ABELIAN GROUPS $\boldsymbol{\aleph}_{0}$-CATEGORICAL OVER A SUBGROUP*

Roger VILLEMAIRE
Department of Mathematics and Statistics, McGill University, Montréal, Québec, Canada H3A 2K6

Communicated by A. Blass
Received 19 April 1989
Revised 19 April 1990

Abstract

An abelian group A is said to be κ_{0}-categorical over its subgroup B when there is a unique countable model of the theory of A with distinguished subgroup B for any possible choice of countable dinstinguish subgroup. We give necessary and sufficient conditions for an abelian group to be κ_{0}-categorical over one of its subgroups. Furthermore we give an axiomatization of such theories in terms of some first-order invariants and show that these invariants can have any value as long as they satisfy some minor conditions. With these results we obtain a new proof of Hodges' decomposition theorem (Corollary 2.6). Finally, in the case of torsion-free abelian groups we conclude that A is \aleph_{0}-categorical over its subgroup B iff $B=m A$ for some integer m.

1. Introduction

Let L be a first-order language and $L(P)$ be the language obtained from L by adding a unary predicate P. Pairs of the form (A, B) will represent the $L(P)$-structure formed by the L-structure A with its substructure B as realization of the predicate P. Following [2] $(A, B) \times(C, D)$ will be the structure ($A \times C, B \times D$). It is important to remember that a direct decomposition of a structure does not always induce a direct decomposition of one of its substructures. Hence a direct decomposition of (A, B) means, in general, much more than just a decomposition of A.

Definition. An L-structure A is said to be \aleph_{0}-categorical over one of its substructures B, if A is countable and furthermore if for all countable $L(P)$-structures (C, D) and (C^{\prime}, D^{\prime}) elementarily equivalent to (A, B) such that $D=D^{\prime}$ there exists an isomorphism of C to C^{\prime} extending $D=D^{\prime}$ (i.e. its restriction to D is the identity).

Remark. In the above definition it is possible that the L-structures involved are finite. This case is not excluded because a finite L-structure does not have to be

[^0]\boldsymbol{x}_{0}-categorical over all of its substructures. Nevertheless it is possible to give a simple description of $\boldsymbol{\aleph}_{0}$-categoricity over a substructure, when the substructure is finite.

Proposition 1.1. Let A and B be L-structures and suppose B is finite. The following two conditions are equivalent:
(i) A is \aleph_{0}-categorical over B,
(ii) (a) (A, B) is $\boldsymbol{\aleph}_{0}$-categorical as an $L(P)$-structure and
(b) every automorphism of B can be extended to an automorphism of A.

Proof. Suppose (i) is satisfied. Take (C, D) countable and elementarily equivalent to (A, B). Since B is finite, it is clear that B and D are isomorphic. By Proposition 3.4 of [3], there exists an isomorphism between A and C extending the one between B and D. It follows that (A, B) and (C, D) are isomorphic as $L(P)$-structures and (ii) (a) is proved.
(ii)(b) follows directly from Proposition 3.4 of [3].

Suppose now that (ii) is satisfied. Let (C, D) and (C^{\prime}, D^{\prime}) be countable and elementarily equivalent to (A, B) with $D=D^{\prime}$. By (ii) (a) one finds an $L(P)$-isomorphism $\alpha:(C, D) \rightarrow\left(C^{\prime}, D^{\prime}\right)$. Let β be the restriction of α to $D=D^{\prime}$. By (ii) (b) $\beta^{-1}: D^{\prime} \rightarrow D^{\prime}$ can be extended to an isomorphism $\gamma: C^{\prime} \rightarrow C^{\prime}$ since by (ii) (a) (A, B) and (C, D) are isomorphic. Hence $\gamma \circ \alpha: C \rightarrow C^{\prime}$ is an isomorphism and its restriction to D is the identity. This completes the proof.

It follows from the previous result that if A is finite, one has just to check if (ii) (b) is satisfied in order to have K_{0}-categoricity over B.

In this paper we will restrict ourselves to abelian groups. Hence L will be the language of the theory of abelian groups and $L(P)$ will be the language obtained from L by adding a unary predicate P. Abelian groups will be symbolized by capital letters and pairs of the form (A, B) will represent the $L(P)$-structure formed by the abelian group A with its subgroup B as realization of the predicate P. As is usual in algebra we will speak of finite direct sums instead of products. Hence $(A, B) \oplus(C, D)$ will be the structure ($A \oplus C, B \oplus D$). The term group will mean here abelian group.

Hodges [2, Corollary 2.2] proved that if A is an abelian group \aleph_{0}-categorical over B then A / B is a bounded abelian group. Furthermore Pillay [5, Corollary 11] proved that in the general case if A is a structure \aleph_{0}-categorical over B then the intersection of any $L(P)$-definable subset (without parameters) of (A, B) with B is L definable in B (again without parameters). In this paper we show (Theorem 2.3) that in fact an abelian group A is \aleph_{0}-categorical over its subgroup B if and only if A / B is bounded and $B \cap p^{n} A$ is definable without parameters in B (see the following for the notation). Furthermore we give (Theorem 2.5) for such A and B a simple axiomatization of the theory of (A, B) in terms of the L-theory of B and a finite number of $L(P)$-sentences. From this we deduce (Corollary 2.6) a new proof of the tight-decomposition theorem of Hodges [2, Theorem 4.6 and 5.2]. In the case where
A is torsion-free, we prove that A is $\mathbf{\aleph}_{0}$-categorical over B if and only if $B=m A$ for some natural number m.

2. Extending isomorphisms

The greatest problem in the study of \aleph_{0}-categoricity over a subgroup is to find a way to extend the isomorphism between the subgroups. It is clear that such a thing is impossible in complete generality, but using a result of [2], one can see that in the case of \aleph_{0}-categoricity over a subgroup it is possible to use the procedure algebraists use to show Ulm's theorem.

We now need some notation and terminology.
Definition. Let A be a group and p be a prime number. We define by induction on the ordinals the following subgroups of A.

$$
\begin{aligned}
& p^{0} A=A, \quad p^{\alpha+1} A=\left\{p x: x \in p^{\alpha} A\right\} \\
& p^{\alpha} A=\bigcap_{\beta \in \alpha} p^{\beta} A \quad \text { if } \alpha \text { is a limit ordinal. }
\end{aligned}
$$

Definition. The p-height $h_{p}(a)$ of an element a of A is the ordinal α such that $a \in p^{\alpha} A \backslash p^{\alpha+1} A$ if it exists and infinity otherwise. If there is a danger of confusion we will write $h_{p}^{A}(a)$ to make clear that the height is computed in A.

Definition. Let A be a group, p be a prime number and α be an ordinal. $p^{\alpha} A[p]$ will be the subgroup of $p^{\alpha} A$ formed by its elements of order p.

Definition. Let A and C be groups and B and D be subgroups of A and C respectively. An isomorphism $\alpha: B \rightarrow D$ is said to preserve height if $h_{p}(b)=h_{p}(\alpha(b))$ for every b in B and every prime number p. It is important to understand that the heights are computed in A and C respectively.

The following lemma is just a reformulation of a result of [4] (see also [1, Lemma 77.1]). I state it here in a form which will be useful for our purpose.

Lemma 2.1. Let A and C be groups and B and D be subgroups of A and C respectively. Let $\alpha: B \rightarrow D$ be a height preserving isomorphism. Suppose also that

$$
\begin{align*}
& \operatorname{dim}_{p}\left(p^{\sigma} A[p] /\left(B+p^{\sigma+1} A\right) \cap p^{\sigma} A[p]\right) \\
& \quad=\operatorname{dim}_{p}\left(p^{\sigma} C[p] /\left(D+p^{\sigma+1} C\right) \cap p^{\sigma} C[p]\right) \tag{1}
\end{align*}
$$

for every prime number p and every ordinal $\sigma .\left(\operatorname{dim}_{p}\right.$ is the dimension of the vector space over the p element field.)

Let now p be a prime number, a be an element of A, ϱ be an ordinal, b and b^{\prime} be elements of B such that

$$
p a=b^{\prime}, \quad \varrho=h_{p}(a / B)=h_{p}(a+b),
$$

where $h_{p}(a / B)$ denotes the height of the coset of a in A / B. Suppose also that b is chosen so that, if there is an element y of B such that $\varrho=h_{p}(a+y)$ and $h_{p}(p a+p y)>$ $\varrho+1$, then $h_{p}(p a+p b)>\varrho+1$.

Then there exists an element c in C such that

$$
\begin{equation*}
p c=\alpha\left(b^{\prime}\right), \quad \varrho=h_{p}(c / D)=h_{p}(c+\alpha(b)) \tag{2}
\end{equation*}
$$

and for every c in C satisfying (2) there is a height preserving isomorphism $\alpha^{*}:\langle B, a\rangle \rightarrow\langle D, c\rangle$ extending α such that $\alpha(a)=c$ and

$$
\begin{aligned}
& \operatorname{dim}_{p}\left(p^{\sigma} A[p] /\left(\langle B, a\rangle+p^{\sigma+1} A\right) \cap p^{\sigma} A[p]\right) \\
& \quad=\operatorname{dim}_{p}\left(p^{\sigma} C[p] /\left(\langle D, c\rangle+p^{\sigma+1} C\right) \cap p^{\sigma} C[p]\right)
\end{aligned}
$$

for every prime number p and every ordinal σ.

Proof. See the proof of Lemma 77.1 of [1].
Definition. A group G is said to be bounded if there is a natural number n such that $n G=0$. The bound of G is then the smallest such natural number.

Corollary 2.2. Suppose A and C are countable and satisfy the hypothesis of Lemma 2.1 and furthermore that A / B and C / D are bounded. Then there exists an isomorphism $\beta: A \rightarrow C$ extending α such that $\beta(a)=c$.

Proof. The isomorphism between A and C is constructed by a back and forth argument.

Enumerate $A=\left\{a_{i}: i \in \omega\right\}, C=\left\{c_{i}: i \in \omega\right\}$. Take the first i such that a_{i} is not in $\langle B, a\rangle$. Since A / B is bounded, it follows that a_{i} is the finite sum of elements of A which are p-elements modulo $\langle B, a\rangle$ for various prime numbers p. Since adding successively these elements to $\langle B, a\rangle$ will generate a subgroup of A containing a_{i}, it is possible to suppose without loss of generality that a_{i} is a p-element modulo $\langle B, a\rangle$ for some prime number p. Let a_{i} be an element of order p^{n} modulo B for some natural number n. Since A / B is bounded the p-height of $p^{n-1} a_{i}$ modulo $\langle B, a\rangle$ is smaller than ω and there exists an element b in $\langle B, a\rangle$ such that $h_{p}\left(p^{n-1} a_{i} /\langle B, a\rangle\right)=$ $h_{p}\left(p^{n-1} a_{i}+b\right)$ and furthermore such that if there is a y in $\langle B, a\rangle$ such that $h_{p}\left(p^{n-1} a_{i} /\langle B, a\rangle\right)=h_{p}\left(p^{n-1} a_{i}+y\right)$ and $h_{p}\left(p^{n} a_{i}+p y\right)>h_{p}\left(p^{n-1} a_{i} /\langle B, a\rangle\right)+1$, then b already satisfies this condition.
So $p^{n-1} a_{i}$ satisfies the same conditions as the a in Lemma 2.1 where $b^{\prime}=p^{n} a_{i}, \alpha^{*}$ is in place of α and $\langle B, a\rangle,\langle D, c\rangle$ are in place of B, D. Therefore there exists an ele-
ment c_{j} in C and a height preserving isomorphism $\alpha^{* *}:\left\langle B, a, p^{n-1} a_{i}\right\rangle \rightarrow\left\langle D, c, c_{j}\right\rangle$ extending α^{*} and also

$$
\begin{aligned}
& \operatorname{dim}_{p}\left(p^{\sigma} A[p] /\left(\left\langle B, a, p^{n-1} a_{i}\right\rangle+p^{\sigma+1} A\right) \cap p^{\sigma} A[p]\right) \\
& \quad=\operatorname{dim}_{p}\left(p^{\sigma} C[p] /\left(\left\langle D, c, c_{j}\right\rangle+p^{\sigma+1} C\right) \cap p^{\sigma} C[p]\right)
\end{aligned}
$$

for every prime number p and every ordinal σ.
Now a_{i} is of order p^{n-1} modulo $\left\langle B, a, p^{n-1} a_{i}\right\rangle$ and hence iterating the last steps one can show that there is some height preserving isomorphism between a subgroup B^{\prime} of A containing $\langle B, a\rangle$ and a_{i}, and a subgroup D^{\prime} of C containing $\langle D, c\rangle$ extending α^{*} and such that

$$
\begin{aligned}
& \operatorname{dim}_{p}\left(p^{\sigma} A[p] /\left(B^{\prime}+p^{\sigma+1} A\right) \cap p^{\sigma} A[p]\right) \\
& \quad=\operatorname{dim}_{p}\left(p^{\sigma} C[p] /\left(D^{\prime}+p^{\sigma+1} C\right) \cap p^{\sigma} C[p]\right)
\end{aligned}
$$

for every prime number p and every ordinal σ.
Proceeding in the same way with the first element of C which is not in D^{\prime} one gets a back and forth procedure which gives an isomorphism between A and C extending α^{*} and the proof is completed.

It is now possible to give necessary and sufficient conditions for \aleph_{0}-categoricity over a subgroup.

Theorem 2.3. A is \aleph_{0}-categorical over B if and only if
(i) A / B is a bounded group,
(ii) $B \cap p^{n} A$ is L-definable (without parameters) in B for every prime number p and natural number n such that p^{n} divides the bound of A / B.

Proof. Suppose A is \aleph_{0}-categorical over B. (i) follows from Corollary 2.2 of [2] (it is not necessary that B is finite).

Since $p^{n} A$ is definable in A, (ii) follows from Corollary 11 of [5].
Suppose now that (i) and (ii) hold. Let (C, D) and (C, D^{\prime}) be countable and elementarily equivalent to (A, B) and let $D=D^{\prime}$. We now have to check a few things in order to apply the above lemma.

Firstly we must show that $D=D^{\prime}$ is height preserving. We first show that $D \cap p^{\omega} C=p^{\omega} D$, where p is a prime.

The inclusion $p^{\omega} D \subseteq D \cap p^{\omega} C$ is obvious. Suppose now that d is an element of $D \cap p^{\omega} C$. Let n be any natural number. Take m to be the largest natural number such that p^{m} divides the bound of C / D, which exists by (i). Since d is in $p^{\omega} C$, there exists an element c of C such that $d=p^{n+m} c$. Hence c is a p-element modulo D and by definition of $p^{m}, p^{m} c$ is in D. It follows that d is in $p^{n} D$. The result holding for any natural number n, it is clear that $D \cap p^{\omega} C=p^{\omega} D$.

This proves that for any d in D, if $h_{p}^{C}(d) \geq \omega$ then $h_{p}^{D}(d)=h_{p}^{C}(d)$. Since $D=D^{\prime}$
and since C^{\prime} / D^{\prime} is also bounded (by elementary equivalence), it follows that $D=D^{\prime}$ preserves height equal or greater than ω.

Now it suffices to show that $D=D^{\prime}$ preserves height smaller than ω.
By (ii) one knows that $D \cap p^{n} C$ is definable in D if p^{n} divides the bound of C / D. If p^{n} does not divide this bound, let m be as before. We will check that $D \cap p^{n} C=$ $p^{n-m}\left(D \cap p^{m} C\right)$. The right-hand side is obviously included in the left-hand one. Take now an element d in D such that $d=p^{n} c$ for some c in C. Since c is a p element modulo D, by definition of $m, p^{m} c$ is in D. Hence from $d=p^{n-m}\left(p^{m} c\right)$ it follows that d is in $p^{n-m}\left(D \cap p^{m} C\right)$ and the above equality is proved.

So for every prime number p and every natural number n we have that $D \cap p^{n} C$ is definable in D (without parameters). Since by elementary equivalence $D^{\prime} \cap p^{n} C^{\prime}$ is definable by the same formula in $D=D^{\prime}$, it follows that $D=D^{\prime}$ preserves height.

We now have to check that the condition (1) of Lemma 2.1 holds. Let p be a prime number and let m be as before. Let c be an element of $p^{\sigma} C[p]$ for σ an ordinal greater than m. Since there is no p-element of order greater than p^{m} in C / D, it follows that c is in D. Since by elementary equivalence the bound of C^{\prime} / D^{\prime} is equal to the bound of C / D it is now sufficient to check (1) for the p^{n} such that n is smaller or equal to m. But elementary equivalence takes care of this, since C and C^{\prime} are countable.

The result now follows from Lemma 2.1 and Corollary 2.2.
Using Corollary 2.2 it is also possible to prove the following result which is a little generalization of Theorem 4.2 of [2].

Corollary 2.4. Let A be \aleph_{0}-categorical over B. For any integer n there exists a finite set of $L(P)$-formulas $\left\{\varphi_{i}(\bar{x}, \bar{y}): i \in I\right\}$ such that for any n-type (in the language $L(P))$ over B which is realized in A, there is an $i \in I$ and a tuple \bar{b} in B such that $\varphi_{i}(\bar{x}, \bar{b})$ isolates the type in question.

Proof. Let B^{\prime} be any subgroup of A containing B such that B^{\prime} / B is finite. We will consider the following structure $(A, B, b)_{b \in B^{\prime}}$. Also every type considered will be in the language $L(P)$.

Let $\bar{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of A. The type of \bar{a} over B^{\prime} is isolated if and only if for every $i=1, \ldots, n$ the type of a_{i} over $\left\langle B^{\prime}, a_{1}, \ldots, a_{i-1}\right\rangle$ is isolated. Note also that since A / B is bounded $\left\langle B^{\prime}, a_{1}, \ldots, a_{i-1}\right\rangle / B$ is finite for $i=1, \ldots, n$. Furthermore if for every $i=1, \ldots, n$ the type of a_{i} over $\left\langle B^{\prime}, a_{1}, \ldots, a_{i-1}\right\rangle$ is isolated by the formula $\psi_{i}\left(x, a_{1}, \ldots, a_{i-1}, \bar{b}_{i}\right)$ where \bar{b}_{i} is in B^{\prime}, then $\bigwedge_{i=1}^{n} \psi_{i}\left(x_{i}, x_{1}, \ldots, x_{i-1}, \bar{b}_{i}\right)$ isolates the type of \bar{a} over B^{\prime}.
In the same way for any element a of A which is a p-element modulo B^{\prime} the type of a over B^{\prime} is isolated if and only if the type of $p^{i} a$ over $\left\langle B^{\prime}, p^{i-1} a\right\rangle$ is isolated for any $i=1, \ldots, s$ where p^{s} is the order of a. Furthermore $\left\langle B^{\prime}, p^{i-1} a\right\rangle / B$ is finite, since A / B is bounded. Here also if for every $i=1, \ldots, s$ the type of $p^{i} a$ over $\left\langle B^{\prime}, p^{i-1} a\right\rangle$ is
isolated by the formula $\eta_{i}\left(x, p^{i-1} a_{1}, \bar{b}_{i}^{\prime}\right)$ where \bar{b}_{i}^{\prime} is in B^{\prime}, then $\bigwedge_{i=1}^{s} \eta_{i}\left(p^{i} x, p^{i-1} x, \bar{b}_{i}^{\prime}\right)$ isolates the type of a over B^{\prime}.

Hence the result will follow if we can prove that for any subgroup B^{\prime} of A containing B and such that B^{\prime} / B is finite there exists a finite set of L-formulas $\left\{\varphi_{i}(x, \bar{y})\right\}$ such that for any a in A for which $p a$ is in B^{\prime}, then the type of a over B^{\prime} is isolated by a formula of the form $\varphi_{i}(x, \bar{b})$ for some \bar{b} in B^{\prime}.

Take such an a. If a is in B^{\prime} the result is obvious. Suppose now that a is not in B^{\prime}. Take m to be equal to the p-height of a modulo B^{\prime}. Let b be an element of B^{\prime} such that m equals the p-height of $a+b$ and suppose also that if there is an element b^{\prime} in B^{\prime} such that $h_{p}\left(a+b^{\prime}\right)=m$ and if the p-height of $p a+p b^{\prime}$ is strictly greater than $m+1$ then the p-height of $p a+p b$ is already of this kind.

Then the following set of sentences isolates the type of a over B^{\prime}.

$$
p x=p a, \quad m=h_{p}\left(x / B^{\prime}\right)=h_{p}(x+b) .
$$

To see that this is true let $p(x)$ be a type over B^{\prime} containing these formulas. Take $(C, D, b)_{b \in B^{\prime}}$ to be a countable elementary extension of $(A, B, b)_{b \in B^{\prime}}$ such that for some c in C, c realizes $p(x)$. Applying Corollary 2.2 with $\left\langle B^{\prime}, D\right\rangle$ in place of B, one finds an automorphism of C leaving $\left\langle B^{\prime}, D\right\rangle$ fixed pointwise which send a to c. Therefore $p(x)$ is the type of a over B^{\prime}.

Hence the type of a over B^{\prime} is isolated. Furthermore since p and m in the above formula are smaller than the bound of A / B there are only finitely many such formulas and the proof is completed.

One natural question to ask at this point is whether any definable subgroups can occur as the subgroups $B \cap p^{n} A$ for some $A \aleph_{0}$-categorical over B. The following result shows that under a few obvious conditions every choice is possible.

Definition. Let A be \aleph_{0}-categorical over B and let b be the bound of A / B.
The set $\left\{\varphi_{p, n}(x): \varphi_{p, n}(x)\right.$ defines $A \cap p^{n} B$ in $\left.B\right\}$ where the p^{n} are the powers of primes dividing b is called the valuation of (A, B).

Furthermore, the set $\left\{k_{p, n}: p^{n}\right.$ is a power of a prime dividing $\left.b\right\}$ where

$$
k_{p, n}=\operatorname{dim}_{p}\left(p^{n} A[p] /\left(B+p^{n+1} A\right) \cap p^{n} A[p]\right)
$$

is called the set of Ulm-Kaplansky dimensions of (A, B).
Theorem 2.5. Let A be \aleph_{0}-categorical over B, $\left\{\varphi_{p, n}\right\}$ be its valuation, $\left\{k_{p, n}\right\}$ be the set of its Ulm-Kaplansky dimensions and b be the bound of A / B. Then the following $L(P)$-sentences axiomatize $\operatorname{Th}(A, B)$.

$$
\begin{align*}
& B \cap p^{n} A=\varphi_{p, n}(B) \text { for } \varphi_{p, n} \text { in the valuation. } \tag{3}\\
& \bigcap_{p, n} \varphi_{p, n}(B)=b A, \tag{4}
\end{align*}
$$

where the intersection is taken over the valuation.

$$
\begin{equation*}
\operatorname{dim}_{p} p^{n} A[p] /\left(B+p^{n+1} A\right) \cap p^{n} A[p]=k_{p, n} \tag{5}
\end{equation*}
$$

where $k_{p, n}$ are the Ulm-Kaplansky dimensions.
$\left\{\psi^{P}: \psi\right.$ is an L-sentence true in $\left.B\right\}$,
where ψ^{P} is the relativization of the formula ψ to the predicate P.
Moreover, given any countable group B, any natural number b, any set of formulas $\left\{\varphi_{p, n}: p^{n}\right.$ is a power of a prime dividing $\left.b\right\}$ and any set of countable cardinals $\left\{k_{p, n}: p^{n}\right.$ is a power of a prime dividing $\left.b\right\}$ such that

$$
\begin{align*}
& \varphi_{p, n}(B) \text { is a subgroup of } B, \\
& p^{n} B \subseteq \varphi_{p, n}(B) \\
& p \varphi_{p, n}(B) \subseteq \varphi_{p, n+1}(B)
\end{align*}
$$

for any $\varphi_{p, n}$ and $\varphi_{p, n+1}$ in the above set, there exists a countable group A containing B such that A is \aleph_{0}-categorical over B and (3), (4) and (5) are verified. (It is easy to check that $\left(3^{\prime}\right),\left(4^{\prime}\right)$ and (5') are consequences of (3). Hence they are necessary conditions for such a result to hold.)

Proof. Let A be \aleph_{0}-categorical over B. By Theorem $2.3 A / B$ is bounded; let b be its bound. By Theorem 2.3 it is possible to find formulas such that (3) is verified. Since the bound of A / B is b (4) follows by (3).

Define now the $k_{p, n}$ simply as they are stated in (5). It is clear that (A, B) satisfy (3), (4), (5) and (6).

To show that (3), (4), (5) and (6) axiomatize $\operatorname{Th}(A, B)$, take a countable model (C, D) of (3), (4), (5) and (6). Since D is elementarily equivalent to B, if B is finite one can assume that $D=B$, otherwise one can easily find elementary chains of pairs of countable groups $\left(A_{i}, B_{i}\right),\left(C_{i}, D_{i}\right)$ for $i \in \omega$ such that

$$
\begin{aligned}
& \left(A_{0}, B_{0}\right)=(A, B), \quad\left(C_{0}, D_{0}\right) \equiv(C, D) \\
& B_{i} \subseteq D_{i} \text { for } i \in \omega, \quad D_{i} \subseteq B_{i+1} \quad \text { for } i \in \omega .
\end{aligned}
$$

Hence the union of these chains are countable and have the same subgroup. So without loss of generality we can assume that $D=B$.

As in the proof of Theorem 2.3 one can show that $B=D$ is height preserving and the analogue of condition (1) of Lemma 2.1 is satisfied. Hence by Corollary 2.2 (remember that by Lemma 2.1 there is an element c in C satisfying the conditions of the corollary) there is an isomorphism between A and C extending $B=D$, hence (A, B) and (C, D) are isomorphic and the proof of the first part is completed.

To prove the second part, we will proceed in a way similar to the proof of the Theorem 1 of [7]. It is not possible to proceed exactly in the same way since we want (5) to hold.

Consider the set of all couples of the form $\left(p^{n}, y\right)$ where p^{n} is a power of a prime dividing b and y is an element of $\varphi_{p, n}(B)$. Let F be the free group on those pairs.

Take K to be a maximal subgroup of $F \oplus B$ under the following conditions.
(a) $K \supseteq\left\langle p^{n}\left(p^{n}, y\right)-y ; y \in \varphi_{p, n}(B), p^{n}\right.$ is a power of a prime dividing $\left.b\right\rangle$,
(b) $K \cap B=0$,
(c) $B \cap\left(K+p^{n}(F \oplus B)\right)=\varphi_{p, n}(B)$ where p^{n} is a power of a prime dividing b.

To show that there is (via Zorn's lemma) such a maximal K, it suffices, since the above properties are preserved under union of chains, to check that they are satisfied by

$$
K_{1}=\left\langle p^{n}\left(p^{n}, y\right)-y ; y \in \varphi_{p, n}(B), p^{n} \text { is a power of a prime dividing } b\right\rangle .
$$

K_{1} obviously satisfies properties (a) and (b). To check (c) suppose y is an element of $\varphi_{p, n}(B)$. Then $p^{n}\left(p^{n}, y\right)-y$ is in K_{1} (by (a)) and since $y=p^{n}\left(p^{n}, y\right)-\left[p^{n}\left(p^{n}, y\right)-y\right]$, y is in $K_{1}+p^{n}(F \oplus B)$. If now y is in $B \cap\left(K_{1}+p^{n}(F \oplus B)\right)$, write y as $k+p^{n} u$ where k is in K_{1} and u is in $F \oplus B$. Remembering that the canonical projection of y on F must be 0 , that F is free and that $\left(3^{\prime}\right),\left(4^{\prime}\right)$ and ($\left.5^{\prime}\right)$ hold one gets that y is the sum of an element of $p^{n} B$ with one of $\varphi_{p, n}(B)$. Hence by (3^{\prime}) and (4^{\prime}) one gets that y is in $\varphi_{p, n}(B)$.
Therefore there is a maximal K with properties (a), (b) and (c) holding. We will now show that for such a K the group $A_{1}=(F \oplus B) / K$ has property (3), (4) and also that

$$
\operatorname{dim}_{p} p^{n} A_{1}[p] /\left(B+p^{n+1} A_{1}\right) \cap p^{n} A_{1}[p]=0
$$

for p^{n} a power of a a prime dividing b, where the embedding of B in A_{1} is canonical (it is an embedding by (b)). Firstly (3) is an obvious consequence of (c) while (4) will be satisfied as soon as $b A_{1} \subseteq B$ will be checked. Since this last inclusion is a consequence of (a), (4) holds.

The only remaining property is the last one. To show this take a_{1} in $p^{n} A_{1}[p]$ for some p and n satisfying the usual conditions. Take now K^{\prime} to be $\left\langle K, \bar{a}_{1}\right\rangle$ where \bar{a}_{1} is a representative of a_{1} in $F \oplus B$. K^{\prime} obviously satisfics (a). If $\left\langle K, \bar{a}_{1}\right\rangle \cap B$ is nontrivial, then \bar{a}_{1} is in $K+B$, since $K \cap B=0$. Hence a_{1} is in B, therefore a_{1} is in $B+p^{n+1} A_{1}$.
Suppose now that $K^{\prime} \cap B=0$. Condition (c) is then equivalent to the left to right inclusion only, since the other one follows as before from (a). Let y be in $B \cap\left(K^{\prime}+p^{n}(F \oplus B)\right.$) without being in $K+p^{n}(F \oplus B)$. It follows that \bar{a}_{1} is in $B+p^{n} F+K$, therefore a_{1} is in $B+p^{n} A_{1}$ and (c) holds.

To have the result define A_{2} to be the direct sum of $k_{p, n}$ many copies of the cyclic group of order p^{n+1}. Define A as $A_{1} \oplus A_{2}$, i.e. $(A, B)=\left(A_{1}, B\right) \oplus\left(A_{2}, 0\right)$. It is now obvious that (A, B) satisfy (3), (4) and (5). By Theorem $2.3 A$ is \aleph_{0}-categorical over B and the proof is completed.

We actually get in a different way the following result of [2]. (See [2, Theorem 4.6].)

Corollary 2.6. A is \aleph_{0}-categorical over B if and only if

$$
(A, B)=\left(A_{1}, B\right) \oplus\left(A_{2}, 0\right),
$$

where A_{1} is \aleph_{0}-categorical over B,

$$
\operatorname{dim}_{p} p^{n} A_{1}[p] /\left(B+p^{n+1} A_{1}\right) \cap p^{n} A_{1}[p]=0
$$

for every prime number p and every natural number n such that p^{n} divides the bound of A_{1} / B and A_{2} is a bounded group. This decomposition is unique up to isomorphism.

Proof. Let A be \aleph_{0}-categorical over B. By Theorem 2.5 there exists a group A_{1} \aleph_{0}-categorical over B such that $B \cap p^{n} A=B \cap p^{n} A_{1}$ also such that

$$
\operatorname{dim}_{p} p^{n} A_{1}[p] /\left(B+p^{n+1} A_{1}\right) \cap p^{n} A_{1}[p]=0
$$

for every prime number p and every natural number n such that p^{n} divides the bound of A / B. Define A_{2} to be the direct sum of

$$
\operatorname{dim}_{p} p^{n} A[p] /\left(B+p^{n+1} A\right) \cap p^{n} A[p]
$$

many copies of the cyclic group of order p^{n+1} for every prime numbers p and every natural number n, such that p^{n} divides the bound of A / B.

Now by Theorem $2.5(A, B)$ and $\left(A_{1}, B\right) \oplus\left(A_{2}, 0\right)$ are elementarily equivalent, hence isomorphic and the first part of the proof is completed.

The other direction follows from Theorem 2.3. Furthermore the decomposition is unique since $\left(A_{1}, B\right)$ is the only pair having the same valuation as (A, B) and zero Ulm-Kaplansky invariants and A_{2} is characterized up to isomorphism by

$$
\operatorname{dim}_{p} p^{n} A_{2}[p] / p^{n+1} A_{1}[p]=\operatorname{dim}_{p} p^{n} A[p] /\left(B+p^{n+1} A\right) \cap p^{n} A[p] .
$$

This completes the proof.

Now that the problem of describing \aleph_{0}-categorical groups over a subgroup has been reduced to existence of some definable subgroups, it will be shown in the next section that in torsion-free case this leads to a nice characterization of $\boldsymbol{\aleph}_{0}$-categoricity over a subgroup.

3. The torsion-free case

Proposition 3.1. Let G be a torsion-free group. A subgroup H of G is L-definable (without parameters) if and only if $H=m G$ for some natural number m.

Proof. Let $\varphi(x)$ be an L-formula defining H in G. It is well known (see [6, Theorem $2 . \mathbb{Z} 1(\mathrm{~b})]$) that $\varphi(x)$ is equivalent to a boolean combination of formulas of the form $p^{i} \mid p^{j} x$ and $n x=0$ where i, j and n are natural numbers and p is a prime number ($p^{i} \mid p^{j} x$ meaning p^{i} divides $p^{j} x$). Since G is torsion-free this reduces to $\varphi(x)$ being a boolean combination of formulas of the form $p^{i} \mid x$ for natural numbers i and prime numbers p.

Therefore, if for some elements g of G and h of H we have that $p^{i} \mid h$ if and only if $p^{i} \mid g$ for any natural number i and prime number p, then g is also in H.

We will now use the following general idea. Suppose a_{1}, a_{2} are elements of a group and p is a prime number. If $h_{p}\left(a_{1}\right)=m_{1}$ and $h_{p}\left(a_{2}\right)>m_{1}$, then $h_{p}\left(a_{1}+a_{2}\right)=m_{1}$, since it is greater or equal to m_{1} and if it was strictly greater, then $p^{m_{1}+1}$ would divide a_{1} (because it already divides a_{2}).

Let now p_{1}, \ldots, p_{n} be the prime numbers occurring in $\varphi(x)$ and let $p_{1}^{k_{1}}, \ldots, p_{n}^{k_{n}}$ be their maximal powers occurring in $\varphi(x)$. Therefore for g in G and h in H if $p_{i}^{s_{i}} \mid g$ if and only if $p_{i}^{s_{i}} \mid h$ for $i=1, \ldots, n$ and $s_{i}=1, \ldots, k_{i}$ then g is also in H. Let m_{i} be the minimum of $\left\{h_{p_{i}}(h): h \in H\right\}$; it is an ordinal number.

Define $m=\prod_{i-1}^{n} p_{i}^{t_{i}}$, where t_{i} is the minimum of $\left\{k_{i}, m_{i}\right\}$. It is obvious that $H \subseteq$ $m G$. We will now prove that the reverse inclusion holds.

Let h_{i} be an element of H of p_{i}-height equal to m_{i}, for $i=1, \ldots, n$. For Δ a subset of $\{1, \ldots, n\}$ define

$$
h_{\Delta}=\sum_{j \in \Delta}^{n}\left(\prod_{i \neq j} p_{i}^{t_{i}+1}\right) h_{j} .
$$

Where the product over the empty set is equal to 1 and the sum over the empty set is equal to 0 . We can now compute the p_{i}-height of h_{Δ}.

$$
h_{p_{t}}\left(h_{\Delta}\right)= \begin{cases}t_{i} & \text { if } t_{i}=m_{i} \text { and } i \in \Delta, \\ \text { greater or equal to } t_{i} & \text { if } t_{i}=k_{i} \text { and } i \in \Lambda, \\ \text { strictly greater than } t_{i} & \text { if } i \notin \Delta .\end{cases}
$$

In particular if $I=\{1, \ldots, n\}$ we have the following.

$$
h_{p_{i}}\left(h_{I}\right)= \begin{cases}t_{i} & \text { if } t_{i}=m_{i} \\ \text { greater or equal to } t_{i} & \text { if } t_{i}=k_{i}\end{cases}
$$

Take now g in $m G$ and let

$$
\Gamma=\left\{i: 1 \leq i \leq n, h_{p_{i}}(g)>t_{i}\right\} .
$$

Notice that if i is not in Γ then $h_{p_{i}}(g)=t_{i}$, since g is in $m G$. We therefore have the following.

$$
h_{p_{i}}\left(h_{\Gamma}+g\right)= \begin{cases}t_{i} & \text { if } t_{i}=m_{i} \text { and } i \in \Gamma, \\ \text { greater or equal to } t_{i} & \text { if } t_{i}=k_{i} \text { and } i \in \Gamma, \\ t_{i} & \text { if } i \notin \Gamma .\end{cases}
$$

The last line come from the fact that g is in $m G$.
Hence it now follows that $p_{i}^{s_{i}} \mid\left(h_{\Gamma}+g\right)$ if and only if $p_{i}^{s_{i}} \mid h_{I}$ for $i=1, \ldots, n$ and $s_{i}=1, \ldots, k_{i}$.

Hence $h_{\Gamma}+g$ is in H. It follows that $m G=H$ and the proof is completed.

Theorem 3.2. Let A be torsion-free. A is \aleph_{0}-categorical over B if and only if $B=$ $m A$ for some natural number m.

Proof. Let A be as stated. By Theorem $2.3 A / B$ is bounded, hence $n A \subseteq B$ for some natural number n. Furthermore again by Theorem $2.3 n A$ is L-definable in B, therefore by Proposition $3.1 n A=m B$ for some natural number m. Since A is torsion-free, division is unique and we can assume that $(n, m)=1$. Hence $B=n B+$ $m B=n B+n A=n A$.

The converse follows trivially from Theorem 2.3 and the proof is completed.

References

[1] L. Fuchs, Infinite Abelian Groups (Academic Press, New York, 1970 and 1973).
[2] W. Hodges, Abelian groups, preprint, 1986.
[3] W. Hodges, I.M. Hodkinson and D. Macpherson, Omega-categoricity, relative categoricity and coordinatisation, preprint, 1988.
[4] I. Kaplansky and G.W. Mackey, A generalisation of Ulm's Theorem, Summa Brasil. Math. 2 (1951) 195-202.
[5] A. Pillay, x_{0}-Categoricity over a predicate, Notre Dame J. Formal Logic 24 (4) (1983) 527-536.
[6] M. Prest, Model Theory and Modules (Cambridge University Press, Cambridge, 1988).
[7] F. Richman and E.A. Walker, Valuated groups, J. Algebra 56 (1979) 145-167.
[8] R. Villemaire, Aleph-zero-categoricity over a predicate, Doctoral Dissertation, Universität Tübingen, 1988.

[^0]: * This research was supported by a Postdoctoral Scholarship from the Conseil de recherches en sciences naturelles et en génie du Canada.

