in the bottom left example) need not be constant, and the contour
Fig. 4. Some generalized cones (
of the cross section might be polygonal or smoothly curved. One
only needs a pair of contours, the contour representing the cross
section and the curve representing the axis, to form a generalized
cone. Its surfaces and the volume are produced by the sweeping
process. This fact, alone, suggests that generalized cones can be
represented by a combinatorial map.

So, once generalized cones, which are characterized by transla-
tional symmetry, can be used to represent the limbs, torso, neck
and head of an animal, it is reasonable to propose using a combina-
torial map to represent human and animal bodies as well as poly-
hedra. Note that the configuration of body parts need not itself be
symmetrical as is the case when the pose of the arms, legs and/or
torso changes. Note that the overall configuration is almost always
topologically symmetrical because all normal human and animal
bodies have two arms and two legs. In other words, when the geo-
metrical symmetry of the body is perturbed and when its pose is
arbitrary, its topological symmetry remains intact. This means that
a combinatorial map of a human and animal body will always be
symmetrical regardless of the arrangements of its parts.
4. Three-dimensional (3D) shape recovery model (2007 version)

Our novel computational 3D shape recovery model will be
described next. Our approach to modeling 3D shape is entirely
from Pizlo, 2008 – Fig. 5.4).

http://www.cs.princeton.edu/gfx/proj/sugcon/models/
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different from Marr’s (1982), which set the stage for much of the
contemporary research on shape perception. Marr tried to recon-
struct 3D shape from depth and surfaces. We recover 3D shape from
a limited number of a priori constraints and do not use depth, sur-
faces or learning. Once the importance of both veridicality and
complexity in 3D shape perception is appreciated, the significance,
as well as the nature of the a priori constraints (our ‘‘simplicity
principle”) that can be used to achieve veridicality comes into play.
Once they do, two questions arise: (i) why is a simplicity principle
essential for establishing the veridical perception of 3D shape and,
if it is, (ii) what will this simplicity principle be like? The answer to
the first question is obvious. A single 2D retinal image simply does
not provide enough information to produce a veridical percept of a
3D shape. In fact, a single 2D image is completely ambiguous. It
could have been produced by infinitely many 3D shapes ‘‘out there”.
As pointed out above, this ambiguity can be reduced by recon-
structing depth and 3D surfaces, but when only depth or 3D sur-
faces are used to reconstruct 3D shape, the reconstructed shapes
are never veridical. The answer to the second, more interesting,
question, requires considerable elaboration because the only way
to disambiguate the perceptual interpretation of a 3D shape asso-
ciated with a given 2D retinal image is to impose a priori simplicity
constraints on the family of all possible 3D interpretations. In plain
English, the visual system can only do this if it knows something
about the nature of 3D shapes on the basis of its inheritance.5 In
other words, it ‘‘learned” about important properties of 3D shapes
during its evolution. It might, for example, know that the shapes of
objects ‘‘out there” are almost always symmetrical and that they al-
ways have some volume. Such knowledge will obviously be helpful,
but will knowledge about symmetry and volume be sufficient to per-
mit the veridical perception of 3D shape? It turns out that it will.

Li, Pizlo, and Steinman (2009) published a computational
model that shows how this can be done, and a DEMO illustrat-
ing the model’s performance should now be viewed at:
http://www1.psych.purdue.edu/~sawada/minireview/.

Start DEMO 1 to see how well our model recovers a complex,
abstract 3D polyhedral shape. This synthetic polyhedron simulates
a 3D polyhedral object that could be ‘‘out there”. Check the box la-
beled ‘‘simulated shape”. This will make the simulated 3D shape
rotate. It is rotated to allow you to view it from different viewing
directions. Note that this ‘‘simulated shape” is opaque, that is, only
its front, visible, contours are shown. The five 2D line-drawings on
top are 2D images of the same 3D simulated shape obtained from
five different viewing directions. When you look at any of these 2D
images, you perceive the same 3D ‘‘simulated shape”. Try all five by
clicking on them one at a time. Now note that there is much more
to perceiving stimuli like these than is usually appreciated. People
rarely realize that they are recovering a veridical percept of a 3D
shape from a single 2D retinal image when they look at such 2D
stimuli. Note also that your veridical recovery of this 3D shape is
taking place despite the complete absence of depth cues. There
are none in your display. The fact that you perceived the same
3D shape from each and every one of these 2D images is critical be-
5 Characteristics of 3D shape such as 3D symmetry, volume and a combinatorial
map, could, in principle, be learned during one’s life through the observer’s
interaction with his environment. We prefer to think that these characteristics were
‘‘learned” during evolution and are present at one’s birth. One of our reasons for
saying this is that it would be very difficult to learn the concept of 3D symmetry
through an interaction with symmetrical objects because we do not have direct
sensory access to the 3D symmetry of objects ‘‘out there”. The retinal images of 3D
symmetrical objects are never 3D, nor are they symmetrical. Haptic perception can
convey the three-dimensionality of an object, but haptic sensory input is symmetrical
only when a 3D symmetrical object is grasped symmetrically. Furthermore, neither
vision nor haptics can convey the volume of a 3D object because volume is hidden
inside the object. See Pizlo, Li, and Steinman (2008) for a more detailed discussion of
our treatment of the nature of a priori constraints.
cause it provides an unambiguous demonstration of your ability to
achieve ‘‘shape constancy”. The shape of the 2D image changed,
but you continued to perceive the same 3D shape ‘‘out there”.

DEMO 1 also allows you to see how well our model can recover
3D shape from the 2D image shown at the center. Check the box
labeled ‘‘original image” to see the 2D image used for this recovery;
then, check ‘‘recovered shape”. This will make the ‘‘recovered
shape” at the center rotate, allowing you to see it from different
viewing directions. Now, check ‘‘simulated shape”, again. Toggling
between ‘‘simulated” and ‘‘recovered” shapes allows you to com-
pare the model’s 3D shape recovery to the shape that had to be
recovered. As you can easily see, the recovered shape is virtually
identical to the simulated shape. Furthermore, the entire 3D shape
was recovered, including its invisible back part. Clicking on another
2D image on top will allow you to see the 3D shape recovered from
a different viewing direction, a direction that produced a different
2D image of the same 3D shape. Simply, toggle among the buttons
labeled ‘‘original image”, ‘‘simulated shape” and ‘‘recovered shape”.
This allows you to see how much shape constancy was achieved by
our model. Constancy would be called ‘‘perfect” if the 3D recovered
shape appeared to be the same when all five of these 2D images
were used. Most people, who have viewed this DEMO, reported
that the 3D shape remained the same despite all of the changes
of its 2D image produced by changing the viewing direction. Sim-
ply put, by this criterion, our model’s shape constancy is almost
perfect. You can convince yourself about how good it is by clicking
on all of the 2D images and toggling between the ‘‘simulated” and
‘‘recovered” shapes. When satisfied, you can exit DEMO 1 by clos-
ing its window. Do not close the link, itself, because you will be
asked to view DEMO 2 and 3 later.

The model used for DEMO 1 recovered the entire 3D shape, both
its front visible, as well as its back invisible part from a single 2D
image of an opaque 3D polyhedral object. Depth cues and learning
were not needed for the recovery. Recall that a 2D image of a sym-
metrical 3D shape is almost always asymmetrical. It is important to
note that the model must be given an organized image in the sense
that the 2D contours in the image have already been extracted. It
must also be given the correspondence of the symmetrical points
in the 2D image. In other words, the model, at this time (July
2009), must be provided with what the Gestalt psychologists called
‘‘figure-ground organization”. Figure-ground organization is argu-
ably the most important unsolved problem in both human and ma-
chine vision. We, as well as many other groups around the world
are actively working on it.6 Finally, note that our model recovers
3D edges, represented by points, rather than surfaces. Points and
edges are sufficient when synthetic polyhedra are used because they
define surfaces and volume uniquely. This will not be the case when
real objects are used (see below). With real objects, the interpolating
surfaces will be added once the 3D points and edges have been
recovered. This is an important point: in our model, 3D surfaces fol-
low, rather than precede, 3D shape recovery. Our recovery order is
opposite to Marr’s.

It is important to keep in mind that a priori constraints can only
be effective when they are applied to a complex perceptual charac-
teristic such as shape because a priori constraints are likely to be
effective only if they are applied to relational properties of stimuli,
and only complex stimuli manifest meaningful relationships.
Surface orientation is not complex; it is represented by only two
numbers: slant and tilt. There are not many relations that can be
built from these two numbers, and the relations that can be built,
are not likely to represent anything critical about a physical object.
6 The interested reader is encouraged to examine the work of the speakers invited
to the first two workshops devoted to research on shape: http://bigbird.psych.pur-
due.edu/events.html – the research groups, led by these speakers, represent much of
the contemporary work on figure-ground organization.

http://www1.psych.purdue.edu/~sawada/minireview/
http://bigbird.psych.purdue.edu/events.html
http://bigbird.psych.purdue.edu/events.html
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For example, neither the product nor the ratio of slant and tilt re-
fers to anything important about the geometry of a surface. In con-
trast, the mirror symmetry of a 3D shape represents something
fundamentally important about the object ‘‘out there”. Consider
also that one surface orientation cannot be simpler than another,
the same way that a cube is simpler than a randomly-shaped poly-
hedron. A cube is simpler than a randomly-shaped polyhedron be-
cause it has multiple symmetries. Symmetry probably provides the
simplest, as well as the best, example of the power of a simplicity
principle to allow the perception of 3D shape, and once one real-
izes that most, if not all, important objects in our natural environ-
ment are symmetrical, one would expect symmetry to play a major
role in the perception of 3D shape.7 It surely does. Our everyday life
experience tells us, and has told all of our ancestors, that all objects
have three dimensions and all 3D objects reside in a three-dimen-
sional environment. Despite these obvious facts little use has been
made of symmetry or volume in attempts to understand 3D shape
perception despite their obvious potential. Volume has almost never
been used in prior studies of shape, and symmetry has been used
infrequently. When it was, only a relatively unimportant aspect of
symmetry was considered. Specifically, symmetry was only used to
reduce the amount of memory required for sensory coding.

Clearly, memorizing a symmetrical pattern requires only half
as much memory as memorizing an asymmetrical pattern, but
saving some memory does not seem to be critical, because even
if it were critical, our retinal images are almost never symmetri-
cal even when the 3D shape ‘‘out there” is symmetrical. The ret-
inal image of a 3D symmetrical shape ‘‘out there” will only be
symmetrical for a very restricted set of viewing directions. Specif-
ically, the 2D retinal image will only be symmetrical when the vi-
sual axis is located on the symmetry plane of the 3D shape. Once
one realizes that the retinal image of a symmetrical shape is al-
most never symmetrical, it follows that one has to recover the
3D symmetrical shape before any memory can actually be saved.
It obviously follows that the recovery of 3D shape takes prece-
dence over saving memory. Once this is understood one can ask
‘‘how can symmetry be used to recover 3D shape?” As pointed
out above, a single 2D image of 3D object is not sufficient for a
unique, let alone a veridical, recovery of the shape of the 3D ob-
ject whose 2D image is present on the retina. It is not sufficient
because the depth of each 3D point is unknown, when only a sin-
gle 2D image of the 3D shape is available. If the 3D shape has N
points, the recovery of the 3D shape is characterized by N un-
knowns. But, if the shape of the 3D object is symmetrical, as most
natural objects are, the recovery of an object’s 3D shape can be
characterized by only one, or even no, unknown! This means that
the shape of a 3D symmetrical object can be recovered veridically,
even when individual points on the object’s surfaces cannot be
recovered at all!

The constraints called ‘‘symmetry” and ‘‘volume” provide very
powerful tools in shape perception because, as you have seen in
our 3D shape recovery DEMO, employing these constraints as a
simplicity principle produced a computational algorithm that can
recover 3D shape veridically. This fact compels one to take symme-
try and volume very seriously in perception research and once one
does, they can be used to solve a centuries’ old problem in visual
perception, namely, the recovery of a 3D shape from a 2D retinal
image.

Technical details of our model, which was used for the DEMO
you just viewed, were described in Li et al. (2009). Here, we will
only explain how the symmetry constraint, used in this model,
works because symmetry is the model’s most valuable constraint.
7 Such objects as trees are never exactly symmetrical, but their global structure is
usually approximately symmetrical, e.g., a Christmas tree.
It is valuable because it reduces the ambiguity inherent in the
recovery of 3D shape from infinitely many unknown parameters
to just one! Consider Fig. 5b which illustrates how a pair of 3D
symmetrical points is recovered from the 2D orthographic projec-
tion in a retinal image. This kind of recovery, when it is done for
all pairs of points of a given 3D shape shown in Fig. 5a, produces
a 3D symmetrical shape. There are infinitely many different 3D
symmetrical shapes corresponding to different orientations of
the symmetry plane, but the recovery is computationally very
simple when the symmetry plane forms an angle of 45 deg with
the x-axis. This simplest-case-recovery is shown in Fig. 5a and b.
Points in the 2D retinal image are shown on the x-axis. The equa-
tion of the symmetry plane is z = x (the y-axis is not shown). This
plane bisects the angle ZOX and is parallel to the y-axis (i.e., the
plane of symmetry forms a 45 deg angle with the XOY plane). If
the symmetry plane is not parallel to the y-axis, one can always
rotate the coordinate system (without restricting generality) such
that this assumption is satisfied. In this case, only the x-axis
needs to be considered, so the symmetry plane can be substi-
tuted by a symmetry line (see Sawada, Li, & Pizlo, submitted
for publication, for details). The depths of the two symmetric
points are recovered trivially by setting the z-coordinate (depth)
of the first point to be equal to the x-coordinate of the second
point, and vice versa. This implies that the two recovered points
shown in Fig. 5b as filled dots are mirror symmetric with respect
to the symmetry line. If the symmetry line forms an angle other
than 45 deg with the x-axis, the recovery is also possible, but the
computation of the depths of the points is a little more compli-
cated. Each orientation of the symmetry plane leads to a different
3D symmetrical shape. All of these shapes form a one-parameter
family. Three members of this family are shown in Fig. 5c. Once
symmetry has been used to establish this one-parameter family,
a unique 3D shape is recovered by applying the additional three a
priori constraints, namely, maximal 3D compactness, maximal
planarity of contours and minimal surface area.

5. Recent additions to our model

5.1. Natural objects

Once we had shown that the model can recover the 3D shapes
of abstract symmetrical polyhedral objects very well, we turned
our attention to the 3D shapes of natural objects, such as animals
and natural man-made objects. This generalization was important
for three reasons. First, natural objects, unlike polyhedra, are bet-
ter represented by contours than by distinctive points. Would our
shape-recovery algorithm work on contours? Second, information
about 3D contours is not sufficient to uniquely identify the sur-
faces that are encompassed by the contours, or to uniquely iden-
tify the volume that is encompassed by these surfaces. Surfaces
and volume can be used to implement the maximal 3D compact-
ness and the minimal surface area constraints despite the fact
that surfaces and volume are not explicitly recovered by the mod-
el. Note that with synthetic polyhedral objects, we, as well as the
algorithm, knew the location of the surfaces and the volume. But,
would our shape-recovery algorithm be able to recover 3D con-
tours without accurate knowledge about the object’s surfaces
and volume? Finally, would the model be robust in the presence
of the noise and uncertainty that would always be present with
real 2D images of real objects? The answer to all three questions
is ‘‘yes”. Examples of the model’s recovery of the 3D shape of six
natural objects can be seen by going back to the DEMO page:
http://www1.psych.purdue.edu/~sawada/minireview/ and click-
ing on DEMO 2.

DEMO 2 shows how well our model can recover six ‘‘realistic”
natural objects. DEMO 2 starts with the image of a ‘‘truck” (the

http://www1.psych.purdue.edu/~sawada/minireview/


Fig. 5. Recovery of a symmetrical shape. The points on the x-axis are points in the 2D retinal image. Only the x-axis of the 2D image is shown in these graphs. The symmetry
line in (a) and (b) forms a 45 deg angle with the image’s axis. The filled circles in (b) are the recovered symmetrical points. Note that the z-coordinate (the depth) of the first
point is equal to the x-coordinate of the second point, and vice versa. It is easy to verify that the two recovered points (x1, x2) and (x2, x1) are symmetrical with respect to the
symmetry line. Three members from the one-parameter family of symmetrical shapes are shown in (c). These shapes have different aspect ratios (ar) and the slants of their
symmetry planes are also different (r = 38.66, 45.00, 50.19 deg). The fact that different shapes from this one-parameter family are likely to have a different order of points in
depth is illustrated in (d). The three panels show the three shapes from (c). Consider the left and the middle panel. When the slant of the symmetry plane is changed from
45.00 to 50.19 deg, two pairs of points change their order in depth. The z-coordinates of these points are marked by two brackets on the z-axis of the graph on the left.
Similarly, when the slant of the symmetry plane is changed from 45.00 to 38.66 deg, two pairs of points change their order in depth (see the graph on right).
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images of the truck and the spider were copied from: Shilane et al.,
The Princeton Shape Benchmark, http://shape.cs.princeton.edu/
benchmark/). You can change to another image by clicking on
any of the 2D images on top. You cannot rotate these objects, as
you did in DEMO 1, because the digital models of these four real
animals in their natural environment, needed to do this, were
not available. The 3D shape recoveries shown in DEMO 2 were
based on contours in the 2D image extracted by an unskilled hu-
man hand. Check ‘‘drawn contour” to see these contours. The 3D
shape recovered from these hand-drawn contours can be seen by
checking ‘‘recovered shape”. You can avoid clutter by unchecking
the ‘‘original image” and ‘‘drawn contour” boxes. Note that all of
these 3D shapes were recovered very well from a single 2D image
despite the fact that the contours provided to the model were
rather crude. This is important because it shows that our model’s
recovery of 3D shape is quite robust in the presence of noise and
errors in the 2D image provided to it. The human visual system
does a much better job extracting contours than the unskilled hu-
man, who drew the contours used for 3D recovery in this DEMO.
The important message conveyed by DEMO 2 is that the spa-
tially-global aspects of the 2D image (its 2D shape) are the impor-
tant determinants of 3D shape recovery. Spatial details, such as
exact positions of points and magnitudes of curvatures of con-
tours, are irrelevant, allowing us to claim that the whole is not only
different from its parts, it is more important than its parts.

In all of the examples you saw in DEMO 2, 2D contours, rather
than 2D points were used as input to the model. Contours are com-
putationally more difficult than points because of what is called
the ‘‘correspondence problem”. Specifically, when a 2D image of
two 3D symmetrical curves is given, the problem of establishing
correspondence between points of these curves always has infi-
nitely many solutions. A unique correspondence is chosen by pro-
viding the model with the direction of the symmetry line segments
in the 2D image. Recall that in an orthographic image of a 3D mir-
ror symmetrical object, the line segments connecting the images of
points that are symmetrical in 3D (the line segments called ‘‘sym-
metry line segments”) are all parallel to each other. It follows, that
once this direction is known, a unique correspondence for all
points can be established (see Sawada et al., submitted for publica-
tion, for details). Obviously, the correct orientation of the symme-
try line segments cannot be known exactly. It follows that errors in
establishing this direction will lead to errors in the recovered 3D
shape. We were able to show, however, that the 3D shape recov-
ered was quite robust in the presence of small, or even moderate,
errors in establishing the direction of the symmetry line segments.

In DEMO 2, four 3D objects were included that might be ex-
pected to create problems for our shape-recovery algorithm (i.e.,
the spider, the fly, the mantis and the bird) because it was designed
to recover objects like polyhedra. One might also expect that our
algorithm could be applied relatively easily to other natural objects
in DEMO 2, such as the truck, because it does not look very differ-
ent from the polyhedra used to develop the model. One might
think that the bird, mantis, fly and spider would present a special
problem because they, unlike the truck, do not have much volume.
This expectation is unwarranted because all of the natural objects
used in this demo present the same challenge to our algorithm.

http://shape.cs.princeton.edu/benchmark/
http://shape.cs.princeton.edu/benchmark/
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Even though the truck looks somewhat like a polyhedron, its 3D
contours do not actually show where its surfaces and the volume
are located. You can see where they are, but the algorithm cannot.
The algorithm only used contours drawn by hand in all of the
examples included in DEMO 2. The hand-drawn, skimpy contours
used to represent all of these natural objects are sufficient for a hu-
man reader to see these drawings as three-dimensional, but the
model had work to do before it could recover their 3D shape. It
recovered their 3D shape by applying the maximal 3D compact-
ness and the minimum surface area constraints to a 3D convex hull
(a box) placed around the 3D object, rather than to the object, it-
self.8 This worked because the shape of the 3D convex hull is un-
iquely defined by the shape of the 3D object within it. Finally,
while viewing this demo, keep two things in mind, namely: (i) the
less-than-perfect contours in the 2D images were drawn by an un-
skilled human being and (ii) the 3D shapes recovered by the model
are quite accurate despite the noise inherent in all of these hand-
drawn 2D contours.

5.2. Human bodies and other nearly-symmetrical shapes

We next asked whether the model can be extended to recover
approximately symmetrical shapes. This extension is important
for at least three reasons. First, animal and human bodies are never
exactly symmetrical because they have movable limbs and flexible
bodies. This led us to ask whether a global symmetry constraint
could be used to recover asymmetrical body postures. Second,
some natural objects, which do not have movable parts, are only
approximately symmetrical. A human face is one example. A
long-used soft-metal garbage can is another. One wonders how
large a departure from symmetry can be tolerated when symmetry
is used as one of the constraints. Finally, some objects are not even
approximately symmetrical. Can the model know whether the 2D
image was produced by a symmetrical, nearly symmetrical or a
completely asymmetrical object? The completely asymmetrical
case is of particular importance because it could help us solve
the figure-ground organization problem. Namely, two independent
3D symmetrical objects (two boxes near each other) almost never
produce a 3D symmetrical configuration by accident, that is, the
planes of symmetry of the two boxes do not coincide. The figure-
ground organization problem here is to discover whether we are
dealing with one box or two. One way to separate them is to dis-
cover that the two boxes taken together cannot represent a single
symmetrical 3D object. All three examples can be handled in the
same way. We start by correcting the 2D image of an approxi-
mately symmetrical 3D shape so that this image could have been
produced by a symmetrical 3D shape. Recall that in any ortho-
graphic image of a mirror symmetrical 3D shape, the symmetry
line segments (i.e., the line segments that connect pairs of points
that are images of points symmetrical in 3D) are all parallel to
one another, but if the 3D shape is only approximately symmetri-
cal, the symmetry line segments are not parallel. We correct the 2D
image by making all symmetry line segments parallel to their aver-
age orientation. Once this correction is made, our model recovers a
perfectly symmetrical 3D shape and then deforms the recovered
3D shape so that the original 2D image could have been produced
by this asymmetrical 3D shape. This deformation is done by per-
forming the smallest rotation of the symmetry line segments in
3D (Sawada & Pizlo, 2008; Sawada, submitted for publication).
Once the 3D shape has been recovered, we can evaluate how asym-
metrical it is by comparing the two halves of the recovered 3D
shape. Three examples of how symmetrical and nearly-symmetri-
8 A convex hull of a set of 3D points is the smallest 3D convex object that contains
all the points in its interior or on its surface.
cal 3D shapes were recovered with skeletons of human bodies are
available in DEMO 3. See this DEMO by going back to the DEMO
page: http://www1.psych.purdue.edu/~sawada/minireview/ and
clicking on DEMO 3.

DEMO 3 works the same way as DEMO 2. The only difference is
that skeletons, rather than contours, were drawn by hand. The im-
age of the sitting person was produced by a 3D model whose pos-
ture was mirror symmetrical in 3D. The postures of the two
standing 3D models were asymmetrical in 3D. This DEMO shows
that our model’s recovery was quite good with both symmetrical
and asymmetrical postures.

Now that you have seen that our model can recover symmetri-
cal, nearly-symmetrical and asymmetrical 3D shapes, we can ask
whether human observers can do this too. Our experiments sug-
gest that they can. In one of these experiments, an observer was
shown a single 2D image and was asked whether the 3D shape
of the object that produced it was, or was not, symmetrical. The
observers’ performance was quite reliable and very similar to our
model’s (Sawada, submitted for publication).

So far we have a model that recovers 3D contours of 3D shapes
of symmetrical and nearly-symmetrical objects based on 2D con-
tours that have been extracted and labeled. The model still cannot:
(i) find which region in a 2D retinal image represents a 3D shape
‘‘out there”; (ii) extract the 2D contours representing the 3D ob-
ject; (iii) determine the correspondence of 2D pairs of image points
and contours that represent 3D pairs of symmetrical points and
contours; and finally (iv) add surfaces to the 3D recovered con-
tours. The development of our model will only be complete when
it can perform all these four steps without any human
intervention.

5.3. The contribution of a second input image

We continued to elaborate our 3D shape recovery model by
exploring the benefits that might accrue from adding information
from a second image. This seemed to be an important next step be-
cause interpreting a 3D scene on the basis of the information pres-
ent in two, or more, images is much more common in everyday life
than interpreting a 3D scene from a single 2D image. Two different
images are available whenever an observer views nearby objects
with both eyes, and also when the object or the observer move rel-
ative to one another even if one eye is covered.9 We discovered that
the way information from a second image is used for the perception
of 3D shape was new, as well as completely unexpected. Prior mod-
els that tried to reconstruct 3D shape from two images tried to
reconstruct the metric structure of 3D points (their relative dis-
tances) either: (i) by treating the two 2D images as independent
views of 3D points (e.g., Longuet-Higgins, 1981) or (ii) by assuming
that the two 2D images represent only slightly different viewing
directions of two or more points, and then combining the binocular
disparity angle (or motion parallax angle) with contextual informa-
tion such as the viewing distance, interocular distance or the angular
speed of rotation (Howard & Rogers, 1995; Rogers & Graham, 1979,
1982). Note that in all of these models, 3D shape was not considered
or studied. It was completely irrelevant. Only points or lines were
reconstructed. The reader surely knows by now that this is a huge
mistake because 3D shape perception is not the same as, or derived
from, the perception of points or lines. What role might a second in-
put image play in the perception of 3D shape? There will always be
more than one image under natural conditions so one might expect
additional images to contribute some benefit to the percept if only
by increasing its reliability.
9 When the viewing distance is larger than several meters, the two retinal images
in a binocular observer are essentially identical, so the second image provided by
having two eyes does not add any depth information.

http://www1.psych.purdue.edu/~sawada/minireview/
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We discovered the role of additional input images by examining
the relationship between the mirror symmetry of 3D shape and the
order of points in depth. The order of points in depth seemed to have
considerable potential because human observers are extremely
good at judging it. Their judgments are so reliable that this ability
is called ‘‘hyperacuity”. It is called ‘‘hyper” because the precision of
these judgments is an order of magnitude better than the density
of the retinal receptors (Regan, 2000; Watt, 1984; Westheimer,
1975). Hyperacuity, as related to the judgment of the order of points
in depth, had never been used in models of 3D shape perception
probably because hyperacuity refers to a spatially local feature while
shape refers to a spatially global feature.10 It turns out that 3D sym-
metry can bring these two features together. Recall that the first step
in our 3D shape recovery model is the application of a 3D mirror sym-
metry constraint to compute a one-parameter family of 3D symmetri-
cal shapes. Different members of this family are 3D shapes having
different aspect ratios and different 3D orientations (see Fig. 5c). The
changes of these two features, aspect ratio and 3D orientation, lead
to changes of the depth order of points of a 3D shape. This fact is illus-
trated in Fig. 5d. The depth order of at least some pairs of points spec-
ifies a very narrow range of 3D shapes in the one-parameter family of
3D shapes. The shape with maximal 3D compactness is always very
close to the actual 3D shape. The errors in the recovered aspect ratios
of the 3D shape are almost never greater than 20% and are usually less
than 10%. These are very small deviations from veridicality. The three
shapes in Fig. 5d illustrate a 20% difference in aspect ratio. Specifically,
the shape on left is stretched 20% compared to the shape in the center,
and the shape on the right is compressed 20% compared to the shape in
the center. Clearly, these differences in aspect ratio are rather small.
Even more important, the accuracy of the 3D shape recovery from two in-
put images is much less sensitive (fivefold) to viewing direction than the
recovery from a single view. Our model and our human subjects were able
to achieve virtually perfect shape constancy under all conditions. It seems
that Gibson was right when he emphasized the importance of studying
natural viewing conditions, including binocular viewing and allowing
his observers and objects within the environment to move about. The
enhanced performance of our model produced by allowing a second
input image suggests that it was more important than he, or anyone
else, supposed.

6. Comparative summary of our approach to 3D shape
perception

(1) The importance of studying and modeling the veridical per-
ception of 3D shape is emphasized in our approach. Almost all
prior research emphasized the importance of visual illusions, that
is, the non-veridical perception of 3D shape and space. This
emphasis was encouraged by a desire to perform psychophysical
experiments under laboratory conditions designed to achieve ‘sci-
entific purity”, but this desire encouraged using impoverished, and
highly-unnatural conditions. Using such conditions generated a
voluminous literature of questionable significance for understand-
ing the perception of 3D shape in the laboratory much less for
understanding shape perception in the natural visual environment.

(2) Symmetry is assigned very special status in our theoretical
treatment of 3D shape unlike in all prior theories in which symme-
try was only used to simplify sensory coding. In our approach,
10 Brookes and Stevens (1989) and Norman and Todd (1998) showed that
stereoacuity thresholds are elevated substantially when the points used as stimuli,
whose order in depth was judged, were placed on a discontinuous sawtooth surface
or on the surface of an irregular object like a ‘‘potato”. Under these special conditions
stereoacuity was not a hyperacuity. The stereoacuity thresholds were probably
elevated in these experiments because stereoacuity was put into conflict with
monocular cues to 3D depth. Stereoacuity may continue to be a hyperacuity when
shape constraints such as symmetry, compactness and planarity are not put into
conflict with stereoacuity.
symmetry serves as a critical a priori simplicity constraint; symme-
try makes it possible to recover 3D shapes veridically. Furthermore,
our symmetry constraint can be used to recover the shapes of both
symmetrical and nearly-symmetrical objects. The strategy used to
recover nearly-symmetrical shapes by applying a symmetry con-
straint is new. It is very useful, as well as important, because it al-
lows our model to recover the 3D shape of such ecologically-
significant objects as a human body with its head and limbs in dif-
ferent orientations with respect to its torso.

(3) Three additional a priori constraints, namely maximal 3D
compactness, minimal surface area, and maximal planarity of con-
tours are also used in our approach to permit the recovered 3D
shapes to be as veridical as 3D shapes recovered by human observ-
ers with the same stimuli. Minimal surface area and maximal pla-
narity have been used in prior computational models of 3D shape,
but our maximal 3D compactness constraint is a novel, as well as a
particularly effective, addition. Our model recovers 3D shape as
well as, and sometimes even better, than a human observer. No
prior computational model could even come close to the human
beings ability to do anything like this.

(4) Our model can also recover the 3D shapes of natural objects
from most of their possible 2D images. Recovery of the 3D shape of
a natural object from a single 2D image was, prior to our work, be-
lieved to be impossible. We not only showed it to be possible, we
also showed that the computational model that does this is sur-
prisingly simple, so simple that it is reasonable to propose that this
kind of model could be used by lower animals as well as by human
beings. It also can recover the entire 3D shape of an opaque object,
including its invisible back. This accomplishment cannot be
matched by any model that reconstructs the 3D surfaces of objects.

(5) We explained how the interaction of symmetry with binocu-
lar disparity and motion parallax can lead to the almost perfect
recovery of a 3D shape. Providing our model with binocular input
(with objects within 2 m) makes 3D shape recovery much more
accurate than recovery based on monocular input. This result calls
attention to a new role for both binocular disparity and motion par-
allax; both of these visual processes are always present and active
under natural viewing conditions. Two input images, provided
either by binocular viewing or by motion parallax, enhance the accu-
racy of 3D shape perception appreciably, making it nearly perfect
and allowing a high degree of accuracy from any viewing direction.

(6) We showed that the perception of 3D shape is veridical be-
cause shapes are complex. Specifically, the veridical recovery of the
shape of a 3D symmetrical object is possible despite the fact that
the veridical reconstruction of individual 3D points is impossible.
This computational fact is a good example of the oft-quoted Gestalt
claim that ‘‘the whole is different from the sum of its parts”. This
fact also shows that we not only solved Bishop Berkeley’s problem
by recovering a 3D shape from a single 2D image, it also shows that
we understand why this problem remained unsolved so long.
Namely, no one realized that recovering a complex 3D shape before
reconstructing its elements was the correct way to proceed.
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